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Abstract

Resource-optimised management of district heating networks needs to consider a
wide range of factors, including demand forecasting, flexibility of the heat provi-
sion mix, and volatile market conditions. While traditional approaches often rely
on static models and rather simple heuristics, dynamic cross-domain interoperability
that allows the consideration of all these factors is essential to holistically optimise
thermal grid operations. This paper demonstrates a proof-of-concept for a knowledge
graph-based optimisation problem to minimise total heat generation cost for a district
heating provider. The optimisation follows a hierarchical approach based on a merit-
order principle and is embedded in a model predictive control (MPC) framework
to allow the system to incorporate most recent information and react to disturbances
promptly. A detailed sensitivity study is conducted to identify key design criteria and
input parameters. Simulation-based optimisation is used to determine the short-term
heat generation mix based on data-driven gas consumption models and day-ahead
forecasts for the network’s energy demand and grid temperatures. The proposed
forecasting models deliver reliable and accurate predictions without any noteworthy
difference in generation optimisation results when evaluated for forecasted versus
actual historical values. The effectiveness of the approach is demonstrated for an
existing heating network of a midsize city in Germany, where a reduction of approx-
imately 20 % in operating cost and approximately 40 % in CO2 emissions is obtained
compared to baseline operational data.

Highlights
• Developed an MPC framework to optimise heat generation for a district heating

network.

• Identified key cost drivers using a detailed sensitivity analysis.

• Developed high accuracy time series forecasting models for key input vari-
ables.

• Assessed improvement potential based on actual data from a municipal utility.

• Identified approximately 20 % and 40 % reduction potential for generation cost
and CO2 emissions, respectively.
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1 Introduction

Global warming and climate change impose severe threats to human lives and livelihoods,
environmental stability, and biodiversity. Hence, the reduction of greenhouse gas emis-
sions is one of the predominant themes across scientific research, with a particular focus
on the energy sector and the process industry. As the reduction of carbon emissions is a
complex multi-dimensional problem, one of the greatest challenges to overcome is low
interoperability between different domains and stakeholders.

Despite significant digitalisation advances in individual fields, the majority of data is still
managed in isolated silos with limited information exchange capabilities due to different
types, requirements, definitions, protocols and standards for data and software. Semantic
modelling overcomes this limitation and offers the potential to incorporate an ever increas-
ing variety of data, support automatic control operation, provide computer-aided decision
making, and enable data sharing among different tools [26]. Such interoperability be-
tween individual components as well as heterogeneous information systems is essential
for the next generation of smart grid applications [20] and requires various components
and systems involved in the same application scenario to “automatically interpret each
other’s roles and ‘understand’ each other” [13]. Particular benefits of semantic technolo-
gies encompass separating the information semantics from the underlying data, formalis-
ing knowledge otherwise implicit in code or database schemas, and reducing modelling
efforts by allowing the reuse of established ontologies [47].

District heating (DH) is expected to play an essential role in the cost-effective decarboni-
sation strategy of many countries [19, 27]. However, this requires increased utilisation of
intermittent renewable energy sources and waste heat and shall also include district cool-
ing systems to allow for holistically optimised future energy systems [29]. To stimulate
the inclusion of (industrial) waste heat, a heat merit order is proposed to increase trans-
parency on marginal generation cost [34]. A growing share of waste heat increases pri-
mary energy efficiency and may reduce cost; however, the value of a particular amount of
heat supplied is usually not publicly available, which prevents further efficiency gains and
liberalisation of the market. Moreover, consumer-side energy efficiency measures (e.g.
building refurbishment) lead to decreasing overall heat demand and lower heat density,
which increases cost and efficiency pressure on DH providers [19]. Although national
policies (e.g. subsidies, co-generation incentives) influence the development and prof-
itability of DH systems, the role of DH largely depends on local conditions and locally
specific features, like municipal level energy strategies, available infrastructure, and local
waste management systems. Hence, case studies on particular DH systems need to be
performed rather than abstract country-level analyses [48].

Driven by their size and complexity, operational optimisation of energy networks, i.e.
electricity, water, gas and heating networks can lead to significant energy and cost savings
and are an active field of research. However, most previous work on optimising large-
scale DH network operations only considers one aspect of the overall system and focus
on either generation optimisation, i.e. load dispatch, or heat distribution, i.e. heat supply
scheduling and temperature optimisation. However, an integrated optimisation perspec-
tive is a key prerequisite to minimise cost and resource intensity within a growing smart
grid environment with increasing prosumer interaction. While current operations are of-
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ten still based on heuristic methods, simple logic, or expert judgement [16], the intelligent
control of DH systems is considered one of the key challenges by [29]. Given the systems’
complexity and high parameters combinatorics, the determination of optimal production
and distribution plans (e.g. load distribution across generator units, flow temperature) is
practically impossible without any automated decision support tools.

A few approaches to conceptualise DH networks by means of ontologies can be found
in the literature. However, these works are either quite limited in scope or focus on pro-
viding a semantic middleware between high-level energy management software and local
components instead of representing actual digital twins [20, 28]. Knowledge graph-based
models provide the capability to create sophisticated cross-domain digital twins that can
be used to achieve substantial improvements in terms of energy and resource efficiency.
Knowledge graphs leverage Semantic technologies [6] and the concept of Linked Data [5]
to expressed data as a directed graph, where nodes represent concepts or instances and
edges denote links between related concepts or instances. An essential prerequisite for
implementing dynamic knowledge graph-based models is to virtualise and semantically
represent the operations covered by the digital twin. This includes creating software mod-
els of the operations, creating ontologies to define the concepts and relationships covered
by the software models, and deploying the ontologies and software models in a software
ecosystem.

The purpose of this paper is to explore optimised heat generation strategies for a mu-
nicipal utility of a midsize city. A hierarchical model to minimise generation cost is
developed based on the merit-order principle and coupled to statistical forecasting models
for key system variables in a model predictive control (MPC) framework. This model
represents early progress towards the development of a semantic software ecosystem for
municipal utilities.

The paper is structured as follows: Section 2 provides an overview of recent developments
in district heating and suitable load forecasting methods. Section 3 describes the industrial
case study setup and objectives. Model development is detailed in Section 4, with the
results being discussed in Section 5 and conclusions being presented in Section 6.

2 Background

2.1 District Heating

Compared to decentralised heating options, DH systems often provide a more resource
efficient alternative due to electricity co-generation and economy of scale [19]. DH net-
works have the potential to play an important role in sector coupling by compensating
for fluctuations in renewable power generation and usage of waste heat from industrial
processes instead of fossil fuels [32]. However, new trends in DH go beyond the shift
towards greener generation and need to address the transformation of the network itself,
including prosumer involvement and smart integration of mixed energy systems. Smart
energy systems denote integrated smart electricity, gas and thermal grids, which are co-
ordinated collectively to achieve an optimal solution for each individual sector as well as

4



for the overall energy system [29].

The role of DH in sector coupling and a low-carbon energy mix depends on more flexible
operating modes, deeper insight into the system’s dynamic behaviour, and more sophis-
ticated simulation and optimisation tools. Building on previous work on gas and elec-
tric networks, the optimal control of a district heating networks has been studies using
multiple techniques, including reduced order models [18, 39], the method of character-
istics [44], and network abstraction introducing virtual single pipelines from source to
consumption points [3]. While some approaches focus purely on minimising pumping
cost as a result of pressure and mass flow variations, excluding thermal transport [18],
other efforts study the efficient planning of input energy density using incompressible
Euler equations and dynamic transport of thermal energy to describe a hot water DH net-
work [39]. These works focus on precisely modelling the thermal transport dynamics be-
tween source(s) and consumption, address central difficulties in operating DH networks,
and can help to optimise the distribution of injected energy density to better match the
time-dependent demand. Deeper understanding of the time-dependent advection of in-
jected heat can help to minimise the required peak load [39], allow for better integration
of external over-capacities from renewable energies, and identify the best compromise
between pumping costs and heat losses [16].

