
Beyond Connected Digital Twins – from GIS to The World Avatar

Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 – 4273

Beyond Connected Digital Twins – from GIS to
The World Avatar

Yong Ren Tan1, Markus Hofmeister2, Shin Zert Phua1,

George Brownbridge3, Kushagar Rustagi4, Jethro Akroyd1,2,

Sebastian Mosbach1,2, Amit Bhave3, Markus Kraft1,2,3,4

released: December 23, 2024

1 CARES
Cambridge Centre for Advanced
Research and Education in Singapore
1 Create Way
CREATE Tower, #05-05
Singapore, 138602

2 Department of Chemical Engineering
and Biotechnology
University of Cambridge
Philippa Fawcett Drive
Cambridge, CB3 0AS
United Kingdom

3 CMCL
No. 9, Journey Campus
Castle Park
Cambridge
CB3 0AX
United Kingdom

4 CMPG
GRIPS – Gründerinnenzentrum Pirmasens
Delaware Avenue 1–3
66953
Pirmasens
Germany

Preprint No. 332

Keywords: Digital Twins, Knowledge Graphs, The World Avatar, Smart Cities, Decarbonisation



Edited by

CoMo
GROUP

Computational Modelling Group
Department of Chemical Engineering and Biotechnology
University of Cambridge
Philippa Fawcett Drive
Cambridge, CB3 0AS
United Kingdom

E-Mail: mk306@cam.ac.uk
World Wide Web: https://como.ceb.cam.ac.uk/

mailto:mk306@cam.ac.uk
https://como.ceb.cam.ac.uk/


Abstract

This paper introduces The World Avatar (TWA), an open-source knowledge-world
model developed to represent complex, dynamic systems by integrating spatial, tem-
poral, and real-time data. TWA showed capability in addressing critical challenges
in urban management, including resilience, infrastructure planning, and decarbonisa-
tion. We trace the origins and evolution of digital twins, culminating in the develop-
ment of TWA as an ultimate form of knowledge-world model. The unique capability
of TWA to facilitate seamless interaction between human stakeholders and diverse
data sources is highlighted, showcasing its potential to solve urban challenges. This
paper presents select use cases that demonstrate the abilities of TWA to integrate
Geographic Information Systems (GIS) and Building Information Modelling (BIM)
to address key exemplary issues related to climate change mitigation, energy opti-
misation, and strategic infrastructure placement. Our demonstrations revealed that
TWA surpasses the limitations of traditional digital twins by enabling seamless inte-
gration of various data sources and supporting dynamic real-time decision making.
Interfaces such as GIS, BIM, dashboards, mobile applications, and augmented reality
enhance human-machine interactions within TWA. The presented use cases demon-
strate the generation of impactful insights that would not have been possible without
TWA’s holistic integrated approach. As an open community project, TWA offers a
scalable and adaptable path for cities to adopt sustainable and data-driven solutions,
and to develop more resilient and intelligent urban infrastructures. We invite the com-
munity to collaborate and enhance infrastructure development using the innovative
capabilities of TWA.

Highlights
• Integration of geospatial data and knowledge models with dynamic, real-time

insights.

• TWA enables strategic decisions on climate resilience, infrastructure place-
ment, and heat planning.

• Drives detailed analysis of decarbonisation policies, revealing socioeconomic
impacts.
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1 Introduction

Rapid advances in digitalisation are fundamentally transforming the field of urban sur-
vey data, moving away from traditional paper-based maps to highly sophisticated Ge-
ographic Information System (GIS) applications and cutting-edge multidimensional ana-
lytical tools [21, 52]. This transformation not only improves the accuracy and efficiency of
urban planning, but also unlocks new opportunities for geospatial data to drive evidence-
based decision making [50, 54]. Beyond conventional GIS applications, geospatial intel-
ligence is increasingly being used in different areas such as decentralised energy systems
powered by renewable sources, further advancing the goal of creating sustainable and
resilient urban environments [7, 16, 28, 64, 87].

The achievement of such resilience and sustainability in urban planning requires the seam-
less integration of data from multiple domains (e.g. transportation, energy systems, public
health, environmental monitoring, economic development, etc.) to allow holistic, consis-
tent and actionable analyses for the development of integrated and comprehensive solu-
tions [15, 42, 44, 78, 86]. Although GIS platforms play a critical role in managing and
analysing geospatial data, they face challenges in supporting the full range of demands
of modern urban ecosystems. For example, methods for reusing data and knowledge be-
tween projects remain limited [26, 27]. This often requires developers to recreate data
models for each project, increasing costs and time while limiting the ability to comply
with regulations or build on insights from previous GIS-based initiatives.

