• CaF-160-947-958

A new model for silicon nanoparticle synthesis

Reference: Combustion and Flame 160, 947-958, (2013)


This work presents a novel multivariate particle model to simulate the synthesis of silicon nanoparticles across a wide range of process conditions. The gas-phase mechanism of Ho et al. (1994, J. Phys. Chem. 98, 10138–10147) is simultaneously solved with a stochastic population balance incorporated a detailed multidimensional particle model. A systematic parameter estimation procedure is used to adjust gas-phase and heterogeneous pre-exponential factors to obtain fits with experimental results. The model is tested against a six different experimental configurations, with excellent fit observed for the majority of cases. It was found that primary particles were too large under conditions of finite-rate sintering, leading to the recommendation that the model could be made more robust by development of accurate sintering kinetics for silicon nanoparticles.

Access options

Associated Themes:
  Theme icon Theme icon

*Corresponding author:
Telephone: +44 (0)1223 762784 (Dept) 769010 (CHU)
Address: Department of Chemical Engineering and Biotechnology
University of Cambridge
West Cambridge Site
Philippa Fawcett Drive
Cambridge CB3 0AS
United Kingdom
Website: Personal Homepage