Besides optimising the injection and distribution, effective measures to plan and optimise
resources for efficient energy production are essential [25]. Several studies focus on the
sole production optimisation, i.e. addressing the unit commitment and load dispatch prob-
lem, but only a few works study both the load dispatch problem together with the supply
temperature determination. A short-term production optimisation has been investigated
by [42] by separating the unit commitment and the economic dispatch problem; how-
ever, relevant heat load forecasts have been created manually. The optimal generation
allocation between individual plants has been studies in [14] using real-time smart meter-
ing customer data and a genetic algorithm with a static DH system model. Simple heat
demand forecasts are constructed based on ambient temperature; however, this study con-
siders simple heat boilers and simplified production cost only. Production optimisation
and distribution including network storage has been investigated in [16]; however, this
work relies on actual historical heat demand and does not include heat load forecasting.
Several load forecasting methods have been proposed in the literature, including various
filtering techniques, adaptive linear time-series models, grey-box approaches, and neural
networks [2, 25]. While some forecasting approaches are solely focused on the produc-
tion side, some argue that reliable load prediction methods need to account for the network
storage effect as a key characteristic of large-scale DH networks [3]. The network storage
effect describes the phenomenon that a significant amount of energy can be stored within
the network due to varying supply volumes and temperatures. This introduces a tempo-
ral dependency between individual injected heat amounts and is particularly relevant as
real-time consumption data is mostly not available for DH.

Semantic modelling is a suitable approach for integrated system optimisation and could
help to address the difficulties in embracing the increasing complexity of current and fu-
ture energy systems, minimise repetitive work and improve knowledge extraction from
assessing numerous individual case studies. Ontology-based software ecosystems sup-
port the seamless integration and consolidation of dynamic data from different devices
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(e.g. sensors, smart meters, actuators) and systems (e.g. building management system,
energy managements systems) across heterogeneous data models and/or communication
protocols. The feasibility of ontology-driven automation of the optimal coordination of
district energy resources has been studied in [20]. A socio-technical ontology to concep-
tualise a DH network and its constituent buildings, including enhanced sensing and ac-
tuation infrastructure, as well as stakeholders has been proposed and web-based services
for real-time decision making have been drafted. The role of the ontology is envisaged
as intermediate layer between high-level energy management software applications and
local devices. This work has been extended in [28] demonstrating its applicability for a
real-time optimal control heat generation use case. A three-layer approach consisting of
a sensoring and actuation layer, an interoperability layer using data models in the form of
semantics, and an intelligence layer is proposed. The proposed ontology covers dedicated
aspects of any district energy system; however, it is not publicly available.

2.2 Model Predictive Control

Model Predictive Control represents an important advanced control technique for difficult
multivariate control problems [45]. MPC is applicable to any multiple-input, multiple-
output process, which can be described by a dynamic process model with reasonable
accuracy and has become the de facto standard algorithm for advanced control in process
industries [36].

MPC algorithms consist of a dynamic process model, a cost function over a finite pre-
diction horizon, and an (online) optimisation algorithm to derive the cost minimising se-
quence of control inputs: At each time step the current system state is sampled and the
cost minimising control sequence is computed for a pre-defined prediction horizon; how-
ever, only the first step of the control strategy actually gets implemented. Afterwards, the
system state is sampled again and the process model is used to predict future system states
and derive an updated sequence of optimal control actions. The main advantage of this
approach is that it allows the current time step to be optimised, while already considering
future time steps. This forward shifting finite prediction horizons is a distinguishing fea-
ture of MPC [45], which is also referred to as receding horizon control. MPC can handle
different kinds of system constraints efficiently, accounts for outside disturbances, and
reacts to forecasting errors by re-optimising every time step.

MPC strategies have been extensively applied to various energy management and schedul-
ing problems [40] and have been shown to improve operational decision making compared
to traditional day-ahead control [49]. MPC has been applied to a variety of control sce-
narios related to DH networks, including the optimisation of supply temperatures consid-
ering network storage effects [3]. In a DH context, an MPC is usually composed of a
load prediction module and an optimisation procedure to determine the best possible path
for control variables while meeting different technical and operational constraints [16].
Depending on the objective function, operating costs and/or CO2 emissions may be sig-
nificantly improved.
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2.3 Time Series Forecasting

Time series forecasting is essential for decision-making in a variety of disciplines, e.g.
scheduling and demand planning, and identifying the best forecasting technique for each
data set remains one of the key challenges [37]. Exploratory time series analysis is a pow-
erful tool to identify relevant patterns and potential outliers in a time series to tailor one’s
forecasting strategy [22]. A short introduction of key features can be found in appendix A.
The availability of historical data, the strength of relationships between the forecast vari-
able and any explanatory variable, and the forecast length need to be considered when
selecting a suitable family of methods and the subsequent selection of a single method
with the best goodness-of-fit to complexity trade-off. An overview of selected error met-
rics used in this paper can be found in appendix B. While pure time series forecasting
models predict the future value Ŷt+1 of the variable Y at time step t + 1 solely based on
historical observations at previous time steps and some random variation represented by
an error term ε

Ŷt+1 = f (Yt ,Yt−1,Yt−2, ...,ε), (1)

dynamic regression models also include the influence of external predictors p [22]

Ŷt+1 = f (Yt ,Yt−1,Yt−2, , ..., p1, p2, ...,ε). (2)

Depending on the information used to compute a forecast, ex-ante and ex-post forecasts
are distinguished. While ex-ante forecasts only use information available in advance,
ex-post forecasts also consider forecasted information for external predictors.

Time Series Regression Time series regression predicts future values of the forecast
variable based on linear relationships with external variables or time series, referred to
as predictor variables. Categorical predictor variables can be modelled by indicator or
dummy variables taking values of 0 or 1, respectively [22]. Dummy variables can also be
used to account for outliers or to capture permanent level shifts in the data.

Naïve Forecast The naïve forecast, sometimes also referred to as persistence forecast,
represents the simplest form of any forecasting method and is often used as benchmark
for more elaborate forecasts. It assumes that the underlying time series can be described
by a random walk. Hence, the best prediction for any future value Ŷt+h|t within h future
time steps corresponds simply to the last observed value Yt

Ŷt+h|t = Yt . (3)

The seasonal naïve forecast considers the best prediction for any future value in h time
step to correspond to the equivalent value of the last seasonal cycle of length m

Ŷt+h|t = Yt+h−m. (4)

Autoregressive Integrated Moving Average (ARIMA) Models

ARIMA models refer to a well-established and widely used class of statistical forecasting
models and are still considered the dominant benchmark in empirical forecasting [37].
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ARIMA models derive forecasts based on historical observations (i.e. autoregression
(AR) model) and past forecast errors (i.e. moving average (MA) model). To fulfil the
method’s prerequisite of a stationary time series, one or multiple (seasonal) differencing
steps might be required (i.e. integration). Differencing a time series is done by computing
the differences between consecutive observations. Seasonal difference is the difference
between an observation and the equivalent observation from the previous season.

An ARMA model of AR order p and MA order q, i.e. ARMA(p,q), for a sequence Y is
given by

Yt = c+ εt +
p

∑
i=1

φiYt−i +
q

∑
j=1

θ jεt− j, (5)

where the drift parameter c denotes the average change between consecutive observations
and εt represents white noise. The first summation term denotes the autoregressive part
of the model as linear combination of the past p lagged values of the variable Yt−i and
the respective AR parameters φi, and the second summation term represents the moving
average part as a weighted sum of the past q forecast errors εt− j and the respective MA
parameters θ j. Using the lag operator L, which shifts the index back one time step and
can be treated using ordinary algebraic rules, i.e.

LYt = Yt−1 (6)

this expression can be significantly shortened using lag polynomials [22]

φ(L)Yt = c+θ(L)εt (7)
with

φ(L) = 1−
p

∑
i=1

φiLi

θ(L) = 1+
q

∑
j=1

θ jL j.

By including d differencing steps, a non-seasonal ARIMA(p,d,q) model is derived as

φ(L)(1−L)dYt = c+θ(L)εt . (8)

To incorporate seasonality, the Seasonal ARIMA (SARIMA) method has been developed
by including further linear combinations of seasonal historical values and forecast errors,
which are simply multiplied with the non-seasonal terms. An ARIMA model with a
seasonal period m is abbreviated as ARIMA (p,d,q)(P,D,Q)m and defined by

ΦP(Lm)φp(L)(1−L)d(1−Lm)DYt = ΘQ(Lm)θq(L)εt , (9)

with the lowercase indices p, d, q and uppercase indices P, D, Q denoting the non-seasonal
and seasonal model orders, respectively. The AR orders of the model are given by p and
P, the MA orders are specified by q and Q, and the number of differencing steps are
specified by d and D. The non-seasonal AR and MA model parameters are given by φp

and θq, while ΦP and ΘQ denote the seasonal AR and MA model parameters. Defining
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zt as the differenced time series, the full model can be expressed using the seasonal lag
operator Lm as

ΦP(Lm)φp(L)zt = ΘQ(Lm)θq(L)εt . (10)

ARIMA models are remarkably flexible at handling a wide range of different time se-
ries patterns; however, appropriate hyperparameter selection might be difficult. Box and
Jenkins proposed an iterative three-step approach to determine best-fitting SARIMA mod-
els [8], and even automatic model detection algorithms have been developed [23]. Having
specified the hyperparameters of the model, the parameters φp, ΦP, θq, and ΘQ are es-
timated using maximum likelihood estimation. This technique estimates the values of
the parameters which maximise the probability of obtaining the observed data from the
model.

