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Overview

Introduction
ILDM

problems and solutions

— numerical calculation

— manifolds of stationary states higher order
— reduced ignition chemistry

— Implementations of reduced chemistry

summary



Simulation of combustion
processes

reduced mechanisms

accur acy of detailled small number of reaction
mechanisms progressvariables




Reduction of detallled
reaction mechanisms

|LDM -
method

 reduction to therate limiting slow part of the mechanism
e mathematical/numerical method
 only input: number of reaction progress variables




Homogeneous reactor
INn state space
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fast reaction to Intrinsic Low-Dimensional Manifolds
(ILDM) Iin state space

ldea: use ILDM as a basis for a mechanism reduction
method (Maas, Pope 1992)
---> |dentification of rate limiting part of reaction mechanism



Tabulation of ILDM

e calculation of ILDM
IS computationally
expensive

e solution: tabulation
and use of fast
table look-up
Instead of slow

~,  calculation
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Application:
homogeneous reaction
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e initial conditions: partially burnt stoichiometric mixture

dodecane-air (temperature of unburnt mixture 300 K, 1 bar)
e lines: detailed mechanism; symbols: ILDM
* 2 reaction progress variables CO, and H,0O
* very good comparison both for main species CO, and CO

as for the radicals O and CH
---> mechanism reduction with ILDM-method is highly accurate




Application: flame 2d-ILDM
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D. Schmidt, U. Maas, J. Warnatz (1996)

e laminar premixed flame methane-air (stoichiometric, 300 K, 1 bar)
o lines: detailed mechanism; symbols: ILDM

* 2 reaction progress variables CO, and H,0O

* good comparison for main species CO,, H,O and O,

e deviations with O-atoms

---> Influence of diffusion on the relaxation of fast chemical time scales

---> improvement by additional reaction progress variable O,



Application: flame 3d-ILDM
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« laminar premixed flame methane-air (stoichiometric, 300 K, 1 bar)
e lines: detailed mechanism; symbols: ILDM

* 3 reaction progress variables CO,, H,0 and O,

* very good comparison for main species CO,, H,O and O,

*small error for O-atoms

---> 3 reaction progress variables are sufficient for laminar premixed
flames



Application: flame velocities
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 laminar premixed flame heptane-air (800 K, 80 bar)
e lines: detalled mechanism; detailed transport

e white symbols: ILDM; Le=1

e filled symbols: measurements
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Application: Non-premixed flame
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» laminar non-premixed flame heptane-air (stoichiometric, 300 K, 1 bar)
* 2 reaction progress variables CO,, H,O (temperature)

* very good comparison for main species CO,, H,O and O,

e good comparison for minor species



Application: turbulent jet-flame
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* non-premixed flame methane-air
 turulence-chemistry interaction: PDF, Monte-Carlo-method
* 2 reaction progress variables CO,, H,O, temperature



Fressure (bar)

Application: Diesel engine
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Correa (2000)

 Turbulence-
chemistry-
Interaction:
Presumed
PDFs

e 3-dimensional
ILDM table
(temperature,
CO,, H,0)



Is ILDM the perfect method
for mechanism reduction?

o All slides look fine!

 All relevant applications have been done!

 Where Is the problem?



There still exist major problems!

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



Definition of the manifold

Chemistry: Y — S(X)
Local linearization 72 95(%)

oX

~ A, E.
Eigenvalue J=EAE = (ESEf { ~
decomposition Ay E;

— Order In fast and slow

Definition of the manifold: Ef (X)S(x)=0



Calculation of the manifold |

« Solution of algebraic equation system is difficult
— nonlinearity and
— stiffness of reaction mechanism

e Reason for stiffness:

— thermodynamics

— higher alcanes are extremly unstable at equilibrium
temperatures

o Stiffness is increasing with growing numbers of
C-atoms in fuels



Calculation of the manifold II

« Conversion of ~
— algebraic equation system Ef (X) S()() =0

— with parameters PT X=pP
— into an ODE system X=S(X)+ ES(X)C{
q=1(X p)

e Solution with standard
stiff-stable ODE-solvers



There still exist major problems!

