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Abstract

The paper describes experiments and theory relating to particle movements when a
horizontal plate, buried in granular material, is lifted. The experiments were quasi
two-dimensional. Glass ballotini were contained between two vertical glass plates
separated by a distance of 24 mm. A buried horizontal rectangular plate, 24 mm ×
45 or 60 mm was lifted vertically, giving two slip planes starting from the edges of
the plate; the slip planes were inclined at angles±α to the vertical. The measured lift
force increased steeply with upward displacement, reaching a maximum after a small
displacement. Further movement caused a fall in lift force, as observed by many
authors. A novelty in this work was to measure the motion of individual particles:
the movements showed clearly that near the vertical centre line, there was ‘active’
failure, i.e. (vertical stress) > (horizontal stress). Near the failure surfaces, at angles
±α to the vertical, there was ‘passive’ failure. Outside the failure zones the stresses
were isotropic (equal stresses vertically and horizontally). On the basis of these
observations, the ‘reverse hopper’ theory was developed; the theory assumes active
failure near the vertical centre line. It predicts the dimensionless peak lift force Nqf
and the angle α , in reasonable agreement with the rather scattered data from the
experiments. The existence of well-defined slip planes is equivocal, as suggested by
the experimental techniques employed, as follows:

(i) A photographic technique registered black for a particle that moved more than a
threshold quantity; particles with smaller movements registered white. Results
show clearly defined slip planes.

(ii) Observations of individual particles showed movement profiles with signifi-
cant movement in the middle of the failure zone, but falling off gradually with
distance from the vertical centre line. This suggests that the existence of slip
planes is equivocal; a threshold value of particle movement had to be identified
to define a slip plane.
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Highlights
• Experiments performed on ballotini contained between two vertical glass plates.

• Force to lift a buried horizontal plate measured as a function of displacement.

• Particle imaging used to observe slip planes and failure mode of ballotini.

• Passive failure near slip planes; active failure between slip planes.

• Reverse Hopper Theory predicts uplift force and angle of slip planes.
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1 Introduction

The force required to lift an object buried in granular material is relevant to the design
of anchors for ships or oil rigs. It is also relevant to the stability of buried pipelines,
which may experience compressive thrusts promoting buckling, which may occur if the
pipe burial is too shallow. The similarity of such pipe lifts was noted by Dickin [5] and
by Cheuk et al. [2]. Similarity to full-scale conditions was achieved by Dickin [4] using
centrifuge testing, see also Moradi and Craig [17]. But it appears that industrial design of
anchors is empirical, see Merifield and Sloan [15].

The paper presents results about the force needed to lift a horizontal rectangular plate
buried in granular material. The work was quasi two-dimensional: the glass ballotini
were contained between two vertical parallel plates separated by a horizontal distance of
24 mm, so that particle motion could be observed. Superficial observations suggest the
existence of two slip planes, starting at each edge of the horizontal lift plate and inclined
at an angle ±α to the vertical. Thus the bed above the plate appears to consist of two
regions:

(i) A moving core, between the slip planes.

(ii) Two stationary regions outside the slip planes.

On the basis of these simple observations, theory is presented to predict α , and also FT,
the peak force to lift the plate. The actual particle movements were revealed by particle
tracking experiments as follows. The movement of black ballotini admixed to make up
approximately 1% of the granular material was observed by photography: by taking two
photographs, separated by a short time interval, the direction of motion was inferred.
Also, by particle tracking, the motion of an initially square array of the material could be
identified, and it could be determined whether the distortion of each square implied active
or passive failure. The theory gives moderately good agreement with the rather scattered
experimental results. The differences between theory and experiment are probably due to
movement of the particles being more complex than what is described above.

2 Literature Review

The substantial literature on the uplift of an object buried in granular material will be
discussed by reference to:

(i) Experimental techniques.

(ii) Lift force in relation to vertical displacement.

(iii) Shapes of failure surfaces.

(iv) Theoretical analysis.

(v) Practical applications.
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2.1 Experimental techniques

Most researchers used laboratory-scale equipment instead of full-scale experiments which
are costly [26]. A variety of arrangements was used to give uplift e.g. a hydraulic jack
[16], or a motor and gearbox [2, 5]. Particle movement was observed using coloured sand
[26, 30]. Particle image velocimetry [2, 30] gave particle velocity and particle displace-
ment.

2.2 Relation between lift force and displacement

Fig. 1, below, shows the relation between lift force and displacement. Many authors have
made similar observations, i.e. that the force to lift the plate in the granular material first
increases steeply with plate displacement (a), reaching a peak force FT after a relatively
small displacement. Further plate movement gives a fall in lift force (b), decreasing grad-
ually with further upward movement of the plate (c). It is usual to report the breakout
factor Nqf =

FT

ρgHDw where FT is the peak lift force, ρ is the bulk density of the lifted par-
ticles, H is the bed depth, D is the plate width, w is the distance between the two vertical
plates retaining the bed, and g is the acceleration due to gravity. Thus Nqf = (Peak lift
force)/(weight of granules directly above the lift plate); this applies for rectangular plates,
as here, or for circular plates.

