

WebLabs Clusters in Chemical and Biochemical Process Engineering

Dr. Luiz Valcov Loureiro, University of São Paulo, Brazil

The Moller Centre, Churchill College, Cambridge, UK

July 8th 2005

Outline

- Objetive and Methodology
- Sasic Sciences in Chemical and Biochemical Engineering (USP/RP)
- © Catalytic Reactor Engineering (UNICAMP)
- Biochemical Processes Engineering (UFSCar)
- Ohemical Processes Engineering (USP-Poli)
- Conclusions
- Prospective Developments

Goal and Methodology

- Development of laboratory experiments for educational and/or scientific purposes in Chemical Engineering
- © Cluster at different institution spread statewide
- 1 team (15 faculty and 40 students) in 4 different institutions (USP, USP/RP, UNICAMP and UFScar)
- 100-200 km distance between institutions
- FAPESP finances KyaTera program applications for high speed internet (3 layers)
- Maximum speed (galo)

Basic Sciences in Chemical and Biochemical Engineering (USP/RP)

- Main characteristics of USP/RP group
 - Department of Chemistry
 - 320 km from São Paulo
 - 80 BSc/year, 4 years course
 - MSc and PhD programs
- Basic Sciences in the cluster
 - Transport phenomena
 - → Heat transfer
 - → Mass transfer
 - Chemical and biochemical reactions
 - Kinetics

Biochemical Engineering (USP/RP)

Meat conduction and convection

Catalytic Reactor Engineering (Unicamp)

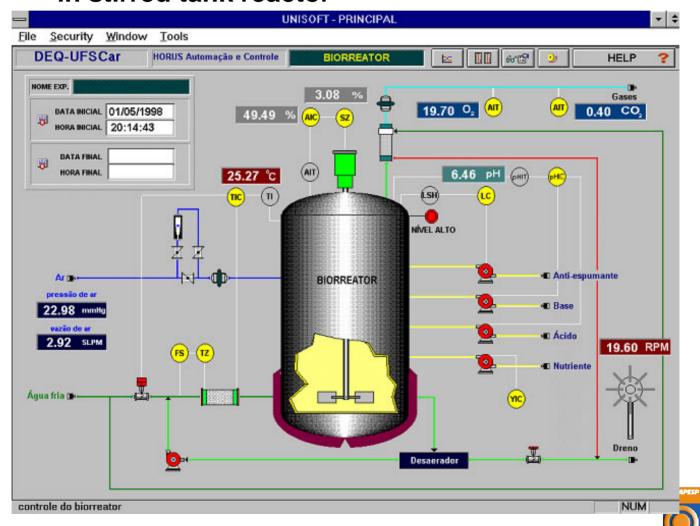
- Main characteristics of Unicamp group
 - Chemical Engineering
 - 100 km from São Paulo
 - 160 BSc/year, 5 years course
 - MSc and PhD programs
- Reactor Engineering in the cluster
 - Transport phenomena
 - → Heat transfer
 - → Mass transfer
 - Chemical reactions
 - Kinetics

Biochemical Processes Engineering (UFSCar)

- Main characteristics of UFSCar group
 - Department of Chemical Engineering
 - 250 km from São Paulo
 - 100 BSc/year, 5 years course
 - MSc and PhD programs
- Biochemical Processes Engineering in the cluster
 - Mass transfer and aerobic cultivation of baker's yeast in stirred tank reactor
 - Enzymatic Hydrolysis of Sucrose
 - State Inference and Control of Enzymatic Hydrolysis of Cheese Whey Proteins
 - Transport phenomena
 - → Heat transfer
 - Mass transfer

Engineering (UFSCar)