Although principally capable of modelling non-stationary data, significant forecasting ac-
curacy improvements can be achieved with proper time series pre-processing to ensure
stationarity, i.e. transformation and decomposition. Seasonal ARIMA models are not
designed for long seasonal periods, and face both runtime and memory constraints due
to the increase in parameters to be estimated. However, external predictor variables can
easily be incorporated as exogenous regressors [12, 23]. Such SARIMAX models allow
multiple and long term seasonalities to be included via external Fourier covariates.

Dynamic Regression Models

Dynamic regression models extend classical time series forecasting methods by including
further external predictors, e.g. weather or holidays [22]. Classical ARIMA models can be
rephrased to fit a regression model with ARIMA errors to a series of exogenous regressors.

While regression models generally require uncorrelated error terms, ARIMA models al-
low the errors from a regression to contain autocorrelation. If Yt is a linear function of k
predictor variables xt , an regression with ARIMA errors ηt can be expressed as

Yt = β0 +β1x1,t + ...+βkxk,t +ηt (11)

φ(L)(1−L)d
ηt = θ(L)εt ,

where β denotes the parameters from the regression model and φ and θ refer to the AR
and MA parameters of the ARIMA model, respectively. As one can see, there are two
error terms, ηt from the regression and εt from the ARIMA model; however, only the
errors from the ARIMA model εt are white noise and shall be minimised when estimating
the model parameters.

Stationarity of the time series as well as all predictors is an essential prerequisite to fit
an regression model with ARMA errors. In case any of the variables needs to be differ-
enced, it is best practice to difference all variables to maintain the form of the relationship
between them. While forecasting with a regression model with ARIMA errors, both the
regression and the ARIMA part are forecasted, and the results combined.
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3 Case Study Description

The municipal utility provides district heating to several hundred private as well as mul-
tiple industrial customers and relies on two major heat sources: 1) internal heat genera-
tion using three conventional gas boilers and one combined heat and power (CHP) gas
turbine (GT), and 2) external heat sourcing from an energy-from-waste (EfW) plant. Fig-
ure 1 depicts the general setup of the municipal utility operated DH system. Based on
this setup, the utility provider has several degrees of freedom to satisfy the heat demand
of its customers by scheduling (i.e. time and load) individual aggregates and external heat
sourcing.

Consumers

Energy from 
Waste (EfW) plant

District heating 
network

Municipal 
utility 
company

Boiler 1

Boiler 2

Boiler 3 

CHP gas 
turbine

Heat storage
Co-generated electricity

Optimisation scope

Figure 1: District heating setup of municipal utility company and optimisation scope for
total generation cost minimisation. Red arrows indicate heat provision by hot
water, the blue arrow depicts return flow, and the green arrow denotes co-
generated electricity provided to the grid.

The operational cost of individual aggregates depends on a variety of constant parame-
ters (e.g. heat capacity, efficiency, wear cost, etc.) as well as time-dependent parameters
(e.g. gas price, CO2 emission certificate (EUA) price, labour cost and shift surcharges,
etc.). Furthermore, the availability of individual aggregates can change over time due
to revisions, absent personnel, outages, etc. To also include potential revenues from
co-generated electricity of the CHP GT, the electricity spot price is another key time-
dependent variable. Additionally, several dependencies between individual variables and
between subsequent time steps need to be considered. Functional dependencies between
variables are primarily determined by the technical design of the system, e.g. the mini-
mum amount of heat to be sourced from the EfW plant is a function on the spread of the
flow and return temperature and the minimum circulation volume at the respective grid
entry point. Temporal dependencies describe the influence of certain conditions in the
past on any future decisions, e.g. the GT requires a minimum rest duration between any
two subsequent operations, or the marginal heat unit price from the EfW plant decreases
step-wise with an increasing annual volume sourced (i.e. volume rebate). Hence, the
minimisation of total cost of internal heat generation and external sourcing represents a
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complex time-series optimisation problem with dozens of variables as well as dynamic
and interdependent constraints.

Currently, the optimal heat generation mix is determined several times a year based on
high-level heuristics and long-term forecasts. Such a traditional approach heavily re-
lies on personal experience and judgement, and is consequently rather limited to stable
markets with known or easily predictable conditions. On the contrary, optimised decision
making in dynamic markets with various interdependencies needs continuous adjustments
to incorporate all information and data available. Therefore, an automatable data-driven
optimisation framework is required based on the continuous integration of data from clas-
sical engineering, market data, and procurement and scheduling.

Therefore, this work aims to develop 1) a model to minimise total generation cost for the
municipal utility, 2) understand key influencing factors by conducting a detailed sensitiv-
ity analysis, 3) develop reliable forecast models for relevant internal time series (i.e. heat
demand, grid flow temperature, grid return temperature), and 4) ensure the continuous in-
corporation of updated external data (i.e. weather forecast, electricity spot price forward
curve, gas spot price, etc.). Lastly, the optimisation framework will be assessed on the
basis of real historical data from the utility provider.

4 Model Development

This section provides an overview of the methodology employed to develop the proposed
optimisation framework for minimising total heat generation cost for a district heating net-
work. This framework includes an operation optimisation (section 4.1), an MPC integra-
tion (section 4.3), and a prediction engine to forecast heat demand and grid temperatures
for the upcoming optimisation horizon (section 4.4). An object oriented programming ap-
proach in Python has been used to ease future conceptualisation of used classes, attributes,
and relationships into an intelligent semantic system.

4.1 Optimisation Problem

The proposed optimisation aims to minimise total generation cost by controlling the oper-
ational schedules of individual generation units, while safeguarding that required heat
demand is met. Operational expenses consist of fix cost per hour cfix irrespective of
the generated amount of heat, e.g. personnel and wear cost, and purely demand driven
variable cost cvar, such as fuel and emission certificate cost as well as potential revenue
for co-generated electricity sold to the grid (including potential subsidies and saved grid
charges). The total unit cost for generating heat amount q on generation unit g at time
step t can be calculated by

opex(qg,t) =
1

qg,t
· ∑

cfix∈Cfix

cfix
t + ∑

cvar∈Cvar

cvar
t −PCHP, el(qg,t) · pel

t (12)

where Cfix and Cvar denote all applicable hourly fix and marginal variable cost, respec-
tively, PCHP, el is the electrical co-generation power and pel

t summarises all revenues per
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generated unit of electricity. Modelling any external heat sourcing as generation unit with
only demand dependent variable cost, the total cost minimisation can be expressed as

min
q

T

∑
t=1

∑
g∈G

(opex(qg,t) ·qg,t + cswitch
g,t )

s.t. ∑
g∈G

qg,t = Qt

(13)

with T being the number of optimisation time steps, G denoting the collection of available
heat generation units and Qt the actual heat demand to be satisfied at any given time step.
The switching cost cswitch

g,t for generator g at time step t include both potential start-up (in
case generator g is used at time step t, but has not been active at time step t − 1) and
shut-down cost (in case generator g is not used at time step t, but has been active at time
step t−1).

Several further constraints need to be considered when optimising overall heat generation.
Key constraints include: 1) A minimum amount of heat is supplied to the grid at all times
by maintaining a minimum circulation to ensure hydraulic stability. This amount of heat
must be provided by municipal utility owned heat generators. 2) The availability of indi-
vidual generator units can change over time due to (un-)planned downtime or personnel
constraints. 3) The GT can only be restarted after a certain minimum resting period af-
ter each operation. 4) Several generator units can only operate above a certain minimum
threshold (i.e. minimum GT load due to emission restrictions, minimum external sourc-
ing due to hydraulic conditions). 5) External sourcing from the EfW plant is based on a
take-or-pay contract, which incentivises external sourcing.

name heat demand

temperature day of week vacationshigher calorific
value

heat boiler(s)

supply
contract(s)

lower calorific
value

CO2 factor

name

annual limits

prices

current price

grid entry point

availability

technical supply
minimum

technical supply
maximum sourcing history

name

gas consump-
tion model

wear cost

shut-down cost

start-up cost

availability

labour cost

generation
history

name

entry point(s)

pressure
flow temperature

return
temperature

minimum
circulation

fuel

Municipal utility

heating network

nameheat capacity

capacity

electrical capacity

minimum load

gas consump-
tion model

electricity gene-
ration model

rest duration

wear cost

labour cost

start-up cost
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Figure 2: Class structure of virtual municipal utility representation: blue shaded ele-
ments represent classes, black elements denote constant attributes, and red el-
ements represent time series attributes. Dashed arrows indicate the influence
of external variables on total heat demand.