Organising GIS data to foster cross-disciplinary and cross-sector collaboration presents
additional complexities [41]. Diverse file formats (e.g. KML, CSV, ACS, GeoJSON, TIFF,
GML, etc.), and heterogeneous data structures, including structured and unstructured el-
ements, often lead to inefficiencies in managing and analysing data. Unstructured data
such as unclear tags, notes, and free-text remarks complicates interpretation and risks the
loss of critical information [73]. In addition, implicit relationships between datasets fre-
quently remain unrecognised, limiting the potential for deeper insights and understanding,
a phenomenon often referred to as the “Semantic Gap” [53].

While efforts to integrate and share geospatial data, such as the Federal Geographic Data
Committee, National Spatial Data Infrastructure, ISO 19115 standards, and the US Geo-
logical Survey’s National Map, have advanced the field, existing platforms still face scala-
bility and interoperability limitations [69, 73]. This can result in fragmented systems, with
isolated components that hinder the effective use of urban data. These limitations under-
score the growing need for scalable, interoperable solutions that can enhance data reuse,
streamline collaboration between disciplines, and support the development of smart and
sustainable cities aligned with the principles of environmental, social and governance,
such as sustainable resource management, green infrastructure, and climate resilience,
while ensuring equitable access to housing, transportation, and public services.

A promising approach to overcoming these limitations lies in the adoption of knowledge
graphs (KGs), which offer the ability to connect disparate data and knowledge domains,
fostering truly interoperable systems [9, 22]. KGs, prominently featured in Gartner’s Ar-
tificial Intelligence (AI) hype cycle and recognised as essential enablers in their Emerging
Tech Impact Radar, are becoming central to the development of infrastructures in the fu-
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ture “smart” world (see Figure 1) [56]. By resolving data silos and facilitating seamless
integration, KGs pave the way for the efficient use of urban data across diverse applica-
tions, including digital twins, intelligent systems, and generative AI solutions.

Figure 1: The Gartner Emerging Tech Impact Radar 2024 recognises knowledge graphs
as critical enablers to unlock productivity gains and create “smart” urban en-
vironments. Figure taken from [56].

The dynamic KGs of The World Avatar (TWA) demonstrate how KGs can integrate and
harmonise data from multiple dynamic sources to support advanced analyses in both spa-
tial and temporal dimensions [48, 61]. When analysing the future use of energy systems
in the sustainable city of the future, inter-sector collaboration is needed to maximise syn-
ergies between inter-connected systems. This includes power generation, urban infras-
tructure, and healthcare. These scenarios necessitates the use of KGs in the development
of connected digital twins: distributed collaborative entities that share data and computa-
tional resources. These digital twins have the potential to address complex and multidis-
ciplinary challenges by integrating various domains, providing a powerful framework to
tackle the intricacies of modern and interconnected urban environments [4].

The purpose of this paper is to introduce and demonstrate the capabilities of TWA
in addressing the key challenges faced when using GIS platforms for inter-disciplinary
projects, particularly in relation to fragmentation, interoperability, and reuse of system or
data. TWA offers a transformative approach by providing a unified framework to integrate
GIS data, Building Information Modelling (BIM) data, and other domain-specific datasets
and knowledge (e.g. laws, regulations, etc.). Through its use of dynamic KGs, TWA fa-
cilitates the seamless integration and harmonisation of diverse data sources, enabling the
development of truly interoperable and scalable solutions for smart city planning. This pa-
per presents the initial steps and key applications of TWA in creating smart, resilient urban
environments, with a particular focus on climate change mitigation and adaptation. Using
the advanced technology stack in TWA, we demonstrate how cities can progress toward
more sustainable, efficient, and data-driven planning processes, ultimately contributing to
the development of smart cities and resilient infrastructure in the face of global challenges.
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2 The evolution of digital twins

The concept of digital twin originated in the 1960s at NASA (National Aeronautics and
Space Administration) and gained prominence after the Apollo 13 incident [8, 29]. Ini-
tially, digital twin was developed to support the Apollo programme, where digital compo-
nents were integrated with physical systems to facilitate real-time failure analysis. Today,
NASA and the aerospace community continue to advance digital twin technology with
increased fidelity, capable of simulating physical systems in extreme environments [29],
which is vital for missions such as Artemis to the Moon and Mars, where limited connec-
tivity and minimal human intervention are expected.

In the 2010s, digital twin technology was reintroduced to a wider range of sectors [30–
32, 46]. Digital twin now provide detailed digital representations of assets, processes,
and systems, capturing their current state and behaviour over time under varying con-
ditions and constraints [40]. This capability has successfully addressed numerous real-
world challenges in diverse industries [13, 19, 75, 81]. The global digital twin market is
projected to grow from USD 10.1 billion in 2023 to USD 110.1 billion by 2028, driven
primarily by the increasing demand for digital twin in the healthcare industry and the
increased focus on predictive maintenance [65]. Additionally, 75 percent of large enter-
prises are currently investing in digital twin technology to scale AI-driven solutions [20].

