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Probability Density Function

What describes the PDF ?
Consider the velocity U , the scalars ψ (chemical species and en-

thalpy), turbulent frequency ω, and the position x to be a random

vector. The quantity

f(V , ψ, θ, x, t)dV dψdθdx

describes the probability to find at time t the random vector in the

interval

V ∈ [V , V + dV ]

ψ ∈ [ψ, ψ + dψ]

x ∈ [x, x + dx]

θ ∈ [θ, θ + dθ]

Submodels used

• velocity transport

simplified Langevin equation

• scalar transport

IEM interaction by exchange with the mean

• turbulent frequency transport

Van Sloten, Jayesh, Pope
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PDF Transport Equation

Mean values are obtained

Q̃(x) =
〈�Q〉
〈�〉

=
1

〈�〉
∫

V

∫
ψ

∫
θ

Q(V , ψ, θ, x)�(ψ)f(V , ψ, θ, x)dV dψdθ

Joint velocity-frequency-composition
PDF Transport Equation

∂f̃

∂t
= −Vi

∂f̃

∂xi︸ ︷︷ ︸
transport in physical space

+
∂

∂Vi

(
cU(V , ∂x〈p〉, 〈�〉, ω̃, ũ)f̃

)
+

∂2

∂V 2
i

(
dU(V , ω̃, ũ)f̃

)
︸ ︷︷ ︸

transport in velocity space

+
∂

∂ψk

(
Mk(ψ, ϕ̃)f̃

)
︸ ︷︷ ︸

molecular mixing

+
∂

∂ψk

(
Rk(ψ)f̃

)
︸ ︷︷ ︸
chemical reaction︸ ︷︷ ︸

transport in scalar space

+
∂

∂θ

(
cω(θ, ω̃, ũiui)f̃

)
+

∂2

∂θ2

(
dω(θ, ω̃, ũiui)f̃

)
︸ ︷︷ ︸

transport in frequency space

i = 1, 2, 3 k = 1, ..., S + 1

f̃ =
�(ψ)

〈�〉 f
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Numerical Solution

Mass Density Function

F(U, ψ, θ, x, t) = �(ψ)f(U, ψ, θ, x, t) = 〈�〉f̃(U, ψ, θ, x, t)

Particle System

(∆m, (U (n)(t), ϕ(n)(t), ω(n)(t), X(n)(t))T ) n = 1, ..., N

Empirical PDF

FN(U, ψ, θ, x) = ∆m

N∑
n=1

δ(U (n) − V )δ(ϕ(n) − ψ)δ(ω(n) − θ)δ(X(n) − x)

Weak Convergence !

〈FN〉/∆m

N∑
n=1

〈δ(Xn − x)〉 N→∞−→ F/〈�〉 = f̃

Dynamics of the Particle System

dU (n) = cU(U (n), ∂x〈p〉, 〈�〉, ω̃, ũ)dt +

√
dU(U (n), ω̃, ũ)dW

dϕ(n) = Mk(ϕ
(n), ϕ̃)dt + R(ϕ(n))dt

dθ(n) = cω(ωn, ω̃, ũiui)dt +
√

dω(θ, ω̃, ũiui)dW

dX(n) = −U (n)dt
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Numerical Solution

Algorithm

• Initialise Particles

– uniform distribution in space

– joint normal distribution for velocities

– gamma distribution for frequency

• Perform Time Step

– choose time step according to a CFL condition

– solve SDE system according to the discretised time step

• Estimate Means

– particle mesh method (cloud in cell)

– nonparametric kernel estimation

• Correction Algorithm

– correct particle positions (continuity)

– correct velocities (zero divergence, mass flux)

(mean pressure)

– calculate mean density from particles

• Next Time Step
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Challenges

Computational Time

• Administration of Particles

advanced data structures and sorting algorithms

• Evaluation of Chemistry

– QSSA

– ILDM

– ISAT (ISAT enhanced)

– PRISM

– ANN

• Advantages

– Faster evaluation of the chemical source term

• Disadvantages

– Usually a tabulation procedure is required

– High dimension of the parameter space

Trade off time and storage requirements, and errors



University of Cambridge
Department of Chemical  Engineering

Weak Chemistry

Particles converge only in weak sense to the PDF

Dynamics of the scalar component of a particle

dϕ(n) = Mk(ϕ
(n), ϕ̃)︸ ︷︷ ︸

stochastic mixing

+ R(ϕ(n))dt︸ ︷︷ ︸
deterministic reaction
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Time evolution of a particle in the phase plane

Deterministic

Stochastic

X
O

H
(t

)

XO2(t)

Direction of Time

We need only “stochastic trajectories”!
Can we construct a “stochastic trajectory” ?
How efficient is this approach?
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The PaSPFR Model

The Cauchy Problem

∂

∂t
f(t, ψ) −

S+1∑
k=1

∂

∂ψk

([
Rk(ψ) + C Mk(f(t, ψ)

]
f(t, ψ)

)
= 0 ,

f(0, ψ) = f0(ψ) .