Figure 2 depicts the proposed class structure to represent all required information, in-
cluding relevant concepts, attributes and relationships. As the available heat storage is
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associated with significant heat losses and was barely used in recent years, it has not been
considered in the overall optimisation setup. While time-independent parameters are im-
plemented as constant values or sets of constant values (e.g. annual volume limits and
associated prices for EfW purchases), time-dependent variables are implemented as time
series with hourly frequency. Gas consumption, electricity co-generation, and minimum
heat supply are implemented as separate functions to account for internal dependencies.
Gas demand and electricity co-generation models have been derived based on historical
generation and consumption data as depicted in Figure 3. Linear regression models are
proposed, as both original equipment manufacturer (OEM) data sheet parameters and pro-
vided efficiency values could not explain the relationship between actual observed values
with sufficient accuracy.

The proposed optimisation framework follows a hierarchical approach consisting of two
key steps. First, two principal heat generation modes are defined and associated opera-
tional cost are minimised individually. A mode_excl_GT represents heat generation with-
out GT (i.e. the entire heat demand needs to be provided by conventional gas boilers and
external sourcing), and mode_incl_GT denotes heat generation with prioritised GT con-
tribution. Subsequently, the cost optimal sequence of both modes is derived as the final
optimisation result. This two-step approach allows to initially optimise both modes purely
with regards to demand-driven cost (equation 12) and incorporates event-driven switch-
ing cost between modes only later, after the successful evaluation that incurred switching
benefit justifies associated cost. This logic also allows for temporary negative incremental
benefit, if it is overcompensated later.

Algorithm 1 summarises the key steps in optimising the individual generation modes:
For each time step, the minimal generation cost are evaluated by ranking available gen-

(a) Total gas consumption. (b) Electricity co-generation.

Figure 3: Total gas consumption and electricity co-generation models for CHP gas tur-
bine (axes anonymised for confidentiality reasons). As historical values cannot
be explained with constant efficiency or OEM data sheet parameters, linear
regression models have been implemented.
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Algorithm 1: minimise_interval_cost: Minimise heat generation cost for a given
set of heat generators and a certain number of time steps.

Input: A set heat generators of all heat generators to be considered, and a number
optimisation period of optimisation time steps to perform

Output: Cost optimised heat generation distribution, i.e. heat amount per time step per
generator in heat generators

1 for t← 0 to optimisation period do
/* Assess minimum amount of heat to be supplied to the grid to ensure

hydraulic stability */

2 min supply← function(Tflow, Treturn, Qmin, p, )
3 demand← max(min supply, actual demand[t])

/* Derive ranked capacities of heat generators, ranked by priority and

unit price (i.e. merit-order) [algorithm 3] */

4 ranked capacities← get_ranked_capacities(heat generators, min supply)
/* Derive optimal heat generation mix to satisfy heat demand with

minimum total cost [algorithm 4] */

5 opt generation← minimise_current_cost(ranked capacities, demand)
/* Include potential start-up and shut-down cost incurred by changes

in active heat generators [algorithm 5] */

6 if t > 0 then
7 switching cost← assess_switching_cost(opt generation[t−1], opt generation[t])
8 Add potential switching cost to current operational expenses
9 end

10 return opt generation

eration capacities based on ascending unit price and subsequently selecting the cheapest
combination of capacities required to satisfy the demand for that time interval (i.e. merit-
order-principle [34]). While ranking capacities, temporarily unavailable aggregates are
excluded for the respective time interval and further constraints (e.g. provision of grid
stabilisation heat only by own generators) are considered. The mode_incl_GT prioritises
heat generation with the CHP gas turbine over all other capacities, once higher-order con-
straints are met. Finally, unavoidable switching cost are included, e.g. GT shut-down cost
in case GT has been active and heat demand drops below GT’s minimum load. Details on
the subroutines mentioned in Algorithm 1 can be found in the appendix.

Assuming rather constant pressure conditions in the hot water district heating network,
the minimum heat supply Qmin can be derived by

Qmin = V̇min ·ρ · cp ·∆T (14)
with

cp =
cp(Tflow, p)+ cp(Treturn, p)

2
ρ =

ρ(Tflow, p)+ρ(Treturn, p)
2

with V̇min as minimum volumetric flow rate (given by minimum pump speed), ∆T denoting
the difference between flow and return temperature, and cp and ρ being the average water
heat capacity and density, respectively.

Having derived the optimal generation mix and cost of both modes for each time inter-
val, a holistic time-integrated optimisation across both modes is conducted as described
by Algorithm 2. Iteratively stepping through the individually optimised generation time
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Algorithm 2: optimise_generation: Optimise heat sourcing from internally op-
timised generation modes excl. and incl. gas turbine.

Input: Two multivariate time series (mode_excl_GT and mode_incl_GT ) of internally optimised
heat generation (i.e. cost-optimised generation mix per time step) and flag gt_active
whether GT has been active in previous time step

Output: Multivariate time series of overall cost-optimised generation mix

/* Assign current and alternative heat generation mode */

1 if gt_active then current← mode_incl_GT else current← mode_excl_GT
2 if gt_active then alternative← mode_excl_GT else alternative← mode_incl_GT
/* Initialise time stepping, optimal generation, and maximum and latest

cumulative benefit from current GT operation */

3 t← 0
4 optimum← []
5 gt_bene f it← [0,0]
6 while t < length(current) do
7 if current generation cost ≤ alternative generation cost then
8 optimum[t]← current[t]
9 if gt_active then

10 Update maximum and cumulative gt_bene f it
11 t← t+1
12 else

/* Assess benefit of potential switch between modes if alternative
becomes cheaper than current [algorithm 6] */

13 switch, period,cost← assess_switching_period(current, alternative, gt_bene f it)
14 for dt in period do
15 if switch = True then
16 optimum[t]← alternative[t]
17 Include switching cost cost in optimum at time step dt := 0
18 if gt_active then
19 Reset gt_bene f it← [0,0] at time step dt := 0
20 else
21 optimum[t]← current[t]
22 if gt_active then
23 Update maximum and cumulative gt_bene f it
24 t← t+1
25 end
26 end
27 return optimum

series, the algorithm selects the most cost effective operation of both modes based on the
previous setpoint and identifies all points in time where potentially switching between
modes could result in lower total cost. Subsequently, it evaluates whether the cumulative
benefit from a prospective switch exceeds the associated switching cost (i.e. start-up and
shut-down cost) and, if at all, for what duration the generation mode shall be switched.
Details of this evaluation logic can again be found in the appendix and are schematically
depicted in Figure 4. Each switching between pre-optimised modes needs to be justified
by additionally generated profit. In case the GT is currently inactive, all intervals with
a cumulative benefit exceeding associated switching cost between modes are considered
profitable. In case the GT is currently active, GT operation will be maintained until cu-
mulative benefit drops by at least switching cost from previous maximum. The duration
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Figure 4: Schematic depiction of switching period evaluation with monetary values dis-
played in arbitrary units for confidentiality reasons: Switching operating
modes shall be conducted if resulting cumulative benefit exceeds associated
switching cost and shall be maintained until cumulative benefit drops by at
least switching cost from maximum.

for which operating modes shall be switched is determined by the time step of maximum
accumulated benefit. Initial switching cost from current mode to alternative mode are
included at the beginning of the switching interval, while final switching cost back from
alternative mode to current mode are considered at the end of the interval.

4.2 Sensitivity Analysis

Sensitivity analysis is a tool to study the effect of changes in input parameter values on
the output value of a simulation model and can act as a screening process to identify the
key model parameters [17]. Local sensitivity analyses how a small perturbation in the
vicinity of an input space value influences the final output value. A classical approach
to assess local sensitivities is to compute the normalised sensitivity coefficients using the
one factor at time method, for which one input parameter is varied while holding all other
parameters fixed [33].