Several organisations have played a pivotal role in the advancement of digital twin tech-
nologies and the promotion of their adoption in various industries. In particular, the Dig-
ital Twin Consortium (digitaltwinconsortium.org), Industrial Digital Twin Associations
(industrialdigitaltwin.org) and the Digital Twin Hub (digitaltwinhub.co.uk) have been at
the forefront of promoting digital twins applications in manufacturing, production and
operations.

However, most digital twin solutions remain isolated and lack interoperability due to
variations in configuration, hardware, and software, often driven by individual funding
sources or proprietary interests [13, 63]. Interoperability, defined as the ability of tools,
systems, and data to exchange and utilise each other’s functionalities [24]—is essential
for reusing data and software assets and addressing cross-domain challenges in a compre-
hensive way [80]. Hence, in this section, we aim to go through the evolution to shaping
the concept of digital twin and beyond towards the concept of TWA. The illustration of
the evolution is as shown in Figure 2.

Data & Models Traditionally, scientists, engineers, and quantitative professionals inte-
grate ‘data and models’ in a largely ad hoc and manual way. Although the ‘models’ can
range from simple, back-of-the-envelope estimates to complex computational models, the
integration process to allow for the creation of digital representations of physical systems
remains inefficient and labour-intensive. Manual and siloed data handling, model formu-
lation, and analysis on spreadsheets (or even on paper) often lead to considerable time
investment and a higher likelihood of human error. Furthermore, this inconsistent and
fragmented approach hinders reproducibility [45], as critical integration steps are often
undocumented or difficult to transfer to others, making it challenging to replicate findings
and impeding progress and collaboration.
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Figure 2: The evolution of digital twins to The World Avatar.

A significant limitation of the ‘data and models’ methodology is the heavy dependence
on specific sets of observational data to estimate model parameters. As most models
in the literature lack provenance information, inconsistencies often arise among models
that attempt to describe the same physical phenomenon. The comparison of different
models is further complicated due to differences in data sets, assumptions, and underlying
methodologies in model development, even when they (aim to or are able to) achieve
similar outcomes.

Furthermore, the integration of traditional ‘data and models’ methodology generally lacks
a systematic feedback mechanism between digital models and the physical systems they
represent. Typically, once a digital model is created, it remains static, without continuous
updates to the digital model based on the change in the physical world, i.e. new exper-
imental data or observations in the real world. Even if all the process conditions for an
augmentation of the classical model can be obtained or updated, they are often performed
manually via human input. This is prone to human error and lacks real-time fidelity. This
absence of a dynamic feedback loop limits the adaptability of the digital model, reducing
its accuracy over time when the physical conditions are altered.

Consequently, traditional approaches to data and the model are increasingly inadequate to
meet the efficiency, automation, and real-time responsiveness required by contemporary
scientific and engineering challenges [17]. While some models have begun to incorporate
real-time data through Application Programming Interfaces (APIs), such as those used
in classical control systems, these APIs often come with limitations, including restricted
real-time data scope and potential vendor lock-ins. Such models that rely partially on
real-time input are sometimes referred to as “digital shadows” [46]. Despite the presence
of real-time input, they inherit many of the same limitations as static models, including
restricted adaptability and limited feedback capabilities, which prevent them from fully
leveraging real-time data for dynamic system updates.
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Digital twin and connected digital twins As we increase complexity in the ‘Data
& Model’ mode of working, we have the emergence of digital twins concept. In this
paradigm, the physical and digital worlds are interconnected in a structured manner. The
fundamental idea is to facilitate an exchange of information, allowing changes in the phys-
ical world to be reflected in the digital world and enabling insights from the digital model
to inform and influence the physical counterpart. As such, in the industry, Model Pre-
dictive Controllers (MPCs) are often regarded as a foundational form of digital twins, as
they analyse past data to generate and adjust control signals in real-time. In the literature,
digital twin has received numerous definitions. The Digital Twin Consortium has defined
digital twin as an integrated data-driven virtual representation of real-world entities and
processes, with synchronised interaction at a specified frequency and fidelity [59].

Meanwhile, based on a review of the literature by Barricelli et al. [13], digital twin is
often related to a virtual replica or description of a physical counterpart, which serves
as an integrated construct that mirrors and simulates the real-world system. The digital
twin ties together and links real-time information from the physical object with its digital
clone, enabling prediction, testing, and analysis of its behaviour and performance under
various conditions. Thelen et al. [75] proposed a five-dimensional framework for defining
digital twin, which is based on the flow of data between physical and virtual systems. This
includes physical system, digital system, update engine, prediction engine, and optimisa-
tion. This framework offers a comprehensive view of the interactions between physical
and digital systems, which includes data exchange, modelling, and actions.