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



Bug Iin theory?

Trajectories
starting on the
ILDM are
leaving and
deviating from
the ILDM!

Error of 40 K
ILDM: black
Trajectory: grey
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Why there Is a deviation?
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e definition of
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Investigation on a theoretical
mechanism

 Reaction system  «

A+ A — C 3
B — A
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e bundling trajectories |
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Series of manifolds of
stationary states higher order

* ILDMis not a E ekt
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Proof: Series of manifolds of
stationary states higher order is
attractor for trajectories
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There still exist major problems!

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



Reduced ignition chemistry

o |dea of ILDM: All chemical scales are In
equilibrium
— except the very slow ones

 Ignition: All chemical scales are frozen
— except the very fast ones

e |ILDM can not be used in ignition prediction!



Is a reduced ignition chemistry
possible?

* Problem of dimensionality with ignition:

— Equilibration of scales leads to a dimension
reduction - no influence of initial conditions!

— Ignition occurs with the dimension of the chemical
state space (size of mechanism) —>influence of
Initial conditions!

* No rigorous model with generally applicable
reaction progress variables can be found for
ignition



Reduced ignition chemistry

e But: In practical applications (e.g. Cl engine)
dimensionality of initial conditions is much smaller:
— unreacted fuel-air mixture
— variable temperature
— variable pressure

* |dea: Use one reaction progress variable from
trajectories
« Result: Table of reduced ignition chemistry with a

few variables (mixture, temperature, pressure, one
reaction progress variable)



Fressure (bar)

Applied Reduced ignition
chemistry in a Cl engine

 Reduced ignition
model +
3-dimensional
ILDM (temp.,
CO,, H,0)

 Turbulence-
chemistry-
Interaction:

S R I Presumed PDFs

Crank Angle (deg)
Correa ((2000)




Applied reduced ignition chemistry
In a Cl engine




There still exist major problems!

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



Tabulation

Dimensionality of reduced chemistry in a Cl engine
 Temperature/enthalpy
 Pressure

o Mixture
— Mixture fraction
— More rigorous: 3 element mole fractions

* Reaction progress variables
— 1: seems to work not too badly
— More are better!

Result:
e 4 axis are the minimum
 In-situ tabulation is the only way to handle that big tables



Application of In-situ
tabulation in a Cl engine
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There still exist major problems!

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



[ Initialisierung J

CED-code |

Rand- und Anfangs-
bedingungen ., 1,

 How to implement tabulated |
manifold chemistry? ) .
° PrObIemS Lr'j:"?en der ];)iﬁerenti:al—
gleichung ¥,; — Ysar

— Reaction progress variables

(RPV) are very different from Chemesa)

SpeCieS Ableitungen V), A
_ _ o Operator Z(v, Vi, Ay)
— Different RPV for ignition and \ /
combustion I
— Variable number of RPV - { b . ]
variable number of
conservation equations I

e
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|dea of sceleton mechanism

Implementation

« Manifold chemistry should be usable like a
skeleton mechanism

— small number of species
— Low stiffness

— Detalls of the manifold (different models for
Ignition and combustion, variable dimension, ...
should be hidden from the user

— Physical interface layer

N’



|dea of sceleton mechanism
Implementation

chemischer Quellterm

nichtchemischer Transportterm

P

klassische Implementierung

neue Implementierung mit Skelett-Spezies




|
Skelett-Spezies : Interface
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mechanism | e |
implementation | ;
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Are there more problems?

 manifold
— numerical calculation often fails

— bug in theory? Strange results in homogeneous
reactions

— existence only in the burnt region: Ignition chemistry
IS not available

 tabulation
— needs too much space

e Implementation
— needs experts



Summary: Reduced chemical
Kinetics for combustion and ignition

Combined Reduced Chemistry

 Manifold chemistry (ILDM, stationary
states higher order) for the
combustion/equilibration zone

 Reduced ignition chemistry
* In-situ tabulation
e Sceleton mechanism implementation