The components of the vector ψ correspond to the mass fractions

Y1, . . . , YS of several chemical species and to temperature T .

The Mixing Model
We use the IEM mixing model.

Mk(g, ψ) = ψk −
∫

. . .

∫
xk g(x) dx1 . . . dxS+1 , k = 1, . . . , S + 1

The Chemistry Model
The terms Rk are given by the reaction mechanism of the system,

which consists of a number I of elementary chemical reactions,

(να,1, . . . , να,S) ←→ (ν∗
α,1, . . . , ν

∗
α,S) , α = 1, . . . , I

The stoichiometric coefficients να,i and ν∗
α,i of the species i in reac-

tion α are non-negative integer values.
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Particle Method

System of Weighted Particles

(w(i), Ψ(i)(t)) i = 1, . . . , N

where

N∑
i=1

w(i) = 1

Stochastic Trajectories

d

dt
Ψ

(i)
k (t) = −Rk(Ψ

(i)(t)) − C


Ψ

(i)
k (t) −

N∑
j=1

w(j)Ψ
(j)
k (t)




where k = 1, . . . , S + 1 , and Ψ(i)(0) , i = 1, . . . , N , are indepen-

dent and distributed according to f0 .

Splitting approach

The high-dimension requires a splitting approach on a time inter-

val [s, s + ∆t] to decouple the effects of reaction and mixing.
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Particle Method

Reaction step

d

dt
Ψ̃

(i)
k (t) = −Rk(Ψ̃

(i)(t)) , t ≥ s , Ψ̃
(i)
k (s) = Ψ

(i)
k (s)

Mixing step

Ψ(i)(s + ∆t) =

e−C∆t Ψ̃(i)(s + ∆t) +
[
1 − e−C∆t

] N∑
j=1

w(j)Ψ̃(j)(s + ∆t)

Algorithm

0. Determine the state of the system of particles at time 0 accord-

ing to the initial density f0 .

1. Given the state of the system at time s , each particle is moved

according to the reaction step.

2. Given the system Ψ̃(1)(s+∆t), . . . , Ψ̃(N)(s+∆t) , each particle

is moved according to mixing step.

3. If time exceeds termination time then STOP. Otherwise go to

Step 1 .
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The Chemistry Step 1

The Algorithm

Step 0
Fix n > 0, set t = 0 and initialise the state vector Ψ.

Step 1
Choose a component index k according to the probability

Pk =
Rk

π
, where π =

S+1∑
j=1

Rj

is called waiting time parameter.

Step 2
Perform a jump according to

Ψ 	→ Jk(Ψ) =
(
Ψ1, . . . , Ψk − S

n
signRk, . . . , ΨS+1

)
,

where k is the index chosen in the previous step.

Step 3
Wait an exponentially distributed time τ with waiting time param-

eter π. That means, advance the time t 	→ t + τ such that the

waiting time τ is distributed according to

Prob(τ ≥ u) = exp
( − uπ

) ∀u ≥ 0.

If t exceeds the splitting step ∆t then stop, otherwise go to Step 1.
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The Chemistry Step 2

A stochastic sub-particle system

Ψ =
(
N

(n)
1 (t), . . . , N

(n)
S (t), T (n)(t)

)
,

The number of sub-particles approximation parameter.

n =

S∑
j=1

N
(n)
j (0)

Algorithm

Step 0
The initial state of the system is determined as

N
(n)
j (0) = n Xj(s) , j = 1, . . . , S , T (n)(0) = T (s) ,

Step 1
Calculate the waiting time τ

Prob(τ ≥ u) = exp(−u π(x)) , u ≥ 0 ,

where

π(x) =

I∑
α=1

|Qα,f(x) − Qα,r(x)| ,

and Qα,f and Qα,r are, respectively, the forward and reverse reaction

rates. The procedure stops when time t + τ exceeds the splitting

step ∆t .
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The Chemistry Step 2

Step 2
At the moment t + τ , a particular reaction is chosen according to

the reaction probabilities

Pα(x) =
|Qα,f(x) − Qα,r(x)|

π(x)
, α = 1, . . . , I .

