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In this work, we present a novel pathway for the flame synthesis of silica nanoparticles from tetraethoxysilane (TEOS) via the interaction of silicic acid
monomers. A new kinetic model for TEOS decomposition is coupled to a detailed population balance model to simulate an industrial scale reactor.
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g balance model generates the overall model. )L with change in furnace temperature. Experimental values are from Seto etal [4].
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The particle size distributions (PSD) and TEM-style images are generated from the model at 3 different
temperatures (Fig. 9 and Fig. 10). These are found to be in close agreement with experimental data [4].
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Figure 5: Optimised Model Response using Response surface methodology and
S associated uncertainties. Experimental values are provided by Herzler etal. [2] )
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Summary
By coupling a new detailed kinetic model, generated from quantum chemical calculations, to a new population balance model with primary particle tracking, the current work demonstrates the feasibility of using
first-principles modelling to understand complex particle synthesis processes.
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