However, sole digital twin implementations are often isolated, resulting in siloed systems
which have many challenges [25, 49, 70]. Naturally, there is a desire to develop connected
digital twins to exchange information, thereby enhancing insights and interventions. Un-
fortunately, this integration is hindered by inconsistent data models. Potential solutions
include adhering to a single vendor or introducing numerous APIs, but both approaches
present the challenge of vendor lock-in and interoperability. Data and model feedback are
essential for influencing physical systems, but disconnected implementations lead to the
development of silos. Ensuring consistent data structures and concepts is crucial to avoid
vendor lock-in and the complexity of managing multiple APIs.

Ontology-based connected digital twins Connected digital twins based on ontologies
use ontologies to enhance data representation [18, 35, 58], The use of ontology-based
connected digital twins is due to the lack of alignment in data structures, accuracy and
interoperability in just the connected digital twins. With ontology-based digital twins, i.e.
incorporating ontological descriptions into the models can overcome the interoperability
issue. In connected digital twins based on ontology, the domain expert is key in the estab-
lishment and selection of ontologies and meta-models based on the input of domain and
ontology knowledge [35]. This is so that all relevant state-of-the-art ontologies are taken
into account. Then, a use case expert will further select relevant parts of the ontologies
based on the requirements of a specific use-case [35]. For example, in the mechanical
industry, ontology-based digital twins can handle heterogeneous data of multiple sources
of mechanical parts with the room for extension due to the use of ontologies in connected
digital twins, which can benefit the product manufacturing industry [12].

Cognitive digital twins, inspired by cognitive science, represent an evolution of ontology-
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based digital twins that leverages advanced technologies, e.g. semantic modelling, cog-
nitive computing, and model-based systems engineering to enhance decision-making and
system optimisation capabilities [23, 82, 90]. The concept first emerged in 2016 [3] as
a digital representation encompassing intelligent capabilities that span all phases of the
life cycle of its physical counterpart [70]. As the name implies, cognitive digital twins
have human-like cognitive functions – selective attention, perception, memory, learning,
and problem solving — which make them autonomous and capable of evolving with their
physical counterparts in all phases of the life cycle [5, 55, 82, 90]. The vision of cognitive
digital twins has a few characteristics: digital twin-based, has cognition capabilities, has
full lifecycle management, has autonomy capabilities, and is able to continuously evolve
with the real system throughout the lifecycle [90]. A formal definition of cognitive dig-
ital twins from Zheng et al. [90] is given as a digital representation of a physical system
that is augmented with certain cognitive capabilities and support to execute autonomous
activities; comprises a set of semantically interlinked digital models related to different
lifecycle phases of the physical system including its subsystems and components; and
evolves continuously with the physical system across the entire lifecycle.

Some notable cognitive digital twins have demonstrated practical benefits of cognitive
digital twins in complex industrial systems, providing increased agility, resilience, and
improved decision-making [57, 92], e.g. COGNITWIN (Cognitive plants through proac-
tive self-learning hybrid digital twins) [2, 6], FACTLOG (Energy-aware Factory Analytics
for Process Industries) [51, 68], and QU4LITY (Digital Reality in Zero Defect Manufac-
turing) [88, 89]. From these projects, cognitive digital twins enabled a unified frame-
work to orchestrate interactions among complex production systems and processes that
involve multiple subsystems and stakeholders from different domains or lifecycle phases,
while also providing solutions for industrial systems that require higher levels of agility,
resilience, reconfigurability, enhanced decision making, and autonomous reaction capa-
bilities [90].

Despite their potential, cognitive digital twins face substantial challenges. Knowledge
management remains a critical hurdle, as automated representation, acquisition, and con-
tinuous updating are essential for sustaining real-time dynamic systems [23, 82, 90]. Al-
though ontologies are present in the cognitive digital twins framework, they are not fully
autonomous; external agents and their adjustments are not inherently represented in the
KG, limiting its ability to ‘self-evolve’ dynamically with real-world changes. Additional
challenges arise in integrating heterogeneous cognitive digital twins due to disparate stan-
dards and protocols, which complicates cross-lifecycle orchestration [23, 82, 90]. Stan-
dardisation across industries is also a significant challenge, with different organisations
adopting varying frameworks, further complicating the implementation of cognitive dig-
ital twins with such inconsistencies [23, 82, 90]. Furthermore, human expertise is indis-
pensable in situations where data alone may be insufficient and the AI-driven decisions
remained a ‘black box’, which poses challenge for existing cognitive digital twins frame-
works to emphasise human-in-the-loop interactions [57, 92]. This is especially crucial in
addressing ‘corner cases’, i.e. scenarios that occur outside of the ‘trained’, normal, typ-
ical or expected range of inputs, outputs, or behaviours of a data structure in dynamic
systems [57, 92].
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The World Avatar (TWA) TWA (www.theworldavatar.io) aspires to advance beyond
the existing digital twins frameworks discussed, i.e. not only enabling semantic descrip-
tions and integrations of physical and digital components but also by creating a fully au-
tonomous, self-evolving system that facilitates continuous information exchange across
these domains. TWA seeks to establish a dynamic, self-contained environment where
semantically-represented computational agents interact with interconnected elements in
the KG to autonomously ingest, process, and respond to incoming data. This will enable
seamless data propagation throughout linked components, integrating advanced cognitive
functions such as goal derivation and adaptive behaviour.