Displacement

L
if
t 
fo

rc
e

(a) (b) (c)

Figure 1: Typical relationship between lift force and displacement, with three different
phases indicated in the figure. Adapted from Lee et al. [10].
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2.3 Shapes of failure surfaces

When the plate, or other object immersed in the granular material, is lifted, a body of
granules above the plate is also lifted. Many authors have identified a failure surface, the
boundary between the moving granules and the stationary granules outside; this boundary
is assumed, or observed, to take one of the following alternative shapes shown in Fig. 2:

(a) Vertical failure surface. (b) Conical failure surface. (c) Wine glass 1 failure surface.

(d) Wine glass 2 failure surface. (e) Balloon failure surface.

Figure 2: Various failure surfaces proposed and observed in the literature.

(i) Vertical, Fig. 2(a). Here the failure is assumed to be on vertical lines emanating
from the edges of the lift plate. Thus the failure surface is assumed to be

(a) a vertical cylinder for a circular lift plate or

(b) a finite width slab for a two-dimensional bed between vertical retaining plates.

(ii) Conical, Fig. 2(b). Here the failure surface is two straight lines, emanating from the
edges of the lift plate and inclined at angle α to the vertical. Thus the failure surface
is a cone of half angle α for a circular lift plate; for a ‘two-dimensional’ system, the
failure surface is two flat surfaces starting from the edges of the plate, each surface
inclined at angle α to the vertical. This assumption has been used by many authors,
and is the basis of the theoretical work in this paper.

(iii) Wine glass 1, Fig. 2(c). Some authors have reported a failure surface whose incli-
nation to the vertical increases with vertical distance above lift plate. In the axi-
asymmetric case, the surface resembles that of some wine glasses.

(iv) Wine glass 2, Fig. 2(d). Here the inclination to the vertical diminishes with distance
above the lift plate. In the axi-symmetric case, this surface resembles that of more
conventional wine glasses: at the top, the surface is nearly vertical.
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(v) Balloon shape, Fig. 2(e). For a deeply immersed plate, the failure surface may
not extend to the horizontal top surface of the granule bed. For an axi-symmetric
system, the failure surface is of ‘balloon’ shape, perhaps with a flat top which is
below the top surface of the granule bed.

Publications on the shapes of failure surfaces are as follows. Majer [12], Mors [18], Balla
[1], MacDonald [11], Matyas and Davis [13], Dickin [4], Ghaly et al. [7], Rao and Kumar
[23], Ilamparuthi et al. [8], Cheuk et al. [2], White et al. [31], Lee et al. [10].

2.4 Theoretical analysis

A variety of theoretical analyses have been published. Finite element analysis was used
by Rowe and Davis [25] and by Merifield and Sloan [15]. Authors have made a variety
of assumptions as to the form of the slip surface between the moving granules around a
centreline [4, 11, 12, 15, 18, 19, 21, 28, 29, 31]. Lee et al. [10] postulated that the lift force
is the sum of the weight of displaced material and the shear forces at the slip surface; this
hypothesis is used in this paper.

3 Theory to predict the uplift force and failure angle

Fig. 3 shows the assumed motion induced by lifting particles resting on a flat plate of
width D. The particles are contained between two vertical glass plates separated by a
distance w.

These glass plates are parallel to the plane of the diagram shown in Fig. 3. It is assumed
that the material is a cohesionless Coulomb material and that there are two well defined
slip planes inclined at angle α to the vertical; each plane is a boundary between stationary
and moving material. Between the slip planes, active upward motion is assumed. The
principal stresses, σ1 and σ2 are shown in Fig. 3; σ2 > σ1. As an element is pushed up,
its height diminishes and its width increases, indicating active failure as assumed by Lee
et al. [10], who gave an analysis to predict σ1 and σ2 as a function of the radius r. From
their Equation (21),

σ2 =
Kρgr

2K−1

[(r1

r

)(2− 1
K )−1

]
. (1)

Here ρ is the bulk density of the granules and g is the acceleration due to gravity; the radii
r and r1 are shown in Fig. 3 and K is the Rankine coefficient of earth pressure,

K =
σ2

σ1
=

1+ sinφ

1− sinφ
. (2)

Equation (2) is based on Mohr’s circle (Nedderman [20], Chapter 3). The internal friction
angle of the granules, φ , can be derived from tanφ = µ , where µ is the friction coefficient
of the granular material.
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Figure 3: Stresses in flowing granular material when an upward force F is applied to
a buried plate of width D. The grey area represents moving granular mate-
rial. The isometric view of the lift plate shows the distance w between the
vertical glass plates containing the granules; D is the plate width. Adapted
from Clover [3].

3.1 Break-out factor

Experiments show that as the plate is lifted, the lift force F reaches a maximum FT after
small upward displacement [2]. We define the break-out factor

Nqf =
FT

ρgHDw
, (3)

which is a dimensionless form of FT. The dimensions H and D are shown in Fig. 3 where
w is the distance between the vertical glass plates. Lee et al. [10] derive an equation for
the break-out factor by consideration of the vertical and shear components of σ1 and σ2.
Using Equation (30) from Lee et al. [10], with our D in place of their B gives

Nqf =
DK

2H (2K−1)sinα

[
ζ (2− 1

K )−1
]

(4)

+
µDcosα

2H (2Kf−1)sin2
α

[(
Kf−

1
2

)
ζ

2−Kf ζ
(2− 1

Kf
) +

1
2

]
,

where ζ = 1+ 2H tanα

D and where we introduce Kf to denote the terms in K arising from
the shear stress at the failure surface between the moving and stationary material. It is
assumed that the material in the failure surface is in passive failure (see Nedderman [20],
Chapter 3), such that Kf = 1/K. Note also that the term containing µ in Equation (4) is
equivocal, see Lee et al. [10].