Step 3
Finally, the process jumps into the state

Jα(x) =

{
Jα,f(x) , if Qα,f(x) ≥ Qα,r(x) ,

Jα,r(x) , otherwise ,

where

Jα,f(x) = (x1 − να,1 + ν∗
α,1, . . . , xS − να,S + ν∗

α,S, xS+1 + ∆Tα,f(x))

and

Jα,r(x) = (x1 − ν∗
α,1 + να,1, . . . , xS − ν∗

α,S + να,S, xS+1 + ∆Tα,r(x)) .

The temperature step is defined as

∆Tα,f(x) = −
∑S

k=1 Hk(xS+1) [ν∗
α,k − να,k]∑S

k=1 Ck(xS+1) xk

,

∆Tα,r(x) = −
∑S

k=1 Hk(xS+1) [να,k − ν∗
α,k]∑S

k=1 Ck(xS+1) xk

.

Then the procedure returns to Step 1.
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Approximations

More than 90% of the CPU time is required for updating Pα

Combine two strategies:

• Update Cp, H, V, kα only if T exceeds a given ∆T

• Update reactions rates not at every reaction event

For a chosen constant ac,

nac is the number of reactions with πPα ≥ ac
tstop

.

Table 1: The number of sub-particles and ∆T.

number of sub-particles ∆T(K) ac

1.0 × 103 10 -

5.0 × 103 10 -

1.0 × 104 10 -

5.0 × 104 1 2000

1.0 × 105 1 2000

Table 2: nac and the frequency to update reaction rates.

nac The frequency to

update reaction rates

greater than 50 50

greater than 25 25

greater than 10 10

others 1
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Computational Study

Problem description

non-premixed combustion of n-heptane in hot air

( Detailed mechanism (Westbrook group) 107 chemical species and 808 reversible reactions)

Table 3: Initial concentrations and flow rates.

Fuel Air

ṅ1 ṅ2

2 mol/min 52 mol/min

X(nC7H16) 1 0

X(N2) 0 0.7900

X(O2) 0 0.2100

initial condition approximation
Fuel: 50 particles of weight w(i) = 2.36 × 10−3, i = 1, ..., 50 ,

Air: 50 particles of weight w(i) = 1.764 × 10−2, i = 51, ..., 100 ,
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Computational Study

Splitting error

• Difference in mean temperature at the end of the simulation.

• The CPU time grows linearly with the number of splitting steps.

• From the above study we chose the time step ∆t = 4.0× 10−4.

Table 4: Splitting error of the temperature at time t = 0.01s.

∆t error

2.5 × 10−3 1249.5

1.25 × 10−3 417.40

6.25 × 10−4 26.500

1000
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Figure 1: Time evolution of the empirical mean of (a) temperature and (b) OH
mass fraction with confidence bounds for 30 repetitions.
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Computational Study
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Figure 2: The deterministic chemistry is compared with the stochastic chem-
istry for three different approximation parameters. The time evolution of the
empirical mean of the following quantities is displayed: (a) temperature. (b)
OH mass fraction. (c) n-heptane mass fraction. (d) methane mass fraction.
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Computational Study

Comparison of stochastic and deterministic chemistry

• The empirical mean of temperature, OH mass fraction, n-

heptane mass fraction, and methane mass fraction is used for

discussion.

• On the basis of the magnitude of fluctuations one can con-

sider the result for n = 1.0 × 104 to be sufficiently accurate.

For n = 5.0 × 103 the most important characteristics of the

ignition are captured.

• CPU-time For n=104 the algorithm with stochastic chemistry

is about 100 times faster than the algorithm with deterministic

chemistry, while it provides a comparable accuracy. In case of

n=5.× 103 sub-particles, we reache a gain factor of more than

200 .

Table 5: Comparison of computational time of deterministic chemistry and
stochastic chemistry approximation.

CPU time

method CPU time [s] of speed factor

single run [s]

DASSL 434, 759 14, 492 1

5.0 × 104 22, 519 751 19.3

1.0 × 104 4, 260 142 102

5.0 × 103 2, 060 69 211

1.0 × 103 281 9.4 1, 547
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Summary and Conclusions

Stochastic particle method

• New stochastic chemistry approximation

• Partial equilibrium modification

• Incorporation of stochastic chemistry approximation into the

PDF transport equation

• Effect of double averaging

Numerical Experiments

• Detailed n-heptane mechanism

(106 chemical species and 808 reactions)

• Nonpremixed combustion in a PaSPFR

• Study the splitting error

• Comparison of the stochastic chemistry approach with DASSL

• Stochastic Chemistry Approximation outperformed DASSL for

the cases studied.

• More work needs to be done to achieve more significant speed

advantage


