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Abstract

Metal-organic polyhedra (MOPs) are discrete, porous metal-organic assemblies known
for their wide-ranging applications in separation, drug delivery, and catalysis. As
part of The World Avatar (TWA) project – a universal and interoperable knowledge
model – we have previously systematised known MOPs and expanded the explorable
MOP space with novel targets. Although this data is available via a complex query
language, a more user-friendly interface is desirable to enhance accessibility. To ad-
dress a similar challenge in other chemistry domains, the natural language question-
answering system ‘Marie’ has been developed; however, its scalability is limited due
to its reliance on supervised fine-tuning, which hinders its adaptability to new knowl-
edge domains. In this paper, we introduce an enhanced database of MOPs and a first-
of-its-kind question-answering system tailored for MOP chemistry. By augmenting
TWA’s MOP database with geometry data, we enable the visualisation of not just
empirically verified MOP structures but also machine-predicted ones. In addition,
we renovated Marie’s semantic parser to adopt in-context few-shot learning, allow-
ing seamless interaction with TWA’s extensive MOP repository. These advancements
significantly improve the accessibility and versatility of TWA, marking an important
step toward accelerating and automating the development of reticular materials with
the aid of digital assistants.

The World Avatar

Question
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Assembly
Models

New Chemical
Data

Highlights
• Metal-organic polyhedron (MOP) data made accessible via natural language.

• Visualisation of MOP geometries, including empirically verified and machine-
predicted structures.

• Accelerated adaptation of the QA system to new data and domains using few-
shot learning methods.
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1 Introduction

Metal-organic polyhedra (MOPs) represent a class of materials characterised by their self-
assembled, cage-like discrete nanomolecular architecture constructed from metal-based
and organic building blocks [17, 33]. Considering their network-like discrete assembly
topologies combining internal cavitation and a plethora of organic and inorganic cluster
functionalities, MOPs are typically considered a subset of reticular materials with promis-
ing applications in catalysis, separation, and energy technologies [49, 60]. However, con-
sidering the chemical space that emerges by a brute combinatorial derivation of new hy-
pothetical reticular structures, past years in these domains have noted increased interest
in the development of data-driven technologies for new material discovery [11, 26, 55],
selection [20, 36] and synthesis [38], as well as the development of data infrastructures to
support these tasks, including data cataloguing [41], mining [5], and accessing [26].

Considering the relatively lower sample size of MOPs in comparison to its extended
metal-organic framework analogues, the development of data-driven digital tools for MOP
discovery has remained challenging. This is simple because big data-driven that fits MOFs
cannot be easily extended to to MOPs. In this regard, our group has developed new formal
and semantic approaches to describe MOPs, including custom-designed inductive reason-
ing algorithms for new structure discovery. Thus, following a careful development of a
knowledge model for MOP chemistry (i.e. a “OntoMOP” (KG)), we have instantiated
151 MOPs experimentally described MOPs, and based on them, our reasoning algorithm
designed new 1,418 MOP instances that are rationally designed based on existing building
units, following expert-like patterns of molecular engineering [29]. The overall research
has been originally contextualised within our The World Avatar (TWA) digital infrastruc-
ture, which adopts Semantic Web principles to bridge the gap between digital and physical
realms.

Access to chemical information for a very long time came with the requirement of some
forms of cheminformatics knowledge [15]. In a similar line, acquiring chemical informa-
tion instantiated in the form of a knowledge graph typically requires the use of querying
tools such as SPARQL [48, 50], which may appear unintuitive and even cumbersome to
operate by new users, thus, unfortunately, limiting the accessibility to chemical informa-
tion. Despite our original success in describing MOP chemistry via a knowledge graph
model and in developing agents for digital exploration of its chemical space, semantic
query tools often appeared as a barrier for experimental chemists who may want to use
the insights from our work towards the development of new materials. By noticing similar
experiences along different chemistry domains, we were motivated to develop tools that
integrate semantic querying with natural language processing, enabling virtually any user
with access to the internet to be able to query verified and expert-derived knowledge mod-
els simply via prompting. In this regard, we have developed dedicated easy-to-use tools to
navigate complex ideas and concepts that are either niche in nature or not fully public do-
main and therefore not accessible via traditional search engines or general-purpose large
language models (LLMs) . One of TWA’s core goals is to develop user-friendly interfaces
that enable researchers and industry practitioners to efficiently interact with TWA’s ex-
tensive data and leverage its powerful modelling and problem-solving capabilities. One
such interface is Marie, a natural language question-answering (QA) system for chemistry.
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Previously designed to facilitate access to data in the domains of combustion kinetics and
crystalline zeolitic materials, Marie has demonstrated the potential of NLP-driven tools to
help human users navigate complex knowledge bases [32, 47]. However, Marie’s reliance
on supervised fine-tuning in the development of its semantic parser curtails its scalability.
In TWA’s dynamic environment, new knowledge domains are continually introduced and
extended, making repeated retraining of Marie’s semantic parser necessary, which is not
only resource-costly but also risks catastrophic forgetting [23]. Lastly, specific to reticu-
lar chemistry is the problem of understanding complex information and structures, which
calls for visualization.