8



Ve
rt

ic
al

Stationary
Material

Moving
Material

Sl
ip

 pl
an

e

Figure 4: Stress distribution for a stationary element adjacent to slip plane.

As shown in Fig. 4, it is assumed that there is a shear stress of τ = µσ4 at the interface
between stationary and moving granules, inconsistent with the supposition that σ1 is a
principal stress. But this indefensible assumption gives, as shown by Lee et al. [10], good
agreement between theory and experiment for FT.

3.2 Determination of slip angle

Fig. 4 shows the forces on a stationary element just outside the slip plane. Resolving in
direction y, Fig. 4, gives

dσ3

dy
= ρgcosα +

dτ

dx
. (5)

Resolving in direction x, Fig. 4, gives
dσ4

dx
= ρgsinα +

dτ

dy
. (6)

Using the above mentioned approximation, i.e. τ = µσ4 gives, from Equation (6)
1
µ

dτ

dx
= ρgsinα +µ

dσ4

dy
,

and eliminating dτ

dx , using Equation (5), gives

dσ3

dy
= ρg(cosα +µ sinα)+µ

2 dσ4

dy
. (7)
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Now we need to make an assumption about the stress regime in the stationary material:
there are three possibilities, namely:

(1) Active failure, σ3 = Kσ4. (8a)
(2) Isotropic behaviour, σ3 = σ4. (8b)
(3) Passive failure, σ4 = Kσ3. (8c)

We choose option (2) i.e. isotropic behaviour. This is plausible because the stationary
material is not moving. Also, analyses by Clover [3], Fan [6], Teh [27] and Maynard
[14] suggest that the isotropic assumption gives the best agreement between theory and
experiment. Combining Equations (7) and (8b) gives

dσ4

dy

(
1−µ

2)= ρg(cosα +µ sinα) . (9)

By differentiating Equation (1) with respect to r, we can obtain

dσ2

dr
=− Kρg

2K−1

[(
1− 1

K

)(r1

r

)(2− 1
K )
+1
]
. (10)

For equilibrium at the slip plane, σ4 = σ1. Equation (10) can be substituted into Equa-
tion (9) by the following coordinate transformation

dσ4

dy
=−dσ1

dr
=− 1

K
dσ2

dr
, (11)

since the moving region is assumed to be in active failure. In order to obtain the value
of α near the lift plate, the most important region, r = r0 is used. It can be derived from
Fig. 3 that H = (r1− r0)cosα which leads to r1

r0
= 1+ 2H tanα

D . The resulting equation for
α is therefore

1−µ2

2K−1

[(
1− 1

K

)
ζ (2− 1

K ) +1
]
= cosα +µ sinα, (12)

where ζ = 1+ 2H tanα

D .

4 Equipment and Measurements

Fig. 5 shows equipment for studying the flow of granular material [3, 6, 9, 14, 24, 27],
upwards or downwards, and either

(i) between two vertical glass plates, separated by a distance of 24 mm, see Fig. 5 (b),
or

(ii) downwards or upwards flow through a semi-circular cylindrical hopper, see Fig. 5
(b), giving axi-symmetric flow, visible through the two glass plates, see Fig. 5 (b).
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Figure 5: Equipment, not to scale, from Fan [6]. Numbered items are as follows: 1. Plate
for lifting; 2. Grid paper; 3. Ballotini; 4. Lifting rod; 5. Parallel glass plates;
6. Rollers; 7. Support frame; 8. Displacement gauge; 9. Scissor jack; 10.
Force gauge; 11. Jack; 12. Support frame; 13. Pulley; 14. Flexible wire; 15.
Signal to computer; 16. Semi-circular plate (not used in this work); 17. Semi-
circular container; 18. Nozzle to empty equipment; 19. Collection container.

Here we are concerned only with two-dimensional flow between the two glass plates
shown in Fig. 5 (b).

The glass ballotini are shown as Item 3 in Fig. 5 (a), a view seen looking in a horizontal
direction normal to the glass plates. Here we deal with the upward movement of a flat
horizontal plate, Item 1 in Fig. 5, (a) and (b), 24 mm wide, with values of D = 45 or 60
mm. Thus two lift plates were employed, each lifted by a vertical rod, Item 4 in Fig. 5
(a). Fig. 5 shows the arrangement of wire and pulleys to lift the plate through the granular
material. The lift force and the plate displacement were measured, with a constant rate of
displacement and a progressively increasing lift force and displacement, while observing
the movement of the granular material through the front glass plate.

4.1 Properties of the ballotini

Table 1 shows the properties of the ballotini used in the experiments. The similarity of the
friction angles showed that the relation between shear stress and shear strain was similar
for types A, B and C.
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Properties of the ballotini

Type Diameter Solid Bulk density Friction angle
density Untapped Tapped Untapped Tapped

mm kg m-3 kg m-3 kg m-3 degrees degrees

A 2.9 ± 0.2 2900 1900 ± 20 1910 ± 20 30.5 36.9
B 1.0 ± 0.1 2760 1710 ± 20 1730 ± 20 29.8 41.7
C 0.37 ± 0.08 2460 1520 ± 20 1560 ± 20 28.8 34.6

Table 1: The properties of the three types of ballotini used in the experiments. measured
by Reci [24] and Lao [9] with a normal stress of 100 kPa (10 m water gauge).