Given a function η(ξ (n),θ) with the input space vector ξ (n), the normalised sensitivity
coefficient A j with respect to the jth model parameter θ j is defined as [33]:

A j =
θ j

η(ξ (n),θ)
· ∂η(ξ (n),θ)

∂θ j
. (15)
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A small positive relative perturbation r of model parameter j can be denoted as:

θ̃
j := (θ1, . . . ,θ j−1,(1+ r) ·θ j,θ j+1, . . . ,θn). (16)

Applying a finite difference approximation, the normalised sensitivity coefficient can be
calculated by:

A j =
θ j

η(ξ (n),θ)
· η(ξ (n), θ̃ j)−η(ξ (n),θ)

(θ̃ j−θ) j
=

η(ξ (n), θ̃ j)−η(ξ (n),θ)

rη(ξ (n),θ)
. (17)

Figure 5: Normalised sensitivity coefficients of key model parameters for a range of rel-
ative perturbations: heat demand, EfW heat unit price, and fuel prices are the
most influential input parameters.

Figure 5 depicts the normalised sensitivity coefficients for key input parameters of the
proposed optimisation model. This analysis is based on the total heat generation cost for
one full heating period (i.e. one entire year) and has been conducted with actual historical
values for any time series input to exclude potential forecasting distortion. Furthermore,
a relative perturbation of any input parameter represented by a time series means that all
values of this series are adjusted accordingly.

It can be obtained from Figure 5 that heat demand, the EfW heat unit price, and fuel cost
(gas prices for both conventional boilers and GT) are the most influential input parameters.
Furthermore, revenues from co-generated electricity are decisive, with the electricity spot
price and GT co-generation power as further key inputs. However, a potential volume
rebate on the EfW unit price has been found more relevant than the GT fuel cost or co-
generation power alone. The minimum heat supply requirement due to the municipal
utility’s constraint on minimum pump speed, and the EUA price are further sensitive
inputs.
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4.3 Model Predictive Control Implementation

The optimisation problem is integrated into a MPC framework to allow the system to con-
tinuously react to updated information. Figure 6 depicts the proposed MPC loop: In each
time step (1h in this study) actual measurements from the system (e.g. observed heat load)
along with external forecasts are provided to the MPC controller. Within the controller,
internal forecasts (i.e. heat load and grid temperatures) are updated and the model min-
imises total generation cost over a pre-determined optimisation horizon tmpc (24h in this
study). The model determines the optimal generation mix over that entire period in single
time step intervals. Although a sequence of tmpc control moves is calculated, only the first
setpoint is actually implemented. Subsequently, the optimisation horizon shifts forward
and the MPC loop starts again, either indefinite or until a maximum number of time steps
to evaluate tend has been reached.

Start t=0

Initialise and fit forecasting models
up to time step t

optimisation period = [t+1, t+tmpc]

Derive forecasts for optimisation period

Update model parameters and constraints
(GT minimum idle time, GT start-up and shut-

down cost, EfW technical supply minimum,
current EfW price)

Minimise total generation cost 
for optimisation period

t+1 = tend

Stop

yes

no

t = t + 1

Output of optimised heat generation
for next tmpc time steps

Implement optimised heat generation 
for time step t+1

Minimise total generation cost of
individual modes for optimisation
period (mode excl. GT and mode

incl. GT)

Optimise heat generation   
sequence across modes
for optimisation period

Update forecasting
models with actual
observed values

for time step t
 (and potentially

refit)

Load external forecasts (ambient
temperature, gas prices, EUA price,

electricity spot price)

Forecast heat load (using updated
temperature forecast)

Forecast flow and return
temperatures at municipal utility and
EfW plant (using updated heat load

and temperature forecast)

Figure 6: Flow chart of MPC implementation of heat generation optimisation for optimi-
sation horizon tmpc and total number of optimisation time steps tend.

18



4.4 Forecasting Models

Continuous operation optimisation requires reliable forecasts for heat demand and grid
temperatures as input parameters. Considering the nature of these variables, a suitable
forecasting method needs to satisfy several requirements: 1) capability to handle high-
resolution data (i.e. hourly data points on a time scale of years), 2) flexibility to model sea-
sonalities on different time scales (i.e. daily and annual consumption patterns), 3) multi-
step forecasting capabilities to allow for extended forecasting periods (e.g. annual fore-
casts for long-term planning), and 4) incorporation of continuous (e.g. temperature) and
discrete (e.g. day of week, holidays) external data. Although having issues with long
seasonalities, seasonal ARIMA models with exogeneous regressor variables can satisfy
all these requirements.

Figure 7: Swing capacity on most expensive heat generator for optimised generation
without forecasting. Swing capacity is the minimum of used and idle capac-
ity and can be used to assess the minimum required accuracy of a suitable heat
demand forecast.

To estimate the minimum required accuracy of a suitable heat load forecast, an analysis of
the swing capacity on the most expensive heat generator unit in an optimised generation
scenario has been conducted. Swing capacity refers to the minimum of the used and idle
capacity on the respective generator. The underlying logic is that any heat demand varia-
tion below that swing capacity would not have triggered a different optimised scheduling
decision. Hence, any forecast method with an error below the average swing capacity is
well suited. Figure 7 depicts the swing capacity distribution for the optimised generation
scenarios of two full heating periods. It can be seen that a suitable forecast method needs
to yield an average absolute forecast error below ∼2.0 MW.

As shown in section 4.2, heat demand is the single most important input parameter. Hence,
external predictor variables shall be incorporated to increase prediction accuracy. Previous
load forecasting works for both electricity and heat demand revealed previous load history
(i.e. optimal number of lags), calendar effects (i.e. weekday vs. weekend, hour of day),
and ambient temperature as important input features [2, 7, 9, 10]. Further weather vari-
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ables, such as humidity, wind speed, and solar radiation have been considered by [7, 25].
A distinction between holiday and non-holiday has been proposed by [9] and [10] in-
cluded categorial variables to capture the effect of greatly changing loads on Saturday
and Monday, i.e. the change caused by the transition from working days to rest days. In
this work, ambient temperature is used as a key external predictor variable. Furthermore,
categorial variables for weekday, weekend, Monday, Saturday, holiday, and school vaca-
tion are implemented as one-hot encoded variables. To capture annual seasonal effects,
additional Fourier terms are considered. No feature scaling or normalisation has been
conducted due to comparable scales of all input parameters.

Although ACF and PACF plots are established tools to derive the orders of moving aver-
age and auto-regressive models, respectively, these techniques are only valid for pure AR
and AM models [38]. It is possible for AR and MA terms to cancel each other’s effects in
a mixed ARMA model, which is why visual identification of appropriate model orders be-
comes problematic and other techniques for hyperparameter estimation shall be used. In
this study, Sobol points are used to identify best fitting hyperparameters. Sobol sequences
describe quasi-random low-discrepancy sequences, which have the ability to cover any
given domain approximately evenly. Besides this advantage over purely random num-
bers, Sobol sequences do not require a predefined number of samples and their accuracy
improves continually as more data points are added, which offers benefits compared to
deterministic sequences [46].

A seasonal ARIMA model of the form SARIMA(X)(p,d,q)(P,D,Q) requires fitting of
6 hyperparameters. To constrain the hyperparameter space, two established guiding prin-
ciples are used: 1) the order of seasonal differencing shall not exceed one and the number
of total differences shall not exceed two, and 2) seasonal coefficients larger than two are
barely required [38]. The remaining 6-dimensional hyperparameter space encompasses d
and D in the range [0 to 1] and p,q,P, and Q in the range [0 to 2].

For each variable to be forecasted, several models (i.e. 200 models for heat load and 100
models for grid temperatures) have been sampled from the hyperparameter space using
Sobol points (and subsequently converted into integer model parameters). Each model
has been fitted to 12 individual data histories and its prediction accuracy for day-ahead
in sample predictions has been evaluated. A representative selection of these 12 forecast
evaluations is ensured using equidistant spacing throughout a full heating period with a
comparable share of each weekday. Based on the average RMSE and maximum error of
these in-sample predictions, a subset of 30 models has been shortlisted for each variable
and evaluated on another set of 50 day-ahead in-sample predictions.