The purpose of this paper is to present an enriched knowledge base and an enhanced
QA system tailored for digital engagement with MOP chemistry. TWA’s MOP domain is
restructured and augmented with geometry data for new MOP instances deduced in our
previous work, allowing the visualisation of not just empirically verified MOP structures
but also those predicted by our “MOP Discovery” agent. Additionally, we update Marie’s
semantic parser to adopt the approach of few-shot in-context learning with demonstration
retrieval, which enables more agile incorporation of new domains and acceleration of
development cycles.

user

Response...

Semantically
Structured

Data

SPARQL Query

Agent
System

MOP Instance

Figure 1: Illustration of TWA’s digital infrastructure that enables the retrieval of struc-
tured and validated MOP data via natural language requests.

2 Background

In this section, we first introduce the TWA knowledge ecosystem and its application to the
chemistry domain, particularly MOPs. We then give a short overview of current trends in
QA systems in related domains.
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2.1 The World Avatar – A Virtual Hub for Digital Chemistry

TWA is a pioneering project that creates a universal digital twin of the real world, build-
ing on the early potentials of the Semantic Web to enhance cheminformatics and broader
chemical applications [6, 43, 58]. Initially conceptualised in 2010, this initiative has
evolved from the representation of a single chemical industry park on Jurong Island (Sin-
gapore) into an unrestricted world model capable of integrating a range of phenomena
from the atom to multiscale features impacting environment, climate, and population
health [2], including power and heat network optimisations for CO2 savings, environ-
mental monitoring, and cross-domain climate resilience planning through the Climate
Resilience Demonstrator [2, 3, 42]. TWA operates on the Semantic Web principles and
adheres to the FAIR guidelines to ensure all data is findable, accessible, interoperable, and
reusable [62]. It integrates software agents that manage information flows, interface with
computational models, and continuously enhance TWA’s KGs with new data [2, 68].

The digital chemistry in TWA is aligned and structured around foundational ontologies
such as OntoSpecies, OntoKin, OntoCompChem, and OntoPESScan, facilitating a com-
prehensive mapping of chemical species, reaction mechanisms, and quantum chemistry
calculations respectively [30, 31]. This framework supports detailed data relationships
and enhances interoperability, enabling multifaceted data usage and reducing ambigui-
ties [2, 12]. Additionally, computational agents in TWA perform complex tasks such as
calibrating kinetic mechanisms and automating discovery processes [31], exemplified by
the development of novel MOPs [29] which, amongst a variety of applications, can be
used for photocatalytic CO2 reduction [1, 16].

The OntoMOPs ontology is designed to provide and enrich semantic relationships be-
tween MOPs, chemical building units (CBUs), and assembly models (AMs) [29]. This
ontology enables advanced query capabilities for professionals engaged in the modelling
and preparation of MOPs, supporting informed decision-making with detailed informa-
tion on the construction and functionalities of these materials. OntoMOPs links MOP
instances to crucial metadata such as molecular mass, charge, formulae, and provenance
information like DOIs and CCDC numbers for precise identification and cross-referencing
with crystalline databases. Additionally, the assembly model concept details how different
generic building units (GBUs) contribute to the formation of specific polyhedral shapes
recognised in reticular chemistry, such as tetrahedra and octahedra, while the CBU con-
cept models chemical functionalities and binding sites necessary for MOP formation.

2.2 Trends in Knowledge-Intensive Chemistry QA Systems

In recent years, the field of natural language processing (NLP) has experienced a remark-
able rise in popularity, primarily driven by the accessible deployment of large language
models. The advent of LLMs is marked by their remarkable ability to tackle diverse
knowledge-intensive tasks that range from the humanities to the sciences, including chem-
istry [45]. However, despite their impressive performance on standardised examinations,
general-purposed LLMs like GPT-4 often struggle with more advanced and specialised
requests, revealing their lack of in-depth understanding of the subject matter [22]. While
fine-tuning is a possible remedy [65], a significant challenge remains: these models are
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inherently limited by the scope and recency of their training data, rendering them in-
adequate for querying up-to-date information or applying the latest research knowledge
without undergoing further retraining.

In the realm of chemistry, LLMs are increasingly utilised for a variety of tasks, including
data processing, engineering, inference, and augmentation, in conjunction with various
computational tools [21, 25, 39]. Despite these advancements, concerns about the ex-
plainability of these technologies continue to persist [14], prompting further research into
integrating LLMs with semantic technologies. QA systems have historically leveraged ex-
ternal knowledge bases, particularly through KG-based QA systems. These are designed
to retrieve and reason over structured data from KGs to deliver precise and fact-based
answers [27, 66].

The emergence of retrieval-augmented generation (RAG) systems has taken this a step
further by combining the reasoning capabilities of LLMs with the retrieval of up-to-date
information from external sources [35]. This allows RAG systems to generate more con-
textually relevant and accurate responses [26, 67]. Using knowledge graphs as the foun-
dation for information retrieval (KG-RAG) has shown great promise in recent studies to
reliably handle knowledge-intensive and cognitive tasks [56].

Another challenge for knowledge-intensive QA systems is the handling of private, niche,
or proprietary data, which is encountered in both industrial contexts and academic re-
search. This necessitates a flexible QA system capable of integrating various data sources
and domains while also allowing for the dynamic inclusion of new information. LLMs’
strong generalisation ability and versatility are key to addressing these dual goals. For ex-
ample, ChemCrow [39] is a tool-calling agent capable of incorporating information pulled
from a mixture of public and priority data sources and computational tools, including the
PubChem database and the RoboRXN platform by IBM Research [24]. It does so by
employing an LLM pre-trained for the tool-calling task to orchestrate when to use which
external tool and how to process and combine the results to form a coherent response [57].