4.2 Contribution of wall friction to the measured break-out factor

In addition to the contributions considered in Section 3.1, the uplift force and therefore
break-out factor measured in the experiments is subject to a contribution from the friction
between the ballotini and the glass plates of the equipment as shown in Fig. 5 (b).

Moving

Stationary

D

α 

H

r0

r1

r

dr

σ1

σ2

σ1

σ2

σw

σw

2αr

Figure 6: Normal stresses acting on an element in the bed (left). The shaded regions
represent the glass walls of the apparatus. A radial strip (shaded) of width dr
(right), used in the calculation of the wall friction.

Fig. 6 shows the normal stresses acting on an element of the bed. The ballotini are as-
sumed to be isotropic so that the material properties are identical in all directions. With
this assumption, the strain perpendicular to the wall, εw, is related to the stresses shown
in Fig. 6 by a generalised Hooke’s law

εw =
1
E

(
σw−ν (σ1 +σ2)

)
, (13)

where E is the Young modulus and ν is the Poisson ratio of the ballotini, assumed to be
0.3 which is typical for sand and gravels [22]. The ballotini are constrained by the rigid
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glass walls such that εw = 0. Equation (13) can therefore be simplified to give

σw = ν (σ1 +σ2) . (14)

The frictional force due to the stress on the walls is estimated as

Fw = 2µw

∫ r1

r0

σw 2αr dr, (15)

where µw is the coefficient of friction between the ballotini and the glass walls and 2αr dr
is the area of the shaded strip shown in Fig. 6. An additional factor of 2 is included
because there are two glass plates in contact with the ballotini. Using Equation (14) to
substitute σw and the expressions for σ1 and σ2 in Equations (1) and (2), Equation (15)
can be solved to give

Fw =
4ρg

3
αµwν

2K−1
r0

3
[

1−ζ
3 +K

(
1+2ζ

3−3ζ (2− 1
K )
)]

, (16)

where ζ = r1

r0
= 1+ 2H tanα

D . The corresponding contribution to the observed break-out
factor is given

Nqfw =
Fw

ρgHDw
,

and using Equation (16) gives

Nqfw =
D2

6Hw
αµwν

2K−1

(
1

sinα

)3[
1−ζ

3 +K
(

1+2ζ
3−3ζ (2− 1

K )
)]

. (17)
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4.3 Particle tracking

In addition to measuring the force to lift the plate and the plate displacement, the move-
ments of individual particles were measured from photographs [6, 27]. The bed parti-
cles were mainly transparent glass ballotini, but a small proportion of black ballotini was
added, so that the motion of individual particles could be tracked.

(A2)(A1) (A3)

Particle Detection Particle Detection Individual Trajectories

Displacement 
Interpolation 

Pro�ile

(B2)(B1) (B3)

Start End Result

Figure 7: Particle tracking: (A1) and (A2) show how the marked particles were pho-
tographed; (A3) shows displacement profiles; (B1) and (B2) show particle de-
tection at the start and finish, giving trajectories in (B3). From Fan [6].

Fig. 7 demonstrates the particle tracking method. The initial and final position of the
tracked particles are shown as B1 and B2 in Fig. 7, giving the trajectories in B3. This
allowed the calculation of the displacement profiles as shown in Fig. 7, A3. Grid pa-
per (Item 2 in Fig. 5) was used as a scale bar to enable the calculation of the physical
displacement of each particle. See Fig. 7, B3.
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4.4 Brightness threshold

An alternative procedure was adopted by Clover [3] and Maynard [14]. In this case all
the glass ballotini were transparent. An image-difference was calculated between pho-
tographs taken during uplift. This showed which particles had moved and which remained
stationary: moving particles caused large differences in image brightness, shown as black
regions in Fig. 8. This gave a clearly defined boundary between moved and stationary
particles and hence the angle α .

Displaced	Material

Stationary
Material

Slip
Surface

Plate,	width

Bed,
height			

90°-α
	

	

	

Figure 8: Detection of slip surface using the brightness threshold algorithm (Clover [3],
Maynard [14]).The material is photographed before and after plate movement:
the region with moving particles exhibits large changes in image brightness,
visualised here as black regions; static material exhibits unchanged image
brightness, visualised here as white regions.
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5 Results

5.1 Uplift force

Fig. 9 shows how uplift force varies with displacement of the lift plate. This has a char-
acteristic maximum; prior to the maximum, the displacements are very small, about 2 –
3 mm. At higher displacements, the lift force diminishes. This behaviour is commonly
observed in uplift experiments [2, 8]. It is assumed that the maximum uplift force is im-
portant, and therefore it is compared with the theoretical prediction developed in Section
3. Based on Fig. 9, it can be concluded that the peak force is not affected by the lift speed
providing that the speed of the plate is sufficiently low.

0 5 10 15 20
5

10

15

20

25

30

35

40

Figure 9: Force to lift plate (Item 1 Fig. 5) plotted against plate displacement for type B
ballotini, with a range of lift speeds. [Fan [6]].