It has been observed, that several shortlisted SARIMAX model configurations perform
comparably well and yield average absolute errors well below 2.0 MW. Figure 8 com-
pares the forecast errors for day-ahead heat load predictions of four different methods.
It can be seen that the SARIMAX model clearly outperformes a simple naïve, seasonal
naïve and pure temperature regression model. The distribution of forecast errors is both
narrower compared to the other methods and unbiased (i.e. mean error of zero).
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Figure 8: Comparison of heat load prediction errors for different forecasting methods.
Depicted forecast errors refer to the performance for hourly values of one-day
ahead forecasts for a period of three consecutive years.

5 Results and Discussion

The development of the MPC embedded generation optimisation revealed several key
insights. The sensitivity study re-emphasised the importance of a reliable heat demand
forecast as key input parameter and a minimum required accuracy has been quantified.
The importance of the contract details with the EfW plant have been shown, with the base
unit price and a potential volume rebate having a major influence on annual heat provision
cost. As historical data shows that the current contract has never been fully exploited,
this information shall be used to foster future contract negotiations with the EfW plant.
Furthermore, the minimum circulation volume in the hot water district heating system
and the associated minimum heat provision has been identified as another important cost
driver, which has been neglected so far.

Although initially intended as sole benchmark for more advanced machine-learning fore-
casting methods (a short description can be found in appendix C), statistical SARIMA(X)
models have been found sufficiently accurate and precise for this case study. SARIMA(X)
models are well-established and robust forecasting models and the prediction errors of
best-fitting models are shown to be insignificant with regards to the results of the optimi-
sation model (see section 5.3).

5.1 Data Quality Issues

Scrutinising real industry data during this work revealed several severe data quality issues
and re-emphasised the importance of a semantic data representation. While some draw-
backs are associated with data handling (e.g. high manual work load and long provision
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times, inconsistent formats, etc.), the most severe issues were associated with the data
quality itself: The current data management system does not support any automated sense
checking of newly integrated data, leading to large amounts of meaningless and nonphys-
ical values, e.g. the majority of historical GT gas consumption contained negative values.
Furthermore, large variances in historical values (e.g. specific gas consumption of conven-
tional boilers) have been detected, which potentially indicate calibration issues at selected
meters.

While single outliers can be detected and removed, e.g. by using median absolute de-
viation filters, systematic measurement inconsistencies cannot easily be accounted for
by any mathematical data transformations. One fundamental issue in the current data
management is the blending of hourly average and instantaneous values. The amount of
heat provided to the grid is measured and stored as hourly average, while the generation
of individual aggregates is recorded as instantaneous values, which makes a meaningful
historical evaluation of generation and provision basically impossible. Consistent data
representation and reporting frequencies are crucial to ensure precise comparisons and
build models, which can effectively learn from the past.

The observed shortcomings in the current data management emphasise the necessity for
(near) real-time data plausibility checking and data consolidation. Furthermore, seman-
tically represented data can help to improve anomaly detection by automatically under-
standing the influence of a certain value of one variable on a related variable.

5.2 Forecasting Results

Having screened multiple SARIMA(X) model configurations for each relevant variable,
the final forecasting model has been defined as the configuration with the lowest average
RMSE. It could be observed that forecast quality is largely influenced by the length of
the used fitting history and the interval between potential model refitting. Table 1 pro-
vides an overview of the best-fitting SARIMA(X) configurations for heat load and grid
temperatures at both relevant grid entry points. While the optimal length of data history
used to fit the model varies between the variables, a refitting interval of 2 to 3 months has
been found as a good balance between additional computational cost and updating model
parameters to more recent data.

Figure 9 depicts the forecasting performance of the derived heat load model for a repre-
sentative winter month. Although peak loads tend to be underestimated, the model is able
to predict the actual data reasonably well. However, it can be seen that forecast accuracy
for the first half of a day is tentatively higher than for the second half. As heat demand
in this study actually refers to the amount of heat provided to the network (i.e. due to the
absence of reliable heat consumption data on the consumer side), slight over- and under-
predictions of heat demand within a day can easily be compensated for by the inertia of
the district heating grid and under- or overproduction in a subsequent time step, respec-
tively (i.e. network storage effect). However, it needs to be noted that these forecasts
are generated with actual observed temperature data and no forecast values as external
predictor variable. The influence of temperature forecast errors, especially with regards
to longer forecasting horizons, has not explicitly been investigated.
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Table 1: Summary of best-fitting SARIMA(X) forecasting models.

Non-seasonal Seasonal part

Forecast variable p d q P D Q m Fitting
history

Exogeneous predictors

Heat load 1 0 2 1 1 1 24 365
days

ambient temperature, an-
nual Fourier seasonality,
weekday, weekend, Sat-
urday, Monday, holiday,
vacation

Municipal utility
flow temperature

1 0 0 2 0 1 24 21 days heat load, ambient tem-
perature

Municipal utility
return temperature

2 1 1 1 0 1 24 21 days -

EfW plant flow
temperature

1 0 1 1 1 1 24 14 days heat load, ambient tem-
perature

EfW plant return
temperature

2 1 1 1 1 1 24 14 days -

Figure 9: Comparison of actual heat demand and one-day ahead forecast values for a
representative winter month (axes anonymised for confidentiality reasons).

Figure 10 illustrates the performance for the two worst days within a forecasting period
of three consecutive years, revealing an average hourly deviation between actual and pre-
dicted values of 2.6 MW and 2.1 MW, respectively. However, it needs to be mentioned
that these forecasts refer to multi-step day-ahead forecasts without hourly updates of ac-
tual observed heat load values.

Table 2 provides an overview of key accuracy metrics for the best-fitting SARIMA(X)
models. It can be obtained that all SARIMA(X) models yield better performance than
their seasonal naïve benchmarks. The average heat load error is well below 1.0 MW and
grid temperatures can be predicted with an average accuracy of±2.0 °C. The high MAPE
value for the heat load is primarily an effect of low heat demand during summer periods,
with average heat load being well below 2.0 MW.
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Figure 10: Forecast performance for days with highest daily deviation from actual
observed values in a forecasting period of three consecutive years (axes
anonymised for confidentiality reasons). Gray shaded areas denote weekends.

Table 2: Overview of several error metrics for best-fitting SARIMA(X) models. MAE de-
notes the Mean Absolute Error, RMSE refers to the Root Mean Square Error, and
MAPE stands for Mean Absolute Percentage Error. Percentage Better refers to
the share of SARIMA(X) predictions with lower absolute error than seasonal
naïve benchmark.

Forecast variable MAE RMSE Maximum
Error

MAPE Percentage
Better

Heat load 0.62 MW 0.84 MW 5.46 MW 16.3 % 59.0 %

Municipal utility flow tem-
perature

1.36 °C 2.00 °C 20.22 °C 1.5 % 61.9 %

Municipal utility return tem-
perature

1.21 °C 1.64 °C 11.51 °C 1.6 % 57.7 %

EfW plant flow temperature 1.46 °C 2.08 °C 15.37 °C 1.6 % 61.8 %

EfW plant return tempera-
ture

1.1 °C 1.42 °C 7.65 °C 1.6 % 54.4 %

5.3 Optimisation Results

This section discusses the results obtained from the MPC embedded optimisation prob-
lem including internal forecasting of heat load and grid temperatures and external data
updated within each time step, i.e. every hour. Based on the nature of the evaluation, it
needs to be noted that these results have been generated using the historical electricity
spot price instead of the hourly price forward curve (HPFC), which would be applied for
forward-looking applications. The effect of using historical spot prices instead of HPFC
prices, especially for longer forecasting periods, has not been investigated. Two sepa-
rate full years with different market situations have been studied: Year 1 refers to a year
with relevant CHP co-generation incentive, while Year 2 lacks any comparable subsidies.
Furthermore, Year 2 is associated with higher labour cost.

Table 3 summarises the key results of both optimisation studies and Figures 11, 12, and
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13 illustrate the optimised generation for Year 1. All figures are to scale, but anonymised
due to confidentiality reasons. Optimised scheduling of heat generator units and EfW
sourcing resulted in annual total cost savings of ∼26 % and ∼20 %, respectively. Increas-
ing the current share of EfW sourcing can, furthermore, significantly reduce the amount
of gas consumed. Associated CO2 reduction potential has been assessed solely based on
the amount of saved gas. Two current limitations to be noted: First, the model assumes
that all heat generator units can be activated within an one hour period. While this holds
true from a technical perspective, this might need to be adjusted to account for less flexi-
ble personnel planning. Second, the CO2 contribution from the EfW plant is not explicitly
considered and the reduction potential is derived by the single-objective cost minimisa-
tion. An overarching and multi-objective optimisation, including cost, emissions, etc., is
likely to yield even higher reduction potential.