Similarly, Marie, is capable of querying across various domains and accessing informa-
tion from distributed data sources within the fields of combustion kinetics and crystalline
zeolitic materials [32, 47]. However, the previous version of Marie relies on supervised
fine-tuning for its semantic parser, which necessitates re-training whenever it needs to
integrate with a new knowledge domain in TWA. In contrast, the in-context learning ca-
pability of LLMs [7] offers a promising approach to expanding Marie’s coverage across
TWA’s domains without the need for retraining. This capability allows LLMs to perform
tasks based solely on task demonstrations provided at test time, without updating model
weights – particularly, if coupled with advanced entity linking algorithms [44].

3 Methodology and Implementation

In this section, we detail the methods developed for our natural language access point for
MOP chemistry. We begin by outlining the refinements and extensions made to the exist-
ing knowledge model within TWA. Following this, we describe the integration of Marie
into the MOP chemistry domain and the substantial improvements to its architecture.

6



3.1 Updates to OntoMOPs

In order to include MOP knowledge in our existing KG-based chemistry QA system Marie
and extend it for better user interactivity, the MOP knowledge base needs to be restruc-
tured and extended first. Firstly, we made adjustments to the original OntoMOPs ontology
to improve robustness and ease of querying. The changes concern two main aspects: the
storage of geometry data and the elimination of potential data redundancy. Furthermore,
the MOP KG was enriched with 370 new geometries of machine-predicted MOPs in addi-
tion to the 151 existing geometries of previously synthesised MOPs. These molecular ge-
ometries were deduced from information represented in the KG and will help researchers
to visualise these structures better and screen possible synthesis candidates.

The updated ontology is shown in Fig. 2. Its core concepts form a rectangle: MOPs can be
classified by their geometric assembly models made up of distinct generic building units
as which a variety of chemical building units can function [29]. These four core concepts
now provide access to a range of geometric and molecular properties alike.

AssemblyModel GenericBuildingUnit

GenericBuilding
UnitNumber

integer

string

PolyhedralShape
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BindingSite

BindingDirection

integerMolecularWeight
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Figure 2: Illustration of the terminological component (TBox) of the MOP chemistry do-
main in TWA and its related ontologies, core concepts are shown in bold.
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In the original implementation, geometry data of MOPs and CBUs is provided as an XYZ
document or XYZ-formatted strings in the KG. The potential future limitation of this
method is that a string length can, in principle, exceed the stringent length limits imposed
by the KG engine for a very large chemical superstructure. An alternative implementation
to this is to instantiate every atom of a MOP or CBU structure and link these atoms to
the intermediate Geometry node, which is then connected to a MOP or CBU instance via
the hasGeometry predicate, as done in the OntoSpecies domain of TWA [46]. However,
doing so for large MOP structures could introduce an overwhelming number of triples and
consequently may slow down KG operations. In this work, we make a compromise be-
tween limiting the number of instantiated triples and avoiding storing long strings directly
in the KG by moving the storage of the geometry data to XYZ files on disk. These files
are served on a web server so that they are accessible on the Internet via URLs, which are
discoverable through hasGeometryFile links to Geometry nodes.

The original assertion component created redundancy in the assignment of Internation-
alised Resource Identifiers (IRIs) for instances of assembly models and GBUs, necessi-
tating postprocessing of aggregate queries. In the new implementation, this instantiation
aspect has been omitted, allowing for simpler traversal of the knowledge graph (KG) with-
out lengthy queries. On a terminological level, our effort to increase interoperability and
overlap between chemical TWA ontologies, particularly with the renewed implementation
of OntoSpecies [46], has facilitated the reuse of general-purpose concepts. As illustrated
in Fig. 2, this reuse covers many shared molecular properties and literature provenance,
thereby simplifying the training of the Marie NLP agent.

3.2 The Architecture of Marie TWA

A QA system for TWA is not only required to map user intents to a machine-readable
format accurately but it must also identify the correct data repository that contains the
requested information. The latter stipulation arises from TWA’s compartmentalisation of
its data into distinct triplestores to allow domain experts to own and manage it indepen-
dently. Earlier versions of Marie struggled with the dynamic nature of TWA, as its seman-
tic parser relied on supervised fine-tuning [59], requiring resource-intensive re-training.
This limitation not only impeded Marie’s scalability but also posed the risk of catastrophic
forgetting [23]. In contrast, this current version of Marie is designed with a more agile and
adaptable architecture, ensuring continued support for existing chemical domains within
TWA while seamlessly extending coverage to new domains, such as OntoMOPs.

To achieve this, we set up a KG-RAG system based on a modular architecture and adapted
few-shot learning methods to it. As depicted in Fig. 3, Marie’s online workflow comprises
three main components: input rewriter, semantic parser, and response generator. The input
rewriter aligns all physical quantities mentioned in the input question to the unit systems in
our knowledge base. The semantic parser jointly generates the logical form of a SPARQL
query, detects surface forms of entities present in the input question, and determines the
triplestore to execute the query. Lastly, the response generator presents the structured
SPARQL response and LLM-generated styled text, accompanied by visualisation of the
3D structures of any invoked chemical entities.
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Figure 3: Architecture of ‘Marie’, comprising one offline indexing stage and three online
stages, namely input rewriting, semantic parsing, and response generation.