One of the core ambitions of TWA is to implement a hierarchical goal cascade that trans-
lates broad directives into specific actionable subgoals, maintaining a structured response
capability similar to the principles of Life 3.0 [74]. With the intrinsic structural awareness,
TWA can then autonomously reconfigure itself in response to environmental changes, pre-
serving its operational relevance over time.

What sets TWA apart from typical digital twins is its emphasis on dynamism and automa-
tion. This can be achieved with the development of semantic computational agents which
will act as autonomous knowledge components that manage and update the instantiated
data. Any changes introduced by the semantically represented computational agents are
required to be formally ontologised, ensuring consistency within the system, i.e. a closed
system. The inputs and outputs of these agents can be semantically annotated to form
entire chains of dependent information.

A native provenance framework of KG ensures that updates and changes to any individ-
ual data element propagate automatically throughout KG, including updates to all depen-
dent information [10]. This automated information cascading, together with continuously
running input agents that assimilate latest real-world data into the system, allows TWA
to remain up-to-date with and responsive to new information and scenarios, i.e. TWA’s
derived information framework [10]. This self-consistent, platform-independent archi-
tecture of TWA will allow for logical setup across various platforms, supporting both
distributed and local access. In the interest of accessibility, TWA will facilitate different
levels of data access, connecting with distributed servers while accommodating a range
of access permissions, depending on authorisation levels.

To achieve its potential, TWA will need to address some technical challenges such as
federated queries and data privacy concerns, which are currently under development for
optimised security and functionality. The ultimate aim is for TWA to become a universally
adaptable framework with open access points for secure information exchange, establish-
ing a path for advanced autonomous, sustainable, and intelligent systems.

3 The World Avatar

TWA is a general open source dynamic semantic model of world knowledge that aims to
seamlessly integrate data between domains based on a unified knowledge repository [4].
Its key themes — Connect, Query, Imagine, and Control — reflect its comprehensive
capabilities. TWA connects disparate data sources to provide real-time insights, supports
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complex what-if scenarios, and bridges the gap between digital and physical domains
through robust control functions. These capabilities are underpinned by three foundational
technologies: the Semantic Web, Linked Data, and Ontologies, which collectively enable
data to be machine-readable, interoperable, and reusable across applications, domains,
and community boundaries [38].

While a comprehensive discussion of these technologies is beyond the scope of this work,
a brief overview is provided here. The Semantic Web is the extension of the World Wide
Web, enabling data to be machine readable, shared, and reused [14]. Linked Data involves
the structuring of metadata, enabling interlinking between datasets to create a connected
network of information. Ontologies provide formal representations of domain-specific
knowledge, defining relationships between data elements and ensuring coherence when
integrating information from diverse sources [34].

These three components enable the creation, management, and integration of diverse data
sources, forming a cohesive network of entities and relationships that allows for cross-
domain analyses and consistent, versatile insights. Figure 3 illustrates an example of
a KG structure for flood contexts, where interconnected nodes represent concepts and
data instances, and edges define relationships [62]. Unlike typical digital twins, TWA
emphasises automation and dynamism, with semantic computational agents managing
and updating instantiated data. These agents facilitate autonomous information cascades,
where changes to individual data elements are propagated automatically throughout the
KG, ensuring TWA remains current and responsive to evolving conditions.

Figure 3: KGs consist of nodes defining concepts and data instances, and edges denoting
their respective relationships. The World Avatar dynamic KG, furthermore,
includes ontologically represented computational agents as integral part of the
graph, making it inherently dynamic [62].
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KGs are powerful tools that represent complex networks of entities and their interrela-
tionships. In TWA, a dynamic KG serves as the foundation for integrating data from
previously isolated sources, providing a unified view that can be queried and analysed.
This interconnected structure allows for versatile yet consistent cross-domain analyses,
as relationships and dependencies between different data elements are unambiguously
defined.

Designed to be platform-agnostic and open-source, TWA eliminates the risk of vendor
lock-in and promotes a collaborative and transparent development environment. Its scal-
able, decentralised architecture supports secure data access, enabling local hosting and
role-based access control for privacy. TWA’s flexible agents integrate easily with existing
software, facilitating seamless integration of future technologies. This ensures a holis-
tic and evolving worldview accessible to all stakeholders, supporting coordinated and
informed decision-making processes.

The use of ontologies within TWA enables interoperability and supports a variety of vi-
sualisation and analysis tools in the short term. In the long term, TWA preserves domain
expertise by explicitly modelling previously implicit knowledge and experience, thereby
preserving domain expertise. By separating data and knowledge representation from tech-
nical implementation, TWA maintains compatibility with multiple storage solutions, such
as triple stores and relational databases, improving both flexibility and scalability. This
makes TWA an invaluable tool for modern urban planning and management.