Mass transfer and aerobic cultivation of baker's yeast in stirred tank reactor

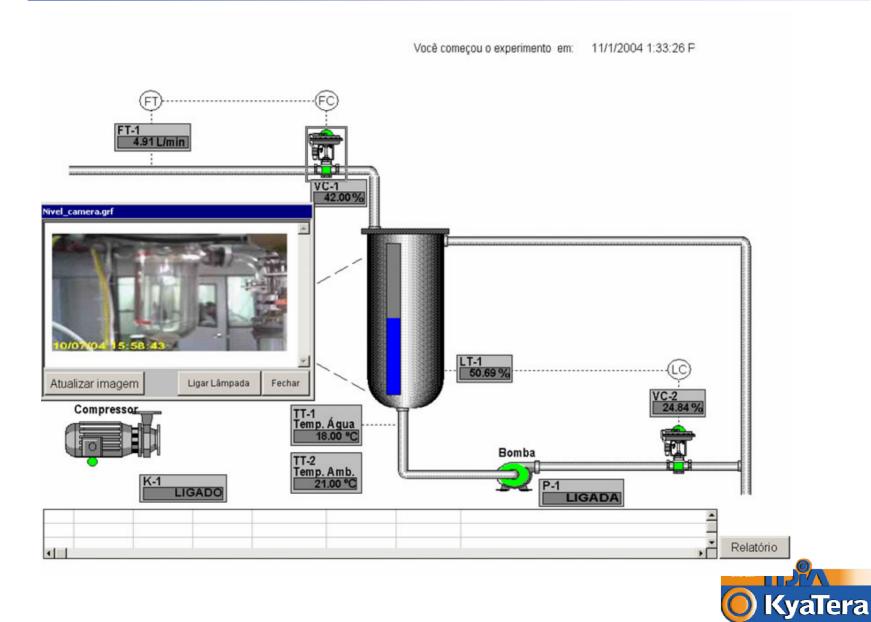


Engineering (UFSCar)

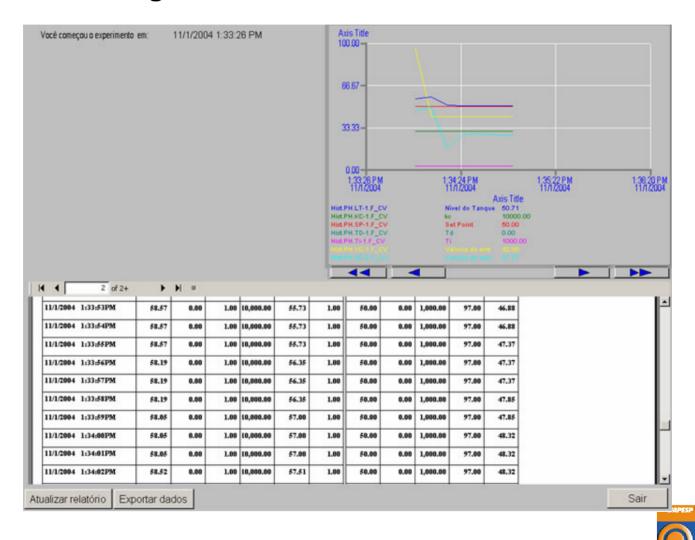
Mass transfer and aerobic cultivation of baker's yeast in stirred tank reactor

Chemical Processes Engineering (USP-Poli)

- Main characteristics of USP-Poli group
 - Escola Politécnica
 - São Paulo
 - 60 BSc/year, 5 years course
 - MSc and PhD programs
- Ohemical Processes Engineering in the cluster
 - Process control
 - Heat exchanger network
 - Chemical reactors
 - Transport phenomena
 - → Heat transfer
 - Mass transfer


Chemical Processes Engineering (USP-Poli)

- Discipline: process control for chemical engineers
- Simplest model: level in a tank
- reproduce the industrial environment
- Same architecture used in the industry: supervisor (iFix GE Fannuc) - PLC (Allen-Bradley), safety interlocks
- © Constraints not very friendly usage but realistic



Chemical Processes Engineering (USP-Poli)

Data log for the students

Chemicai Processes Engineering (USP-Poli)

KyaTera

Chemical Reactors

Chemicai Processes Engineering (USP-Poli)

KyaTera

Meat Exchanger Network

Typical assignment

- Liquid level control in a tank
- 2 students from USP-Poli and 2 from ENSIACET
- They have worked together under the supervision of 3 faculty members.
- Strong and productive interaction.
- Modeling and Simulation.

Typical assignment

Objective

 To prepare a mathematical model for a tank level control system and compare with experimental data from the WebLab.

Work organization

- The students should discuss the mathematical model and the mathematical tools to be employed in the solution.
- The students should discuss how they will prepare and do the WebLab experiments.
- The students should compare the mathematical model with the experiments.
- The students should write a report concerning this work (Introduction (problem statements), short literature review, mathematical model, experimental methodology, results and discussion (simulation and experimental), conclusions, references.

Essential

All the decisions must be taken by the group of students

Conclusions

- The environment stimulates students to work together
- Weblab can be a powerful tool to promote interaction between students no matter where they could be
- With joint assignments it can also be a tool of "international" experience to the students

Prospective Developments

- International partners to test the interaction Karlsruhe (Germany)
- Develop new methodologies of interaction (joint assigments)

Thanks a lot!

Muito obrigado!

Luiz Valcov Loureiro

valcov@usp.br