Table 3: Summary of optimisation results for two full heating periods.

Identified improvement potential p.a.

Year Heat generation cost Gas demand CO2 emissions EfW purchase

Year 1 −26.2 % −50.7 % −4913 t +22.2 p.p.

Year 2 −20.3 % −38.3 % −2181 t +9.0 p.p.

Figure 11 compares the actual historical GT operation with the optimised generation
schedule. It can be seen that the optimisation utilises the GT more hesitantly. Besides a
more thorough economic evaluation prior to any potential GT start-up, this observation is
likely to be attributed to the omission of the available heat storage. As the GT requires
a minimum heat load of ∼9.0 MW, already slight drops in the anticipated heat load will
suggest that the generated heat cannot immediately be accommodated in the grid and
consequently suppress GT operation.

Figure 11: Comparison of optimised and historical CHP gas turbine operations (bottom)
and associated heat load (axes anonymised for confidentiality reasons) and
electricity spot price (top).
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Figure 12: Comparison of optimised and historical heat generation mix (axes
anonymised for confidentiality reasons).

Figure 13: Comparison of incremental and cumulative cost for optimised and historical
heat generation (axes anonymised for confidentiality reasons).

Figure 12 illustrates the historical and optimised generation schedule for Year 1 and Fig-
ure 13 depicts the associated incremental and cumulative generation cost. It can be ob-
served that the optimised generation mix follows a more rigorous selection logic and,
hence, is characterised by a less variable generator composition. Furthermore, it becomes
obvious that sourcing heat from the EfW plant is of superior importance to minimise gen-
eration cost. Historically, the negotiated heat provision volumes from the EfW plant have
only been used to ∼48 % and ∼36 % in Year 1 and Year 2, respectively. After the opti-
misation this percentage increases to ∼55 % for both years. Although this value suggest
even further room for external sourcing, this share is limited by 1) a maximum hourly
provision limit due to maximum pump speed at the EfW plant and 2) the constraint that
the minimum circulation of the network needs to be maintained by the municipality itself.
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It needs to be noted that the actual network hydraulics are not explicitly modelled. Hence,
assuming constant pressure and forecasting flow and return temperatures at the relevant
grid entry points solely based on heat load and ambient temperature is a significant sim-
plification and does not account for any hydraulic induced supply limitations.

A comparative analysis to assess the influence of forecast errors has been conducted for
both years. It has been revealed that an optimisation with actual historical values instead of
forecasts from the proposed models results in no considerable deviation for the optimised
generation schedule and total cost. This supports the initial analysis of minimum required
heat load forecast accuracy and the suitability of the developed SARIMA(X) models.

To assess the impact of increasing regulatory pressure, i.e. increasing CO2 certificate
and fuel prices, normalised local sensitivity coefficients for representative perturbations
have been compared for the actual historical market environment and an anticipated mar-
ket situation with respective price increases (see Figure 14). While gas prices have been
adopted based on the latest contract data from the municipal utility, an EUA price of 50e/t
is assumed [43]. It can be obtained that anticipated price changes will further increase the
relevance of contractual terms with the EfW plant (i.e. unit price and potential volume
rebate) and significantly increase the importance of an efficient CHP GT operation. In-
creasing emission cost will foster the share of cost-effective CHP generation and further
increases the importance of a dynamic and automatable control due to highly volatile
electricity spot prices.

Figure 14: Comparison of normalised local sensitivity coefficients of key model param-
eters for actual historical market environment (i.e. Year 1 original data) and
anticipated changes in EUA and gas prices (i.e. Year 1 adjusted data).

A fundamental limitation of the proposed approach is the omission of temperature and
load-dependent effects on gas consumption and electricity co-generation. Although the
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current models describes the historical data sufficiently close, these limitations need to be
considered when comparing optimised and actual historical generation data.

6 Conclusions

An MPC framework to optimise heat generation and sourcing for a district heating provider,
including the operation of its CHP gas turbine has been accomplished. A detailed analy-
sis of the data and the current operations has revealed both technical and economic effect
mechanisms and dependencies to foster fact-based decision making. A hierarchical opti-
misation approach has been derived as a set of transparent algorithms to improve current
operations, which are still primarily driven by heuristics and personal judgement. A sys-
tematic understanding of long-term cost-drivers and short-term optimisation measures has
been identified.

The optimisation problem has been integrated into a model predictive control framework
to continuously update short-term forecasts and incorporate latest observations. One day-
ahead heat demand and grid temperature forecasting models have been developed, consid-
ering also external predictor variables (e.g. weather and calendar effects). The forecasting
accuracy of classical statistical seasonal ARIMA models has been found sufficiently ac-
curate for all variables, and especially precise for anticipated heat load. The optimisation
framework has identified annual cost saving potential above 20 % for two individually
assessed years with different market dynamics and revealed a prospective CO2 abatement
potential exceeding 40 kg/MWh. The increasing importance of a dynamic and holistic
generation optimisation is illustrated using local sensitivity analyses, including antici-
pated shifts in general market conditions.

Several severe data quality issues have been identified and clear areas of mitigation mea-
sures have been proposed, outlining the superior importance of a systematic semantic
representation of data.
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A Time Series Analysis

A time series is a collection of observations ordered by time and is usually modelled as
a sequence of a random variable Y (t). Time series forecasting is focused on estimating
future realisations of this stochastic process Y (t + h), using only information available
at time t. While forecasting could generally be understood as a subset of supervised re-
gression problems, special temporal dependencies need to be accounted for in time series
data.

Relevant time series components include trends, seasons, and cycles. A trend refers to
a long-term increase or decrease in the data (linear or non-linear). A season denotes a
recurring behaviour with fixed and known period and cycles reflect fluctuations without
fixed frequency. The average length of cycles tends to exceed seasonal patterns, combined
with a more variable magnitude than seasonal patterns [22]. As time series data often ex-
hibits superimposed patterns, several decomposition approaches have been proposed in
the literature [4, 11]. Furthermore, transformations (e.g. logarithmic and power transfor-
mations) and adjustments (e.g. calendar and inflation adjustments) are often applied on
complex time series [15, 22]. Various statistical methods have been developed to forecast
seasonality, cycle, trend, and randomness in an integrated manner [37].

To describe the strength of temporal dependency within a time series, autocorrelation
measures the linear relationship between values of a sequence at two different points in
time [8]. The autocorrelation coefficient r of a sequence x at lag k is defined by

rk =
∑

T
t=k+1(xt− x̄)(xt−k− x̄)

∑
T
t=1(xt− x̄)2

, (A.1)

where x̄ denotes the mean of the sequence and T is the length of the time series. As cor-
relation between two variables can result from both direct and indirect dependence, the
partial autocorrelation defines the autocorrelation between values of a sequence at two
different times after the removal of any linear dependence on observations at intermediate
lags, i.e. confounding [8]. The (partial) autocorrelation function (PACF/ACF) plots the
(partial) autocorrelation coefficient as a function of consecutive time lags and can be used
to detect periodicity and patterns in time series data [1]. Trended data shows strong pos-
itive autocorrelation for small lags, with decreasing values for increasing lags. Seasonal
data shows strong autocorrelation at multiples of the seasonal frequency.

B Goodness of Fit Measures

Multiple measures have been proposed to evaluate the performance of different forecast-
ing methods, each associated with characteristic advantages and disadvantages depending
on how individual forecast error are summarised [12]. A forecast error et denotes the
difference between an observed value Yt and its prediction Ŷt :

et = Yt− Ŷt . (B.1)

A good forecasting method leads to uncorrelated residuals with zero mean. While corre-
lation between residuals indicates information left in the residuals, which should rather be
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used to improve the forecast, a mean other than zero results in a biased forecast. Further-
more, normally distributed residuals with constant variance ease the calculation of predic-
tion intervals [22]. To compare the overall performance of various forecasting methods,
a selection of measures should be considered. A brief overview of selected methods is
provided in the following.

Scale-dependent errors Scale-dependent errors have the same scale as the data. Hence,
they cannot be used for comparisons between different time series. The most commonly
used accuracy metrics are the mean absolute error (MAE) and root mean square error
(RMSE) (equation (B.2)). While minimising MAE leads to forecasts of the median, min-
imising the RMSE results in forecasts of the mean of the time series. RMSE penalises
extreme errors during forecasting.