In urban planning, TWA integrates and connects data from numerous domains, including
geospatial data. This capability enables public administrations to overcome the inter-
operability challenges inherent in current systems, significantly enhancing the efficiency
and responsiveness of urban planning processes. Figure 4, for example, illustrates how
TWA consolidates interconnected tasks across Geographic Information Systems (GIS),
Building Information Modelling (BIM), and Building Management Systems (BMS) into
a cohesive, integrated framework [66, 67].

The following sections will provide detailed explorations of TWA’s data and knowledge
capabilities, interaction methods, and various use cases.

4 Data and knowledge capabilities

Based on underlying ontologies and semantic agents, TWA can represent detailed geospa-
tial information and stream live data input from the real world. The integration of geospa-
tial geometry data, including both 2D and 3D representations, allows for comprehensive
visualisations and analyses of the built environment. Figure 5, for example, combines
the visualisation of 3D buildings (coloured according to their primary type of use or any
other characteristics, e.g. the value of the property market) with areal polygons of expected
flooding, as well as various readings of environmental sensors (i.e. water level, weather,
rainfall, air quality) [39]. For instance, CityGML (www.ogc.org/standard/citygml/) is a
standard for representing, storing, and exchanging 3D city models, enabling integration
of urban geodata for various applications like urban planning, BIM, and simulations. By
incorporating and representing CityGML within TWA framework, complex building ge-
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Figure 4: Based on knowledge models, TWA allows to combine data of arbitrary spatial
and temporal dimensions; shown for the combination of GIS and BIM data,
further enriched with detailed information about individual devices in BIM [66,
67].

ometries can be effectively represented through output agents of TWA. Beyond visualisa-
tion purposes, these geometries are used for further analyses and simulations, e.g. energy
assessments and the accurate matching of buildings to their respective plots. While pri-
marily focused on Mapbox, TWA also supports Cesium as mapping provider, offering
flexibility in geospatial data visualisation and interaction.

TWA can ingest live-data streams through ‘input agents’ that continuously assimilate lat-
est real-world data, ensuring the system remains current in time. Autonomous semantic
TWA agents provide derived and calculated data, and can be invoked as necessary. Newly
instantiated data can trigger automated updates to information with dependencies, allow-
ing the system to model complex dynamic interdependencies between related information.
This capability provides real-time insights into the current state of the world and the po-
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Figure 5: The World Avatar’s visualization capabilities extend to both 2D and 3D views,
encompassing buildings, land plots, streets, and dynamic data [39].

tential consequences of newly published data. This has been demonstrated through two
case studies: one focusing on the dynamic assessment of flood hazards in the UK [39],
and the other on the assessment of air pollution dispersion associated with district heat
generation in Germany (see Figure 6) [40].

Figure 6: Simulated air pollution dispersion associated with a certain district heat gen-
eration scenario. Based on a variety of available heat sources, TWA can derive
the cost-optimal generator dispatch strategy and simulate the emission time se-
ries and their dispersion for associated air pollutants.
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TWA provides extensible computational capabilities through the seamless integration
of versatile simulation tools. By incorporating around existing modelling suites, e.g.
the City Energy Analyst (CEA, www.cityenergyanalyst.com) or AMS/EPA Regulatory
Model (AERMOD, www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-
recommended-models), established models can be made available semantically (energy
or emission dispersion, respectively). These semantic agents can directly interact with the
underlying KG, allowing them to replace default assumptions built into top-down soft-
ware tools with actual instantiated data, and thereby improving accuracy. For instance,
as shown in Figure 7, the CEA agent utilises building-specific construction characteris-
tics, along with local weather and terrain data, to assess a building’s energy demand and
renewable generation potential [77]. This approach contrasts with the default reliance on
generic assumptions in the native CEA toolkit, leading to more meaningful results.

Figure 7: Schematic depiction of the City Energy Analyst agent workflow, outlining key
interactions with both users and the underlying KG [77].

Agents can be used for “infilling” by simulating missing data required for various analyses
across different domains of interest. TWA ensures aligned knowledge and data represen-
tation based on shared ontologies as well as comprehensive provenance tracking, enabling
consistent analyses across all stakeholders. This is particularly beneficial for various de-
partments within a city or state administration, as it supports role-based access rights,
ensuring that only authorised personnel can access sensitive information.

5 Natural language interface

Traditionally, interacting with complex machine systems has required specialised knowl-
edge of protocols and data query languages, creating a steep learning curve that often de-
ters non-technical users from fully utilising available resources. To address this, TWA of-
fers multiple user-friendly interaction channels, including dashboards for time-series and
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live data visualisation, mobile applications [66, 67], augmented reality goggles [66, 67],
and a chatbot interface [60, 76, 91] powered by large language models (LLMs). These
interfaces are supported by TWA output agents, which bridge the gap between human
users and the system, ensuring accessibility for a wide range of audiences with varying
preferences and needs.