Both the quantity recogniser and semantic parser are powered by LLMs prompted with
in-context examples; the exact structure of the prompts is available in the Appendix A.3.
While the LLM prompt for the physical quantity recogniser is fixed, the semantic parser
dynamically adapts to the input question by incorporating only the kdemonstrations most rel-
evant semantic parsing demonstrations and kKG_relations most relevant KG relations. This
approach is key to Marie’s rapid integration with new knowledge domains because only a
small number of semantic parsing demonstrations and KG relations need to be prepared,
unlike the relatively larger training dataset required for supervised fine-tuning. Addi-
tionally, the on-demand retrieval of the most relevant elements for prompt construction
ensures that the prompt is as compact as possible to fit within the context window of
common LLMs while also saving processing time. Relevance is measured by the co-
sine similarity of their Sentence-BERT embeddings [52] using the all-mpnet-base-v2
variant. We use OpenAI’s gpt-4o-mini-2024-07-18 model for in-context learning,
and Redis Community Edition for all retrieval needs.

Marie’s entity linking component mobilises multiple strategies, depending on the entity
class. These include inverted index lookup for entities with well-defined labels, e.g. chem-
ical species with their IUPAC names, molecular formulae, and SMILES strings; semantic
search for entities that represent concepts or categories, e.g. chemical classifications; and
RDF subgraph matching for more complex entities that are conceptually defined by their
relationships with other entities, e.g. assembly models composed of GBUs [29]. Com-
pared to earlier versions, this multi-strategy approach has been refined to accommodate
the diverse and growing range of entities within TWA, particularly the complex entities in
the MOP chemistry domain. In Appendix A.3.3, we provide a summary of entity-linking
strategies and an illustration of RDF subgraph matching.

The response generation component in Marie has been enhanced to provide more com-
prehensive and user-friendly outputs. Marie’s structured output is presented in both JSON
and tabular format, allowing users to view the raw SPARQL response in JSON and the
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formatted version in a table. On top of this, the natural language text generated by an
LLM explains the results in a more accessible manner. A major update in the current ver-
sion is the visualisation of intricate chemical structures like MOPs; this is done using the
library 3Dmol.js [51]. This feature not only broadens the utility of the QA system by mak-
ing complex chemical data more tangible but also enhances the overall user experience,
allowing researchers to engage with the data more interactively.

4 Results and Discussion

By integrating the OntoMOPs knowledge domain and its semantically structured data with
our QA system Marie, we successfully created a functioning KG-RAG system for MOPs-
related research. The information retrieval is thereby not limited to a simple database
lookup; Marie has access to deep domain knowledge of MOPs, including their under-
lying structures, components, and design principles. Fig. 4 illustrates how the modular
architecture of Marie facilitates a powerful KG-RAG system that can reliably traverse
a complex KG. Retrieving different kinds of data, including molecular geometries, en-
ables informative multilayered output: as shown in Fig. 5, factual answers can be given
in natural language combined with integrated 3D visualisations. The adapted architecture
of Marie, utilising in-context prompting coupled with entity recognition techniques, en-
ables shorter development cycles for new RAG systems. Moreover, it allows for iterative
extension beyond their common scope to more niche domains like MOPs. This brings
us a step closer to creating a ‘Digital Research Scientist’ [53] by providing an assistant
with which researchers can have a productive conversation to aid them in the scientific
discovery process [28], as shown in Fig. 6.

Fig. 4 demonstrates the usability of our QA system and the functions of its components
with a rundown of Marie’s handling of an exemplary query in the domain of MOP chem-
istry, “Which chemical building units are used as 2-linear generic building units?”. The
question-answering process follows the general flow chart given in Fig. 3: as no quantities
are detected, unit conversion and input rewriting are not needed in this case, so only the
processes related to semantic parsing and response generation are triggered. The invoca-
tion of a particular GBU in the second part of the question triggers Marie’s entity recogni-
tion and linking module, which identifies the exact IRI that corresponds to the mentioned
entity. In this case, Marie is able to find the instance of GenericBuildingUnit with
the required unique combination of hasModularity and hasPlanarity properties via
RDF subgraph matching. The recognised entity serves as a starting point for traversing the
knowledge graph via SPARQL query. The prediction of such a query is invoked through
the first part of the question, asking for entities of type ChemicalBuildingUnit that are
linked to the previously recognised entity (and thereby its IRI) via a isFunctioningAs
predicate. As the query was valid, it is automatically extended before execution so that
the results returned are not only machine-readable IRIs of appropriate CBUs but also
scientifically meaningful identifiers that can be supplied to the user, such as chemical for-
mulae. The retrieved CBUs and associated data (here, in JSON format) can now be used
to generate tabular overviews or natural language responses. In the case of reticular chem-
istry, lengthy formulae are often not enough for a human user to understand the presented
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user

Which chemical building units are used as 2-linear generic building units?