RMSE =

√
1
n

n

∑
t=1

e2
t (B.2)

Percentage errors Percentage errors are unit free and frequently used for comparisons
between data sets, with the mean absolute percentage error (MAPE) being the most com-
monly used metric (equation (B.3)). One of the key disadvantages of these measures are
their extreme values for Yt values close to zero [30].

MAPE =
1
n

n

∑
t=1

∣∣∣et

Yt

∣∣∣ ·100% (B.3)

Prediction comparisons To provide an alternative to percentage errors when comparing
forecasts across series with different units, scaled errors have been proposed [24]. This
approach ensures comparable error scales by scaling the individual errors based on the
training MAE from a simple forecast method. Similarly, the percentage better method-
ology benchmarks the accuracy of one method against the accuracy of a reference (and
often simpler) forecast method [12].

C Artificial Neural Network Forecasting Models

Neural Network Autoregression (NNAR) A NNAR model is a feedforward artificial
neural network with lagged values as inputs for forecasting univariate time series. The
number of lagged observations to be considered defines the number of input neurons. For
seasonal time series, those neurons may also include the seasonally lagged sequence [22].
Although the model has initially been developed for univariate time series, exogenous
variables can be incorporated as additional regressors. Such NNARX models have been
shown to significantly improve forecasting performance compared to both SARIMAX
and NNAR models without external data [31, 41]. For forecasting purposes, the network
is applied iteratively. While one-step forecasts simply use the available historical inputs,
multi-step forecasts use the one-step forecasts as inputs, along with the historical data.
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Long Short-Term Memory (LSTM) LSTM denotes a recurrent artificial neural net-
work architecture, mostly used with unstructured data (e.g. audio, video) [21]. Unlike
feedforward neural networks, a LSTM model has feedback connections, which allow to
keep track of dependencies of new observations with historic ones. LSTM networks are
well-suited for time series forecasting due to their ability to detect and consider lags of
unknown duration between important events in a sequence. They are capable of auto-
matically learning features from sequence data, support multivariate data, and can infer
and forecast non-linear dependencies among multiple time series. Furthermore, LSTMs
can output sequences of variable length and therefore be used for multi-step forecasting.
Compared to classical methods, no assumptions regarding the underlying nature of the
time series are required. Hence, physical time series such as metering or monitoring sen-
sor outputs tend to be very good use cases for LSTM models. It has been show that LSTMs
can clearly outperform classical SARIMAX forecasts [35] and yield more accurate pre-
dictions than feedforward neural networks [7] for electric load forecasts, especially in the
short-term.
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D Optimisation Algorithm (continuation)

Algorithm 3: get_ranked_capacities: Derive list of available capacities sorted
by increasing priority and unit price

Input: A set heat generators of all heat generators to be considered, and a minimum amount of
heat min supply to be supplied to the grid to keep it stable

Output: A set capacities as subset of heat generators with available generation capacities
sorted by increasing priority (1st), increasing unit price (2nd), and decreasing
capacity(3rd)

1 Initialise capacities as empty list
2 Retrieve min heat suppliers as subset of heat generators capable of providing stabilisation heat
/* Perform 2 consecutive runs through heat generators to rank available

generation capacities by increasing unit price and prioritise

min supply requirement */

3 for run← 0 to 1 do
4 foreach generator in heat generators do
5 if generator is gas turbine then priority← 2 else priority← 3
6 if generator is available then
7 if generator in capacities then
8 Add new generator entry with remaining capacity, only marginal operational

cost, and priority to capacities
9 else

10 Add new generator entry with total generator capacity, full operational cost
(incl. potential hourly fix cost), and priority to capacities

11 end
12 if run = 0 then
13 Delete all capacities entries for generators not in min heat suppliers
14 Sort capacities by increasing priority (1st), increasing unit price (2nd), and decreasing

capacity(3rd)
15 capacities sorted← first n entries of capacities required to satisfy min supply
16 foreach entry in capacities sorted do
17 if entry’s capacity is only required partially then
18 Adjust entry’s capacity to reflect only required quantity
19 Re-evaluate generation cost for adjusted capacity
20 capacities← Updated capacities sorted with priority := 1 for all entries
21 end
22 end
23 Sort capacities by increasing priority (1st), increasing unit price (2nd), and decreasing

capacity(3rd)
24 return capacities
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Algorithm 4: minimise_current_cost: Assess minimal cost required to satisfy
current heat demand

Input: A ranked (i.e., merit-order) list capacities of available generation capacities, and required
heat demand to be satisfied

Output: Cost-optimised heat generation distribution across available sources opt generation,
and total generation/sourcing expenses cost

1 if gas turbine in capacities′ heat generators then
2 if demand ≥ gas turbine minimum load then
3 Summarise all individual gas turbine entries in capacities into single entry
4 else
5 Remove all gas turbine entries from capacities
6 capacities← get_ranked_capacities(remaining heat generators in capacities,

min supply)
7 cost← 0
8 active← []
9 foreach entry in capacities do

/* Add capacities until demand is satisfied */

10 if demand > 0 then
11 demand← demand - entry′s capacity

/* If entry’s capacity is needed in full */

12 if demand ≥ 0 then
13 cost← cost + entry′s capacity × entry′s unit price
14 if entry′s generator in active then
15 Increment required capacity for entry′s heat generator by entry′s capacity
16 else
17 Add entry to active

/* If entry’s capacity is only needed partially */

18 else
19 if entry′s generator is gas turbine or sourcing contract then
20 if demand < generator’s minimum requirement then
21 demand← demand + entry′s capacity
22 continue
23 if entry′s generator in active then
24 opex← Re-evaluate marginal variable cost for demand
25 cost← cost + opex
26 Increment required capacity for entry′s generator by demand
27 else
28 opex← Re-evaluate full generation cost for demand (incl. potential hourly fix

cost and demand dependent variable cost)
29 cost← cost + opex
30 Update entry′s capacity to demand and add to active
31 end
32 return active, cost
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Algorithm 5: assess_switching_cost: Assess switching cost between two heat
generator setups (from setup1 to setup2)

Input: Two sets of heat generators setup1 and setup2
Output: Total shut-down and start-up cost to switch from setup1 to setup2

1 cost← 0
2 Remove all external heat sourcing contracts from setup1 and setup2
3 foreach generator in setup1 do
4 if generator not in setup2 then
5 Add generator shut-down cost to cost
6 end
7 foreach generator in setup2 do
8 if generator not in setup1 then
9 Add generator start-up cost to cost

10 end
11 return cost
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Algorithm 6: assess_switching_period: Assess whether switching between two
internally optimised heat generation modes is beneficial

Input: Two multivariate time series (current and alternative) of internally optimised heat
generation modes and tuple of maximum and latest cumulative gt_bene f it(max,cum)
from current gas turbine operation

Output: Decision whether heat generation mode shall be switched, associated cost of
switching, and the period for which the modes shall/shall not be switched

1 switch← False
2 f irst neg← True
3 acc_bene f it[max,cum]← gt_bene f it(max,cum)
4 for t← 0 to length(current) do

/* Assess incremental benefit/loss inc and update cumulative benefit

from potentially switching modes acc_bene f it[cum] */

5 inc← current generation cost - alternative generation cost
6 if gt_benefit > 0 then inc =−inc
7 acc_bene f it[cum]← acc_bene f it[cum] + inc
8 if inc < 0 then

/* Find maximum accumulated benefit if it starts to drop */

9 if f irst neg = True then
10 t_max← Derive time step t of max. accumulated benefit in current interval
11 cost← Assess switching cost from current to alternative setup and back for period

[0, t_max]
12 f irst neg← False
13 if acc_bene f it[cum] drops by at least cost from previous maximum then

/* If GT inactive, switch if max. generated benefit exceeds

associated switching cost */

14 if gt_benefit = 0 and acc_benefit[max] > cost then
15 switch← True

/* If GT active, switch if benefit continuously decreased from

previously generated maximum */

16 else if gt_benefit > 0 and t_max = 0 then
17 switch← True
18 t_max← t
19 return switch, t_max, cost
20 else
21 f irst neg← True
22 end
23 end

/* In case end of time series gets reached, switch modes if accumulated

benefit exceeds initial switching cost */

24 cost← Assess switching cost from current to alternative at t = 0
25 if gt_benefit = 0 and acc_benefit[cum] > cost then
26 switch← True
27 return switch, t, cost
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