Among these interaction methods, the natural language interface stands out as a particu-
larly attractive option. By combining the capabilities of LLMs [47] with real-time data
from TWA’s extensive KG, the interface provides users with reliable, fact-oriented re-
sponses. This integration enables users to interact with TWA using everyday language,
democratising access to TWA and making its extensive and information-rich KG accessi-
ble to a broader audience.

The core strength of this approach lies in its ability to understand and interpret user intents
accurately by tapping on the capabilities of LLMs. When a user poses a question or
makes a request, the natural language interface comprehends this input and translates it
into precise machine-readable queries. These queries are then processed by TWA, which
retrieves relevant data or computes derived information and presents it back to the user in a
clear and concise manner. This seamless interaction enhances user experience and ensures
that responses are based on the most current and accurate data available [60, 76, 91].

One of the notable advantages of our system is the mitigation of hallucinations, a common
issue observed in stand-alone LLMs, e.g. ChatGPT (www.chatgpt.com). Hallucination
refers to the generation of incorrect or fabricated information, often due to the lack of
real-time data access or contextual understanding. By leveraging TWA’s real-time data
streams and verified KG, our system significantly reduces the likelihood of hallucination.
Users can trust that the responses they receive are grounded in fact and reflect the latest
available information.

In addition to text-based outputs, TWA caters to the diverse needs of GIS and BIM profes-
sionals by offering multi-modal responses. Depending on the nature of the query, TWA
can generate tables, charts, annotated maps, and other visual aids that enhance comprehen-
sion and decision-making (see Figure 8 from www.theworldavatar.io/demos/zaha). This
versatility ensures that information is not only accurate but also tailored to the specific
requirements of surveyors, geo-informatics professionals, and other stakeholders.

6 Use cases

This section highlights several use cases relevant to urban planning, geoinformatics, and
surveying. While these examples are tailored to the scope of this journal, they represent
only a subset of the broader applications enabled by TWA. Beyond urban contexts, the
TWA framework is designed to support a fully connected and automated augmented re-
ality that is generic and adaptable across diverse domains, including chemistry, materials
science, and laboratory automation [11, 43, 60, 66, 67]. Collectively, these use cases serve
as proof-of-concept for TWA’s flexibility and its capability to address complex, interdis-
ciplinary challenges. Additionally, they represent intermediary steps toward realising a
comprehensive augmented reality framework for designing sustainable and resilient cities.
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Figure 8: The World Avatar’s chatbot interface supports a wide range of questions
and response types, including text, tables, graphs, and map views – all di-
rectly queried from the underlying dynamic KG from Zaha by TWA from
www.theworldavatar.io/demos/zaha.

6.1 Resolving the boundary between GIS and BIM

With its underlying knowledge models, TWA can connect GIS and BIM representations
and resolve potential ambiguity between both domains. This capability facilitates “bor-
derless” navigation from the city scale down to individual buildings, as well as installed
devices, and beyond. Additionally, it allows for the seamless integration of BMS data,
ensuring a cohesive and comprehensive approach to managing and analysing spatial and
building information enabling fault prediction and predictive maintenance. Merging these
overlapping, yet currently isolated, domains, i.e. GIS (spatial analysis), BIM (building
life cycle management), and BMS (optimise building operations), TWA enables a more
comprehensive perspective for holistic analyses. For instance, as depicted in Figure 9,
combining GIS’s spatial analysis with BIM’s detailed building models and BMS’s oper-
ational data can facilitate more accurate simulations of energy usage and urban planning
scenarios [40].

6.2 Programmatic plot finder

City administrations face significant challenges in managing land use functions such as
planning, infrastructure development, permit issuance, and compliance monitoring. These
processes often require civil servants to manually search for target land plots by navigating
through various PDFs, online documents, and GIS layers to verify regulatory compliance.
Additionally, the need to coordinate with other departments for approvals and access to
relevant documents adds further delays. The inherent complexity of land use regulation,
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Figure 9: Bridging the boundaries between legacy GIS, BIM, and even BMS applica-
tions. Connecting various representations within one single system supports
“borderless” and unambiguous navigation from city scale down to individual
device characteristics [40].

driven by diverse designations for recreational, residential, economic, and infrastructure
purposes, compounds these issues. Each designation entails unique regulations tailored
to the priorities of stakeholders, such as enhancing quality of life for residential areas
or ensuring safety for utility plots. Moreover, regulations governing adjacent land uses
can influence those of the target plot, further increasing complexity. This cumbersome,
opaque, and manpower-intensive workflow creates frustration among stakeholders and
places a heavy administrative burden on city governments.