Marie recognises entity and explores links

Marie predicts and composes a SPARQL query

User gives a search goal and context

Marie queries The World Avatar

Marie

Marie retrieves and visualises knowledge

GenericBuildingUnit_3d71c19a-ab54-4993-8c94-267dcfe41792_1 2

linear

ChemicalBuildingUnit_7c697808-4d9b-45b0-bca5-5738c85898c9_1

[(C28H34N2O2)Mn(CO2)2]Geometry_394ccba6-3d2d-4ee2-a4e2-6bbf67e44f20

TWA

Marie

hasModularity

isFunctioningAs

isFunctioningAs hasCBUFormula

hasPlanarity

Figure 4: Processing steps to respond to a natural language question in the MOP chem-
istry domain as implemented in Marie. These steps are displayed on the Marie
page and can be retraced for every question.

structures intuitively. For this reason, the geometries of certain entity types are retrieved
as well, and structures are visualised in an interactive 3D viewer, giving users a tangible
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means of comprehending the results. Notably, the presentation of Marie’s internal work-
ings, including its entity linking, SPARQL query formulation, and retrieval of node IRIs,
contributes to the system’s interpretability and users’ confidence in the system’s correct-
ness. Sanity checks can also be performed at any step by looking up intermediate values
directly in the RDF store.

Fig. 5 demonstrates how the structure visualisation combined with natural language re-
sponses based on knowledge retrieval can be especially valuable for complex MOP struc-
tures. In the illustrated example, a user enquires about MOPs described in a specific
scientific paper – a typical question a chemist would try to answer when reviewing pub-
lications reporting different types of MOPs. This can be quite an extensive task when
done by hand, especially when trying to compare structural similarity in terms of assem-
bly models and symmetry. Even when consulting a dedicated review or, in this case, a
single work that includes a collection of MOPs and their properties, it is hard to success-
fully keep track of and distinguish these MOPs. Their formulae are often insufficient for
human users to construct a mental image of the MOPs, and although they can be broadly
described in terms of polyhedral shapes, the vast variability in geometric shapes means
that even morphology experts might not be able to immediately conceive of the struc-
tures. By providing interactive visualisation of these structures enabling 3D rotation, our
platform not only aids the understanding of MOP topologies but also enhances the output
provided by Marie by rendering it more intuitive and accessible. Lastly, a summarising
sentence as shown in Fig. 5 can provide instant comprehension, even when the number of
items returned might be much larger for some queries.

user

Marie
TWA

The paper with DOI 10.1038/nchem.803 describes the 
following Metal-Organic Polyhedra (MOPs) and their 
respective assembly models:

1. MOP Formula: [Cu2]12[((C6H3)C((CH3)3)(CO2)2]24
• Assembly Model Name: (4-planar)x12(2-bent)x24
• Polyhedral Shape: Anticuboctahedron
• Symmetry Point Group: D3h

2. MOP Formula: [Cu2]12[(C6H3SO3)(CO2)2]24
• Assembly Model Name: (4-planar)x12(2-bent)x24
• Polyhedral Shape: Anticuboctahedron
• Symmetry Point Group: D3h

3. MOP Formula: [Cu2]12[(C6H3OH)(CO2)2]24
• Assembly Model Name: (4-planar)x12(2-bent)x24
• Polyhedral Shape: Anticuboctahedron
• Symmetry Point Group: D3h

"What MOPs and respective assembly models are 
described in the paper with DOI 10.1038/nchem.803?"

All MOPs share the same assembly model characteristics, 
indicating they belong to a specific structural family 
with the same assembly model configuration and symmetry.

Figure 5: Example of a multilayered response by Marie, combining a natural language
summary of data retrieved from the knowledge graph with 3D visualisation of
chemical structures.
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Marie’s detailed responses and interactive usage enable users to navigate the knowledge
base of MOPs efficiently. This could prove useful for chemists who look to synthesise
MOPs with certain properties and need to probe potential candidates. Fig. 6 illustrates
how this use case can be realised with Marie. Starting with a desired structural shape,
the chemist may use Marie to retrieve all assembly models that exhibit this geometry.
Subsequently, the frequent occurrence of the 5-pyramidal GBU among retrieved assembly
models may prompt the chemist to search for CBUs that can function as such. Marie
identifies two potential CBUs, of which the chemist chooses one to focus on, querying for
MOPs that contain it and checking for their molecular weight, to which Marie responds
with a comprehensive list of materials. The results are not limited to MOPs that have been
previously reported in the literature but also include machine-predicted ones, enabling the
chemist to explore potential synthesis targets thoroughly.

user

Marie

Marie

user

Marie

user

Here are the assembly models with an icosahedral shape:

1. Model Name: (5-pyramidal)x12(3-planar)x20
• Polyhedral Shape: Icosahedron
• Symmetry Point Group: Ih

2. Model Name: (5-pyramidal)x12(2-linear)x30
• Polyhedral Shape: Icosahedron
• Symmetry Point Group: Ih

The chemical building units that function as 5-
pyramidal generic building units include:

1. [V6O11]
2. [WV5O11]

Here are the possible Metal-Organic Polyhedra (MOPs) 
and their molecular weights using the Chemical Building 
Unit (CBU) with the formula [V6O11]:

1. MOP: [V6O11]12[(C6H6)(CO2)3]20
Molecular Weight: 9310.74
Provenance: 10.1002/anie.201900519

2. MOP: [V6O11]12[(C6H6)((C6H4)2)3(CO2)3]20
Molecular Weight: 19053.518
Provenance: 10.1021/jacs.2c03402

3. MOP: [V6O11]12[(C5NH3)2(CO2)2]20
Molecular Weight: 10623.456
Provenance: 10.1021/jacs.2c03402

4. MOP: [V6O11]12[(C6H3Br)(CO2)2]30
Molecular Weight: 13070.053
Provenance: 10.1021/jacs.2c03402

Show me assembly models with icosahedral shape

Which chemical building units are used as 
5-pyramidal generic building units?