5.2 Effect of wall friction between the ballotini and the two glass
walls

Fan [6] and Teh [27] measured the magnitude of the friction between the ballotini and
the two glass retaining walls. This was done by measuring the uplift force during the
lifting and lowering of a plate with length 24 mm front to back and of width equal to that
of the bed. In this case there would be no slip surface between ballotini particles. Thus
the resulting forces were entirely due to the weight of the bed and the friction between
particles and the walls. They estimated the coefficient of friction between the ballotini
and the wall as µw ≈ 0.4.
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5.3 Angle of slip plane
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Figure 10: The coloured map shows the ratio (Ballotini movement)/(Plate movement),
δ/δp when the peak force is observed (Fig. 9). The particle displacement pro-
files are shown by the black curves. The continuous curves show the particle
displacements at time tp when the displacement is a maximum (see Fig. 9). The
broken curves show the displacements at time tp/2. The positions at which the
curves at tp indicate negligible movement were used to obtain the angle α .

Fig. 10 shows example results from the particle tracking experiments performed by Fan
[6] and Teh [27]. The curves represent the ratio between the bed displacement δ and
the plate displacement δp. The solid curves represent the ratio of bed displacement to
plate displacement δ/δp at the time when the lift force is at its maximum, tp; the broken
curves show δ/δp at tp/2. The positions as which the displacement profiles at tp indicate
negligible movement were used to obtain α , the angle of the slip plane to the vertical.

Values of α , obtained from the brightness threshold and particle tracking methods, are
shown in Fig. 11. The error bars show the estimated measurement uncertainty (see the
uncertainty analysis in Section S.1 in the Supplementary Material).

Equation (12) predicts α from first principles, for given values of K, µ and H/D. The
friction angle φ is assumed to be 30◦ for the free flowing ballotini; thus K = 3 and µ =
tanφ = 0.577. These values were used in Equation (12) to give the curve shown in Fig. 11.
The agreement between theory and experiment is reasonable for 2 < H/D < 4, but less
good for lower values of H/D.
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Figure 11: Angle α between the slip plane and the vertical (see Figs. 3 and 4) for upward
moving granular material. The figure shows experimental data from two meth-
ods. (i) The brightness threshold method (Clover [3], Maynard [14]). A sam-
ple result is shown in Fig. 8. (ii) The particle tracking method (Fan [6], Teh
[27]). The error bars show the estimated measurement uncertainty (see the
Supplementary Material). The theoretical curve is from Equation (12) with K
= 3, µ = tanφ = 0.577.

5.4 Breakout factor

Fig. 12 shows data from the experimental work of Clover [3], Maynard [14], Fan [6] and
Teh [27]. The error bars show the estimated measurement uncertainty (see Section S.2
in the Supplementary Material). The solid black line shows the theoretical curve from
Equation (4) using the value of α predicted by Equation (12). Also shown are the com-
bined contributions of Equation (4) and the wall friction estimated using Equation (17)
for the plate widths used in the experiments. The dashed lines show the combined con-
tributions evaluated using the value of α predicted by Equation (12). The grey shaded
region shows the locus of combined contributions evaluated using the maximum and min-
imum experimentally determined values of α at each H/D from Figure 11. It is apparent
that the friction between the ballotini and the walls of the equipment is responsible for a
significant contribution to the observed breakout factor.

It appears that the trend of results, i.e the relation between Nqf and H/D is reasonably well
predicted by Equations (4), (12) and (17), in particular the rise of Nqf at small H/Dand
the values of Nqf at large H/D. The agreement is significantly improved when using
experimentally determined values of α instead of Equation (12), demonstrating that the
least satisfactory part of the theory relates to the description of the failure surface.
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Figure 12: Breakout factor Nqf = FT/ρgHDw plotted against H/D. Experimental data
compared with theory. The error bars show the estimated measurement un-
certainty (see the Supplementary Material).

5.5 Passive or active motion

The particle tracking method was used to determine whether each element of granular
material underwent passive or active motion. Sets of initially square arrays of granular
material were considered. The distortion of these arrays at time tp was inferred by inter-
polating the displacement of the vertices from the observed displacements of the black
ballotini (which were randomly distributed in the bed with sufficient concentration to re-
solve the motion of the granular material without Nyquist sampling problems). The sub-
sequent motion caused the square arrays to become rectangular, see Fig. 13. The direction
of distortion indicates whether motion was active or passive.

It is clear, from Fig. 13, that the central region is in active failure; each element gets
longer in the horizontal direction, shorter in the vertical direction. By contrast, the mo-
tion of particles in the region of the ‘failure surface’, marked in Fig. 13 by broken red
lines, is clearly passive. The aspect ratio of the particles outside the failure zone remains
unchanged, indicating no failure. This is consistent with the theoretical analysis, where
the primary assumption is active motion in the moving region of the central core, with the
further assumption of passive motion within the ‘failure surface’ for the purpose of calcu-
lating the lift force, and isotropic behaviour in the region outside the ‘failure surface’ for
the purpose of calculating the angle of the slip planes.
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Figure 13: Passive or active failure? The aspect ratios of a set of initially square arrays
of material were was inferred at time tp by particle tracking. The direction of
distortion indicates whether motion was active or passive (Teh [27]).

