Investigating the self-assembly and structure of nanoparticles containing fullerene-like molecules

Kimberly Bowal, Alston Misquittta, Jacob Martin, Laura Pascazio, Markus Kraft

11 Nov 2019
Outline

- Fullerene-like molecules
- Nucleation
- Nanostructure

Kimberly Bowal Alston Misquitta Jacob Martin Laura Pascazio Markus Kraft

Queen Mary University of London
Fullerene-like molecules

Curvature is caused by the presence of pentagonal ring(s) within a hexagonal structure

CORONENE

Coronene

CORANNULENE

Corannulene

Curvature causes a dipole moment due to the polarisation of π electrons from the concave to convex surface

Interact with ions?

Motivation

• Expect a significant impact on systems containing curved aromatics such as:
 – Microporous materials: gas storage, separation
 – Organic electronic devices: imaging probes, batteries
 – Nanoparticle formation: soot, carbon blacks, atmosphere
 – Nanomedicine: sensors, targeted micelles

• Development requires understanding of self-assembly and dynamic nanostructure of curved aromatics
Nucleation: System description

- New curPAHIP potential
- 500 - 1500 K
- 1000 molecules
- 4 cases:
 1. Planar aromatics
 2. Curved aromatics
 3. Planar aromatics with K^+
 4. Curved aromatics with K^+
Molecular dynamics simulation videos

Curved aromatics without K^+

Curved aromatics with K^+

Bowel, K., Martin, J. W., Misquitta, A. J., & Kraft, M. *Comb Sci & Tech* (2019)
Curved aromatics and K$^+$ show greatest ability to form clusters

Molecular arrangement maximises electrostatic interactions
SLIDES 8 – 13 OMITTED
(UNPUBLISHED WORK)
Curved aromatic molecules have a significant dipole moment due to the shift of electrons between curved surfaces.

Enhanced interactions promote nucleation of curved aromatics around ion.
Thank you

Contact Kimberly Bowal at klb83@cam.ac.uk