Using the CBU with formula [V6O11], what are 
possible MOPs and their molecular weight?

Figure 6: Example of a conversation with Marie via chained questions.
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With such a question chain as illustrated in Fig. 6, users can traverse the knowledge graph
step-by-step, using each response as additional information to base the next question on.
With these three questions, the user was able to explore the KG across the four core
concepts highlighted in Fig. 2: starting at an assembly model (via entity recognition and
query prediction), the user picks a GBU for which Marie provides appropriate CBUs. The
user picks a CBU and asks Marie for metal-organic polyhedra, which Marie returns and
augments with molecular data, provenance information, and structural geometry.

5 Conclusion

This paper presents a QA system tailored for MOP chemistry, backed by the MOP knowl-
edge base of empirically verified and machine-predicted instances enriched with geom-
etry data. Our work focused on overcoming three critical pain points: the difficulty of
navigating complex and domain-specific concepts not fully accessible by general-purpose
LLMs, the challenge of effectively understanding and visualising complex information
and structures in reticular chemistry, and the need to accelerate development cycles for
QA systems by reducing model (re-)training requirements. To address these issues, we
introduced several key innovations, including the integration of MOP data into an exist-
ing KG-integrating QA system – Marie, the incorporation of multilayered output incor-
porating visual, textual and tabular hyperlinked outputs to enhance the interpretation of
complex data, and the adaptation of few-shot learning techniques to optimise the system’s
performance in new domains. Through these advancements, we have demonstrated no-
table improvements in the capability and efficiency of the Marie QA system within the
specialised context of MOPs, paving the way for more effective and accessible scientific
inquiry in this field.

Our work demonstrates the use of natural language to efficiently navigate TWA’s vast
repository of MOPs, which can aid chemists in rapidly screening for synthesis targets
with desired properties. These enhancements broaden the scope of exploration within
the MOP space and provide a visual interface that makes the data more tangible. This
marks a significant step forward in making MOP data more accessible and actionable for
researchers, ultimately supporting ongoing efforts in MOP design and application. Future
efforts will focus on integrating Marie with automated synthesis planning tools to enable
the swift design and optimisation of new MOPs with targeted functionalities [31, 53].

Looking forward, the architecture we have developed for the Marie QA system holds
significant potential for broader applications in scientific research. Enabling the simple
and resourceful creation of KG-RAG models based on a body of knowledge described in
individual papers, collections of papers, or comprehensive scientific databases can help
gather insights from large data sources and drastically increase the accessibility of scien-
tific knowledge. This flexibility allows researchers to quickly adapt the system to emerg-
ing fields or specific niches, democratising access to cutting-edge research and fostering
innovation. Future work could explore the application of this architecture to other spe-
cialised domains, further refining the integration of multilayered outputs and combining
the use of in-context prompting and query prediction with embedding methods to enhance
the efficiency of KG-RAG-based QA systems.
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Nomenclature

BERT Bidirectional Encoder Representations from Transformers

CBU Chemical Building Unit

CCDC Cambridge Crystallographic Data Centre

DOI Digital Object Identifier

GBU Generic Building Unit

IRI Internationalised Resource Identifier

IUPAC International Union of Pure and Applied Chemistry

JSON JavaScript Object Notation

KG Knowledge Graph

LLM Large Language Model

MOP Metal-Organic Polyhedron

NLP Natural Language Processing

QA Question-Answering

RAG Retrieval-Augmented Generation

SMILES Simplified Molecular Input Line Entry System

SPARQL SPARQL Protocol and RDF Query Language

TBox Terminological and Assertion components

TWA The World Avatar
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A Appendix

A.1 Retrieval-augmented generation (RAG)

In RAG systems, LLM generation needs not rely exclusively on facts implicitly encoded
in model weights, but instead can make use of external data sources [34]. Specifically,
the RAG architecture generally comprises two separate components: a retriever and a
reader, also known as generator. The retriever gathers relevant facts from external data
sources and the reader, which can be any text-to-text model, processes the retrieved data
to respond to input questions. As data sources can be updated at a relative low cost and
independently from LLM training, RAG systems are capable of incorporating new data in
their responses without needing to update LLM weights.

The performance of RAG systems is generally sensitive to retrieval success and the abil-
ity of the LLM-reader to process long context windows. Ideally, the retrieved data should
contain all the necessary information to answer a given question (high recall) and mini-
mal amount of irrelevant data (high precision). The simplest data store is a collection of
unstructured text documents. Despite advances in text search methods such as BM25 [54]
and semantic search [9], this type of data repository suffers from relatively low retrieval
recall and precision, which force the reader component to fall back on its internal knowl-
edge. Structured data stores such as knowledge graphs and RDBMS databases can enable
more targeted retrieval, but they require annotation efforts for data instantiation and more
elaborate retrieval methods. With semi-structured data, a mix of retrieval strategies can
be leveraged and retrieval performance can be tuned accordingly.