6 Conclusions

When a horizontal flat plate immersed in glass ballotini is lifted, a body of ballotini above
the plate is also lifted; the body is of ‘conical’ form, assumed to be bounded by two
failure surfaces inclined at angle α to the vertical. Values of α were observed through one
of the two vertical parallel glass sheets containing the particles, giving ‘two-dimensional’
motion. There were two methods:

(1) Image contrast to observe particles with more than a small threshold movement.
The photographs suggest two well defined failure lines, giving a plausible measure
of α [Clover [3] & Maynard [14]].

(2) Particle tracking, by observation of single particle movements, showed radial up-
ward motion, centred on a point below the lift plate. Particle movements were
plotted along horizontal lines above the lift plate, giving a movement profile. Each
profile was flat near the centre line, consistent with uniform upward movement. But
near the failure surfaces, the movement gradually diminished with distance from the
centre-line, falling to zero in the region of the failure surface identified by the image
contrast method, (1) above. Thus the particle tracking method suggests that there is
no clearly defined ‘failure surface’.

The movements of particles, initially in the array of a small square, showed that failure
was ‘active’ near the centre line; but towards the region of the failure surfaces, stresses
became either ‘isotropic’, i.e. equal stress all round an element, or ‘passive’ i.e. verti-
cal stress less than horizontal stress. These findings formed the basis of theory which
assumes ‘reverse hopper’ flow: the particles near the centre line were assumed to be in
‘active’ mode i.e. vertical stress greater than horizontal stress. This is the reverse of what

20



happens in downward hopper flow where the downward moving elements are in passive
failure. For the upflow case, the subject of this paper, it is assumed that there are two
failure surfaces, inclined at ±α to the vertical. Between these failure surfaces, it is as-
sumed that failure is active. Outside the two failure surfaces, the forces are assumed to be
isotropic, i.e. vertical stress = horizontal stress. This theory, obviously a very simplified
representation of reality, does give reasonably good predictions of lift force; the theory
also gives fairly good predictions of the measured failure angle ±α , bearing in mind that
the data are very scattered, not surprising in view of the above mentioned fact that there
is not a well-defined failure surface.
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Nomenclature

Roman symbols
B Width of lift plate m
D Width of lift plate m
E Young modulus kgm-1s-2

F Lift force N
Fw Force due to friction between granules and walls

of experimental apparatus
N

FT Peak lift force N
g Acceleration of gravity ms-2

H Bed height m
K Rankine coefficient of earth pressure -
Kf Rankine coefficient at the failure surface -
L Width of element m
N Lift force N
Nqf Dimensionless peak lift force, Nqf =FT/ρgHDw -
Nqfw Contribution to observed Nqf due to Fw -
r Radius from apex of failure surfaces m
rA Aspect ratio, rA = L/B -
r0 Radius to edges of lift plate m
r1 Radius to top of particle bed m
tp Time when lift force is a maximum s
w Distance between vertical glass retaining plates m
x Coordinate along slip plane m
y Coordinate normal to slip plane m

Greek symbols
α Angle between the slip plane and the vertical rad
δ Bed displacement m
δp Lift plate displacement m
εw Strain perpendicular to the wall -
ζ Substitution for 1+ 2H tanα

D -
µ Internal friction coefficient of granules -
µw Coefficient of friction between granules and

walls of experimental apparatus
-

ν Poisson ratio -
ρ Bulk density of particle bed kgm-3

σ Stress in granular material Nm-2

σ1 Principal stress within flowing granular material Nm-2

σ2 Principal stress within flowing granular material Nm-2

σ3 Stress parallel to failure surface in granular ma-
terial

Nm-2

22



σ4 Stress normal to failure surface in granular ma-
terial

Nm-2

σw Normal stress on walls of experimental appara-
tus

Nm-2

τ Shear stress on wall element Nm-2

φ Internal friction angle of granules rad

Abbreviations
PTVA Particle tracking velocity algorithm
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Supplementary Material

Uncertainty analysis

S.1 Angle of slip plane

S.1.1 Brightness threshold method

The main uncertainty in the estimation of the angle of the slip plane comes from the iden-
tification of the interface between the moving and stationary material. This is illustrated
in Fig. S.1, which shows upper and lower estimates of the angle, α on both sides of the
diagram. The upper limit shown by the error bars on the brightness threshold data in Fig.
11 show the maximum of αU1 and αU2 for each experiment. Likewise, the lower limit
shown by the errors bars shows the minimum of αL1 and αL2 for each experiment.

Displaced	Material

Stationary
Material

Slip
Surface

Plate,	width

Bed,
height			

90°-α
	

	

	

αL1

αU1

αL2

αU2

Figure S.1: Example output from the brightness threshold method. The red and blue lines
show perceived upper and lower bounds on estimates of the angle α .

S.1.2 Particle tracking method

The particle tracking method uses a displacement threshold δ/δp, defined as the ratio of
particle movement to plate displacement, to identify quantitatively α , the angle of the
slip plane between the moving and stationary material. It is necessary to specify the
displacement threshold as a range in order identify a large enough region of material to
define a clear interface. However, the location of the interface and hence the value of the
angle α depends on the chosen value of the displacement threshold. This is illustrated in
Fig. S.2.
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Figure S.2: Example output from the particle tracking method. Each panel shows the
same image analysed using a different displacement threshold, δ/δp. The
angle α depends on the displacement threshold and varies between the left
hand and right hand sides of the image.

