Impact of cross-links, curvature, and radical character on the optical band gap of nanographenes

July 18th, 2019
Motivations

- Understanding what size graphene flakes form nanoparticles and are present in flames.
- Designing molecules for quantum dots, organic solar cells, and molecular electronics.

Background

am2145@cam.ac.uk

Angiras Menon
Key Questions:

Objectives:

Compute optical band gap for a variety of PAHs

What DFT methods are suitable for computing band gaps?

How is the optical band gap of nanographenenes impacted by their structure?

What does this mean for combustion and carbon material applications?

Determine
1) Impact of size, cross-linking, curvature, and radical character on OBG
2) What this could mean for tuning carbon nanoparticles
Methodology

Test Set of Molecules

- Benzene
- Naphthalene
- Phenanthrene
- Pyrene
- Benz[a]anthracene
- Chrysene
- Triphenylene
- Perylene
- Anthracene
- Tetracene
- Acenaphthylene
- Flourene
- Biphenyl
- p-Terphenyl
- o-Terphenyl
- m-Terphenyl
- p-Quaterphenyl
- 1,3,5-triphenylbenzene
- hexaphenylbenzene

UV-Visible Spectroscopy

\[E_g = \frac{1240}{\lambda_{a.e.}} \]

\[\lambda_{max} \]

Computational Chemistry

\[E_g = E_{\text{LUMO}} - E_{\text{HOMO}} \]

\[-1.57 \]

\[-5.89 \]
Choosing a computational method

- Tested several popular computational chemistry methods based on density functional theory.

Certain DFT methods can reproduce experimental measurements
Traditional model nanographenes

- All three groups approach a zero band gap limit
- In flames: 10 – 25 rings in size

Size and symmetry of nanographene flake is key
Crosslinked Structures

Cross-links have little impact on the band gap.
The largest fragment (lowest band gap) is most important.
Effect of rotation on optical band gap

- Formation of cross-link enables rotation between fragments.
- Relaxed potential energy surface scan to check optical properties of different conformers and what energy is required.

Rotation allows tunability of optical band gaps.
Curved vs. planar structures

- Curved structures also approach zero-band gap limit.
- More pentagons results in more curvature - higher optical band gap
- Curved nano-graphenenes coincide with planar structures for larger sizes.

Smaller curved nano-graphenes have larger band gaps.

- Curved structures also approach zero-band gap limit.
- More pentagons results in more curvature - higher optical band gap
- Curved nano-graphenes coincide with planar structures for larger sizes.
Radical vs planar structures

- A single σ-radical site does not affect the optical band gap.

Hydrogen termination does not appear to influence band gap.

Radical vs planar structures

- Delocalized radicals (odd carbon number) have significantly lower band gaps at all sizes.
- Multi-radical character reduces optical band gap as well.

\[\pi \]-radical nanographenenes have lower band gaps.

Conclusions

• The optical band gap of nano-graphenes is highly sensitive to the underlying structure – size, symmetry, curvature, and \(\pi \)-radical character are all important and could be useful for tailoring band gap to different applications.

• Other features are less impactful, with cross-linking and hydrogen termination not influencing the optical band gap significantly.

• OBGs observed in flames can be attributed to moderate sized model nano-graphenes, larger curved structures, or smaller \(\pi \)-radical structures.
Optical band gap of cross-linked, curved, and radical polycyclic hydrocarbons†

Angiras Menon, Jochen A. H. Dreyer, Jacob W. Martin, Jethro Akroyd, John Robertson and Markus Kraft

In this work, the optical band gaps of polycyclic aromatic hydrocarbons (PAHs) crosslinked via an aliphatic bond, curved via pentagon integration and with radical character were computed using density functional theory. A variety of different functionals were benchmarked against optical band gaps (OBGs) measured by ultraviolet-visible spectroscopy with HSE06 being most accurate with a percentage error of 6% for a moderate basis set. Pericondensed aromatics with different symmetries were calculated with this improved functional providing new scaling relationships for the OBG versus size. Further calculations showed crosslinks cause a small decrease in the OBG of the monomers which saturates after 3–4 crosslinks. Curvature in PAHs was shown to increase the optical band gap due to the resulting change in hybridisation of the system, but this increase saturated at larger sizes. The increase in OBG between a flat PAH and a strained curved one was shown to be equivalent to a difference of several rings in size for pericondensed aromatic systems. The effect of π-radicals on the optical band gap was also shown to be negligible, however, π-radicals were found to decrease the band gap by ~0.5 eV. These findings have applications in understanding the molecular species involved in soot formation.

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrogen terminated graphene fragments ubiquitous in nature with a rich chemistry. A delocalised π-bonding network stabilises these pericondensed aromatics making them the thermodynamically preferred arrangement for hydrocarbons. This stability makes them ubiquitous in thermal processes such as in interstellar dust, the moon Titan’s atmosphere and terrestrial combustion. Their rich chemistry has also attracted interest for molecular electronics with a variety of graphene ribbons synthesized and different schemes for tuning their electronic structure have integrating topological defects such as pentagonal rings are two such schemes for tuning the electronic properties that have not received much theoretical study to date. An example electronic application for PAHs curved by pentagon integration is their potential in batteries, as they have been shown to store large amounts of lithium.

Our groups main interest is the role of PAHs as precursors for carbonaceous particulates in flames. A fundamental understanding of this process is of great interest, be it for mitigating emissions from combustion or for the commercial production of carbonaceous particles for applications such as tire filler materials, dyes, paints, and molecular electronics. Such an
This project is funded by the National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.
<table>
<thead>
<tr>
<th>State</th>
<th>Literature Method</th>
<th>Literature Vertical Excitation Energy / eV</th>
<th>This work / eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrene - 2nd bright state</td>
<td>MRCI</td>
<td>3.81</td>
<td>3.73</td>
</tr>
<tr>
<td>Circumpyrene - 1st excited singlet state</td>
<td>MRCI</td>
<td>2.22</td>
<td>2.41</td>
</tr>
<tr>
<td>Circumpyrene - 2nd excited singlet state</td>
<td>MRCI</td>
<td>2.36</td>
<td>2.54</td>
</tr>
<tr>
<td>Circumcoronene - 1st excited singlet state</td>
<td>MRCI</td>
<td>1.94</td>
<td>2.15</td>
</tr>
<tr>
<td>Circumcoronene - 2nd excited singlet state</td>
<td>MRCI</td>
<td>2.37</td>
<td>2.39</td>
</tr>
<tr>
<td>Phenalenyl – 1st excited state</td>
<td>RAS-CI</td>
<td>2.76</td>
<td>2.82</td>
</tr>
<tr>
<td>Phenalenyl – 2nd excited state</td>
<td>RAS-CI</td>
<td>3.04</td>
<td>3.05</td>
</tr>
<tr>
<td>Triangulene – Singlet excited state</td>
<td>RAS-CI</td>
<td>0.57</td>
<td>0.52</td>
</tr>
<tr>
<td>Triangulene – Triplet excited state</td>
<td>RAS-CI</td>
<td>2.82</td>
<td>2.71</td>
</tr>
<tr>
<td>10-ring Triangulene – Quartet excited state</td>
<td>CASSCF</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>10-ring Triangulene – Quartet excited state</td>
<td>MR-CISD</td>
<td>3.1</td>
<td>2.8</td>
</tr>
<tr>
<td>10-ring Triangulene – Quartet excited state</td>
<td>MR-CISD+Q</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>