Of relevance to TWA are retrieval methods for knowledge graphs, which fall under two
broad categories: semantic parsing and information retrieval. Semantic parsing-based
systems convert user queries in natural language to a query language compatible with the
underlying data store, such as SPARQL1, Cypher [13], S-expression [18], KoPL [8], or
formulated as a program in a general-purpose language like Python [44, 61]. Meanwhile,
information retrieval-based systems extract fragments of knowledge graphs by performing
relation classification [27, 63] and vector similarity search [64]. Although the information
retrieval approach is generally simpler to implement, it is unable to capture higher-order
query operations and often suffers from low recall. Meanwhile, the approach of semantic
parsing can capture complex constraints such as numerical comparisons and global-level
operations like min and max, but the development of an accurate semantic parser is not as
straightforward.

Advances in NLP capabilities of LLMs have made the development of semantic parsers
easier, rendering semantic parsing the generally preferred approach. Exemplary methods
include logical query construction as a multi-step search problem [19] and draft-then-
refine, whereby a candidate logical form is first generated via zero-shot [4] or in-context
few-shot learning [10, 37, 44] and is then refined to improve alignment to query intent
and the knowledge base’s schema.

One example of a RAG system for reticular chemistry is MOF Chatbot [26]. However,
it operates on the level of documents and requires LLMs that can handle long context

1https://www.w3.org/TR/sparql11-query/
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windows. It also might not be able to handle multi-hop questions due to the inherent
limitations of document-RAG.

A.2 In-context learning

A technique commonly employed in this usage of LLMs is in-context few-shot learning
[7], whereby LLMs are provided with a few examples of text input-output pairs at test
time, which help align LLM’s behaviour with user expectation. In this section, we pro-
vide an overview of in-context learning, including its definition, variants of its setup, and
factors influencing its performance.

A.2.1 Formulation

Few-shot in-context learning, or in-context learning for short, refers to the ability of a
model to learn to perform tasks when provided with few demonstrations, also known as
examples, and without updating its weights. Formally, given an input text x, text gener-
ation model f , instruction I, and demonstration set D = {(x1,y1), ...,(xk,yk)}, the model
outputs the label y of x as y = f (I,D,x). Although in-context learning was first reported
in the GPT-3 model as part of the line of research that experiments with model scaling [7],
it has been shown that smaller models can also be trained to perform in-context learning
[40].

A.2.2 Variations

Common variations in in-context learning setups differ in the construction of demonstra-
tion set D, output processing, and instruction construction.

A demonstration set can be fixed at inference time, generally for simple tasks that can be
handled with a small number of demonstrations. Retrieval of a demonstration subset is re-
quired for complex tasks that are accompanied by a training set that cannot be reasonably
fit into the context window of an LLM. Even for LLMs with long context windows, in-
discriminate inclusion of demonstrations in LLM prompts might slow down or introduce
noise to inference.

Output processing is any additional treatment applied to LLM output meant to obtain
a better result than direct LLM decoding. For example, in a workflow that employs the
self-consistency check, an LLM is invoked multiple times to obtain a set of n outputs, of
which the majority vote decides the final result [37, 44].

Construction of instruction input into LLMs can be fixed or dynamically adapt to every
input query to enhance semantic parsing quality. For instance, knowledge base relations
that are the most semantically similar to user questions may be inserted into the LLM
prompt to minimise hallucination of non-existent schema elements [44].
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A.3 Marie’s implementation

Unlike standalone large language model (LLM)-based chatbots that tend to hallucinate
scientific facts in low-resource domains, ‘Marie’ provides fact-oriented responses by aug-
menting LLM generation with data retrieved from TWA [32, 47]. Furthermore, ‘Marie’
displays a fine-grained understanding of user intent owing to its semantic parsing com-
ponent, which can accurately represent logical expressions such as ‘boiling point greater
than 100°C’—an ability that embedding-based methods found in conventional vector-
based retrieval-augmented generation (RAG) systems lack.

A.3.1 Input rewriter

Our system relies on in-context learning to detect physical quantities broken down into
magnitudes, units, and quantity types. Refer to Fig. 7 for the structure of the prompt. Unit
conversion is done using the Pint library2, whereby the target unit is looked up based on
the quantity type; if no target unit is registered for a quantity type, the quantity will be
converted to the SI base units.

Instruction:
Your task is to detect physical quantities in natural
language texts based on the examples given. Please
ignore physical quantities with no units and respond
with a single JSON object exactly, or ‘null’ if no
physical quantities are present.

Input-output examples:
“Find all chemical species with boiling point above
50°C.”

{

"template": "Find all chemical species with boiling point

above {}",↪→
"quantities": [

{"type": "boiling_point", "value": 50, "unit": "degC"}

]

}

“What is the solubility of C6H6?”
. . .

Input:
“Find alcohol solvents with a boiling point between
100°C and 120°C.”

Figure 7: LLM prompt for physical quantity detection.