The angles reported in Fig. 11 were measured using a displacement threshold in the
range 0.02 ≤ δ/δp ≤ 0.05. This is the smallest range of displacements that enabled the
reliable identification of an interface. Typically, no defined slip surface could be found
for displacement thresholds δ/δp ≤ 0.02. The errors in the angles estimated from the left
and right hand sides of the images, ∆αL and ∆αR, are estimated as the standard error (SE)
of each set repeat measurements

SE =
sn−1√

n
,

where sn−1 is the bias-corrected standard deviation of the measurements and n is the num-
ber of repeats. The error bars on the particle tracking data in Fig. 11 show the mean error

∆α =
1
2
(∆αL +∆αR) . (S.1)

S.2 Breakout factor

The main uncertainties in the measurement of the breakout factor

Nqf =
FT

ρgHDw
,

and the embedment ratio are assumed to be the measurement of the peak force FT, the
bulk density ρ and the bed height H. The plate was machined to high precision, so the
errors in its length D and width w are assumed to be negligible.

• The uncertainty in the peak force is estimated as

∆FT =
√

∆F2
1 +∆F2

2 , (S.2)
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where F1 is the lift force measured in experiments with ballotini, F2 is the lift force
measured in experiments without ballotini (so F2 is the weight of the rod plus any
contribution from friction in the equipment) and where the peak force is calculated
as FT = F1−F2. The values of ∆F1 and ∆F2 are estimated as the standard error (SE)
of each set repeat measurements

SE =
sn−1√

n
,

where sn−1 is the bias-corrected standard deviation of the measurements and n is the
number of repeats.

• The uncertainty in bulk density ∆ρ , was taken as ±20 kg m-3 based on the experi-
mental measurements of Reci [24] and Lao [9].

• The uncertainty in the bed height ∆H was primarily due to the difficulty in levelling
the top of the bed and was estimated as ±5 mm.

The overall uncertainty in the breakout factor is calculated as

∆Nqf =

√(
∆FT

∂Nqf

∂FT

)2

+

(
∆ρ

∂Nqf

∂ρ

)2

+

(
∆H

∂Nqf

∂H

)2

,

=

√(
∆FT

ρgHDw

)2

+

(
∆ρ FT

ρ2gHDw

)2

+

(
∆H FT

ρgH2Dw

)2

, (S.3)

and in the embedment ratio

∆

(
H
D

)
=

∆H
D

. (S.4)

26



References

[1] A. Balla. The resistance to breaking out of mushroom foundations for pylons. In
Proceedings of the 5th International Conference on Soil Mechanics and Foundation
Engineering, volume 1, pages 569–576, Paris, France, 1961.

[2] C. Y. Cheuk, D. J. White, and M. D. Bolton. Uplift mechanisms of pipes buried in
sand. Journal of Geotechnical and Geoenvironmental Engineering, 134(2):154–163,
2008. doi:10.1061/(ASCE)1090-0241(2008)134:2(154).

[3] M. Clover. Uplift mechanism for an object buried in granular material. Master’s
thesis, University of Cambridge, Department of Chemical Engineering and Biotech-
nology, 2016.

[4] E. A. Dickin. Uplift behavior of horizontal anchor plates in sand. Journal of
Geotechnical Engineering, 114(11):1300–1317, 1988. doi:10.1061/(ASCE)0733-
9410(1988)114:11(1300).

[5] E. A. Dickin. Uplift resistance of buried pipelines in sand. Soils and Foundations,
34(2):41–48, 1994. doi:10.3208/sandf1972.34.2_41.

[6] R. A. Fan. Uplift mechanism of granular material by a horizontal plate. Master’s
thesis, University of Cambridge, Department of Chemical Engineering and Biotech-
nology, 2017.

[7] A. Ghaly, A. Hanna, and M. Hanna. Uplift behavior of screw anchors in
sand. i: Dry sand. Journal of Geotechnical Engineering, 117(5):773–793, 1991.
doi:10.1061/(ASCE)0733-9410(1991)117:5(773).

[8] K. Ilamparuthi, E. A. Dickin, and K. Muthukrisnaiah. Experimental investiga-
tion of the uplift behaviour of circular plate anchors embedded in sand. Canadian
Geotechnical Journal, 39(3):648–664, 2002. doi:10.1139/t02-005.

[9] C. Lao. Uplift mechanism for an object buried in granular material. Master’s thesis,
University of Cambridge, Department of Chemical Engineering and Biotechnology,
2015.

[10] K. F. Lee, J. F. Davidson, J. Akroyd, and M. Kraft. Lifting a buried object: Reverse
hopper theory. Chemical Engineering Science, 105:198 – 207, 2014. ISSN 0009-
2509. doi:10.1016/j.ces.2013.11.002.

[11] H. MacDonald. Uplift Resistance of Caisson Piles in Sand. Nova Scotia
Technical College, 1963. URL https://books.google.co.uk/books?id=
5m9CNwAACAAJ.

[12] J. Majer. Zur berechnung von zugfundamenten. Osterreichische Bauzeitgschrift, 10
(5):85–90, 1955.

27

http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:2(154)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1300)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1988)114:11(1300)
http://dx.doi.org/10.3208/sandf1972.34.2_41
http://dx.doi.org/10.1061/(ASCE)0733-9410(1991)117:5(773)
http://dx.doi.org/10.1139/t02-005
http://dx.doi.org/10.1016/j.ces.2013.11.002
https://books.google.co.uk/books?id=5m9CNwAACAAJ
https://books.google.co.uk/books?id=5m9CNwAACAAJ


[13] E. L. Matyas and J. B. Davis. Prediction of vertical earth loads on rigid pipes. Journal
of Geotechnical Engineering, 109(2):190–201, 1983. doi:10.1061/(ASCE)0733-
9410(1983)109:2(190).

[14] O. Maynard. Uplift mechanism for an object buried in granular material. Master’s
thesis, University of Cambridge, Department of Chemical Engineering and Biotech-
nology, 2016.

[15] R. S. Merifield and S. W. Sloan. The ultimate pullout capacity of anchors in frictional
soils. Canadian Geotechnical Journal, 43(8):852–868, 2006. doi:10.1139/T06-052.

[16] R. S. Merifield, A. Pearce, H. S. Yu, and S. W. Sloan. Stability of anchor
plates. In Proceedings 8th Australia New Zealand Conference on Geomechanics:
Consolidating Knowledge, pages 553–560, 1999.

[17] M. Moradi and W. Craig. Observation of upheaval buckling of buried pipelines.
Centrifuge, 98:693–698, 1998.

[18] H. Mors. The behaviour of mast foundations subject to tensile forces. Bautechnik,
10:367–378, 1959.

[19] E. J. Murray and J. D. Geddes. Uplift of anchor plates in sand. Journal
of Geotechnical Engineering, 113(3):202–215, 1987. doi:10.1061/(ASCE)0733-
9410(1987)113:3(202).

[20] R. M. Nedderman. Statics and Kinematics of Granular Materials, chapter 3, page 25.
Cambridge University Press, 1992.

[21] C. Ng and S. Springman. Uplift resistance of buried pipelines in granular material.
International Conference Centrifuge, 94:753–758, 1994.

[22] B. C. Punmia, A. K. Jain, and A. K. Jain. Soil Mechanics and Foundations. Laxmi
Publications, New Delhi, India, 16 edition, 2005.

[23] K. S. S. Rao and J. Kumar. Vertical uplift capacity of horizontal anchors. Journal
of Geotechnical Engineering, 120(7):1134–1147, 1994. doi:10.1061/(ASCE)0733-
9410(1994)120:7(1134).

[24] A. Reci. The physics of lifting an object buried in granular material. Master’s thesis,
University of Cambridge, Department of Chemical Engineering and Biotechnology,
2015.

[25] R. K. Rowe and E. H. Davis. The behaviour of anchor plates in clay. Géotechnique,
32(1):9–23, 1982. doi:10.1680/geot.1982.32.1.9.

[26] K. Stone and T. A. Newson. Uplift resistance of buried pipelines. Proceedings of 6th
International Conference on Physical Modelling in Geotechnics, 1:741–746, 2006.

[27] K. K. Teh. Uplift mechanism for a horizontal anchor buried in granular material.
Master’s thesis, University of Cambridge, Department of Chemical Engineering and
Biotechnology, 2017.

28

http://dx.doi.org/10.1061/(ASCE)0733-9410(1983)109:2(190)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1983)109:2(190)
http://dx.doi.org/10.1139/T06-052
http://dx.doi.org/10.1061/(ASCE)0733-9410(1987)113:3(202)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1987)113:3(202)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1134)
http://dx.doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1134)
http://dx.doi.org/10.1680/geot.1982.32.1.9


[28] C. H. Trautmann, T. D. O’Rourfce, and F. H. Kulhawy. Uplift force-displacement
response of buried pipe. Journal of Geotechnical Engineering, 111(9):1061–1076,
1985. doi:10.1061/(ASCE)0733-9410(1985)111:9(1061).

[29] P. A. Vermeer and W. Sutjiadi. The uplift resistance of shallow embedded anchors.
Proceedings of 11th International conference on Soil Mechanics and Foundation
Engineering, 3:1635–1638, 1985.

[30] D. J. White, W. A. Take, and M. D. Bolton. Soil deformation measurement using
particle image velocimetry (piv) and photogrammetry. Géotechnique, 53(7):619–
631, 2003. doi:10.1680/geot.2003.53.7.619.

[31] D. J. White, C. Y. Cheuk, , and M. D. Bolton. The uplift resistance of
pipes and plate anchors buried in sand. Géotechnique, 58(10):771–779, 2008.
doi:10.1680/geot.2008.3692.

29

http://dx.doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1061)
http://dx.doi.org/10.1680/geot.2003.53.7.619
http://dx.doi.org/10.1680/geot.2008.3692

	Introduction
	Literature Review
	Experimental techniques
	Relation between lift force and displacement
	Shapes of failure surfaces
	Theoretical analysis

	Theory to predict the uplift force and failure angle
	Break-out factor
	Determination of slip angle

	Equipment and Measurements
	Properties of the ballotini
	Contribution of wall friction to the measured break-out factor
	Particle tracking
	Brightness threshold

	Results
	Uplift force
	Effect of wall friction between the ballotini and the two glass walls
	Angle of slip plane
	Breakout factor
	Passive or active motion

	Conclusions
	Nomenclature
	Uncertainty analysis
	Angle of slip plane
	Brightness threshold method
	Particle tracking method

	Breakout factor

	References