2https://pint.readthedocs.io/en/stable/
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Table 1: Characteristics of questions found in our semantic parsing dataset.

Criterion Variants Example

Answer set
cardinality

single What is the reference zeolite of framework ABW?

multiple Find all steroids with molecular weight around 200 g/mol.

Number of
constraints

single Retrieve all MOPs known to have geometric structure (2-bent)x3(3-
pyramidal)x2.

multiple Find all polymer lubricants with melting point between 200 K and
300 K.

Hop
distance

1 Find transport model of oxygen radical.

2 What are the boiling points of alkenes?

3 Show all transport models of species that can be used as fuels, indi-
cate which reaction mechanisms the data are derived from.

Query
federation

yes Compare thermo models of hydrocarbons across all mechanisms
they appear in.

no Show the optimized geometry of H2 calculated using MP2.

A.3.2 Semantic parser

The semantic parsing dataset are manually crafted to cater to diverse information needs
within the chemical realm of TWA. The examples display varying levels of complexi-
ties, such as single- and multi-hop questions, single- and multi-constraint questions. No-
tably, we include queries that require federation over multiple SPARQL endpoints, such
as “Compare thermo models of hydrocarbons across all mechanisms they appear in.”.
Here, the information of which species are classified as hydrocarbon is located in the
ontospecies triplestore, while thermo model data are stored in the ontokin triplestore.
For a full analysis of question characteristics, see Table 1.

Our prompt template contains three slots for the input query, relevant knowledge base
relations and semantic parsing demonstrations. Both semantic parsing examples, and
knowledge base relations are retrieved on-demand by vector similarity search, with the
user question as the search query. Each semantic parsing demonstration (xi,yi) is rep-
resented by the embedding of the input query, i.e. fS-BERT(xi), while each relation r is
represented by the embedding of its formatted rdfs:label and rdfs:comment at-
tributes, i.e. fS-BERT ◦ fformat(ardfs:label,ardfs:comment). We retrieve kKG_relations = 10 relations
and kdemonstrations = 10 demonstrations without tuning these parameters. See Fig. 8 for an
example of how our prompt is constructed.
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Instruction:
Your task is to translate the input question to an
executable data request based on the provided relations
and semantic parsing examples. Please respond with a
single JSON object exactly.

Relations:
{

"IRI": "os:hasUse",

"comment": "A relation between a species and its uses or

applications."↪→
}

. . .

Input-output examples:
“What are some common usages of aromatic com-
pounds?”

{

"var2cls": { "ChemicalClass": "os:ChemicalClass", "Use":
"os:Use" },↪→

"entity_bindings": { "ChemicalClass": ["aromatic

compound"] },↪→
"triplestore": "ontospecies",

"query": "SELECT DISTINCT ?ChemicalClass ?Use WHERE {

?Species os:hasChemicalClass/rdfs:subClassOf*
?ChemicalClass . ?Species os:hasUse ?Use . }"

↪→
↪→

}

“What chemicals can be used to regulate pH?” => . . .
. . .

Input:
“Find chemicals commonly used as fuels”

Figure 8: LLM prompt for semantic parsing.

A.3.3 Entity linking

Table 2 summarises strategies for entity linking used in Marie, and Fig. 9 illustrates the
entity linking logic for entities of class AssemblyModel.
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Table 2: Summary of entity linking strategies and their corresponding illustrative exam-
ples. Entities to be linked are in bold.

Example

Strategy Input question Entity linking logic

Inverted index
lookup

“What is the charge
of benzene?”

Match against all rdfs:label, skos:altLabel,
IUPAC names, molecular formulae, and SMILES
strings of Species nodes.

Semantic
search

“What chemicals
can be used to
regulate pH?”

Perform semantic search over the labels of all Use
nodes; entity with label “pH regulator” is matched.

RDF subgraph
matching

“Find MOPs with
assembly model (4-
pyramidal)x6(2-
bent)x12?”

Execute RDF graph query that matches any
AssemblyModel entities that are linked to exactly
six units of 4-pyramidal and twelve units of 2-bent
GenericBuildingUnit nodes.

(a)

PREFIX : <https://www.theworldavatar.com/ ⌋
kg/ontomops/>↪→

SELECT DISTINCT ?AM WHERE {

?AM :hasGenericBuildingUnit ?GBU1;

:hasGenericBuildingUnitNumber ?GBUNum1.

?GBU1 :hasModularity 4; :hasPlanarity
"pyramidal".↪→

?GBUNum1 :isNumberOf ?GBU1 ;

:hasUnitNumberValue 6.↪→

?AM :hasGenericBuildingUnit ?GBU2;

:hasGenericBuildingUnitNumber ?GBUNum2.

?GBU2 :hasModularity 2; :hasPlanarity
"bent".↪→

?GBUNum2 :isNumberOf ?GBU2;

:hasUnitNumberValue 12.↪→

FILTER NOT EXISTS {

?AM :hasGenericBuildingUnit ?GBUExclude.

FILTER ( ?GBUExclude NOT IN ( ?GBU1 ,

?GBU2 ) )↪→
}

}

(b)

Figure 9: Illustration of RDF subgraph matching as a strategy for entity linking. (a) The
ABox subgraph that defines the assembly model (4-pyramidal)x6(2-bent)x12.
(b) the SPARQL query to determine the IRI of this entity.
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