To address these challenges, TWA introduces two key innovations. First, TWA ingests
and integrates regulatory documents and GIS data into a dynamic land plot search en-
gine, enabling users to search for plots based on specific criteria. Unlike conventional
plot search engines, which are typically limited to residential and commercial uses, TWA
is designed to meet the broader needs of city administrations, e.g. regulatory compliance,
infrastructure management, real-time data integration, public engagement, disaster pre-
paredness, future scalability, etc. This implementation significantly improves efficiency,
potentially replacing over one million manual verifications of regulatory documents annu-
ally [72]. Figure 10(a) depicts the integration of data and knowledge into a target network
of connected constraints, and Figure 10(b) showcasing an example search result through
the search interface by TWA for residential plots with commercial use on the first storey,
spanning areas of 500 to 1200 square meters.

The second innovation involves the representation of institutional knowledge in a compre-
hensive, extensible knowledge model that integrates geospatial and temporal dimensions.
Using formal ontologies, TWA semantically represents and connects land use regulations
with other domains, creating a robust compliance-checking framework. This approach
supports dynamic and automated procedures that go beyond simple plot searching. For
example, by linking 3D building data with land plot and regulatory information, the se-
mantic agents of TWA can autonomously verify whether existing buildings comply with
permissible gross floor area requirements for specific plots. The dynamic nature of these
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(a) Schematic depiction of connecting underlying data.

(b) Search results for residential with commercial at first storey plots of 500 to 1200 sqm.

Figure 10: The World Avatar’s land plot search engine.

agents ensures that updates to regulations, building specifications, or plot data automati-
cally trigger workflows and propagate changes to web visualisations. This capability al-
lows compliance procedures to remain accurate and current, reflecting regulatory changes
in real time.

These advancements position TWA in a crucial role in the transformation of urban plan-
ning and land use management. Its novel methods align with similar approaches found in
the literature [33, 71, 79], further validating its effectiveness in addressing the complex-
ities of modern land use regulation. By reducing administrative burdens and improving
transparency, TWA supports more efficient and integrated decision-making processes for
city administrations.
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6.3 Strategic placement of infrastructure

City planners strive to ensure that their cities provide sufficient and equitable access to
relevant infrastructure and amenities for all residents. TWA can support these tasks by
assessing the coverage by amenities using isochrones of various time frames and transport
modes (i.e. walking, cycling, driving) [61]. By comparing various placement alternatives
for new infrastructure regarding population demographics distribution, existing amenities
coverage, and land use regulations, TWA can streamline the planning process of urban
planners. This involves identifying areas with poor accessibility and validating improved
coverage due to new infrastructure placements, as illustrated in Figure 11, in which the
accessibility to pharmacies is used as an example. The ability to measure and optimise the
coverage of amenities is invaluable for applications such as planning emergency services.
By determining the optimal locations for critical infrastructure (e.g. fire stations, police
stations, emergency medical services), planners can minimise response times and enhance
public safety.

Figure 11: Infrastructure planning through the multi-factor considerations where red
grids represent population distribution, yellow polygons represent allowable
zones for pharmacies to be built, blue represents 15-minute walk isochrone
from pharmacies [61].
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Moreover, integrating population demographic attributes (e.g. age, gender) enables plan-
ners to assess the effectiveness of emergency services in reaching specific groups, such as
the elderly and children. This is particularly useful for applications like placing mobile
vaccination units or calculating the number of elderly individuals served by each phar-
macy. In addition to healthcare services and emergency services, TWA also assesses the
accessibility coverage of other essential amenities, including educational facilities, retail
shops, recreational facilities, banks, etc. This can be used to improve the development of
a “15-minute city”, where residents can meet their daily needs (e.g. work, home, food,
health, education, culture, sports, and leisure) within 15 minutes of walking or cycling
from their residence.

6.4 Climate Resilience Demonstrator

The role of TWA in enabling interconnected, data-driven analyses opens new possibilities
for addressing complex, interdisciplinary challenges. The Climate Resilience Demon-
strator (CReDo) serves as a prime example of how TWA can be leveraged to enhance
the resilience of critical network infrastructure systems. By utilising a system-of-systems
approach in TWA, vulnerabilities in the systems can be identified through the predic-
tion of potential cascading failures across interconnected networks, such as energy, water,
and telecommunications. Extensive ontologies are the key to ensure data consistency
across the diverse domains and integrating data from multiple stakeholders in TWA. With
high-quality input data, and high-fidelity real-time data maintained in TWA, this holistic
perspective enables stakeholders to optimise system resilience at minimal cost, moving
beyond unaffordable and often inadequate infrastructure hardening strategies [1, 37].

CReDo integrates data on asset types, modelled operational states, locations, and their
logical connections (see Figure 12). The data is ontologised to enable interoperability be-
tween the infrastructure details with flood simulation results under various climate change
scenarios. Using simulated flood maps based on historical and projected data, CReDo pro-
vides insights into network interdependencies and failure propagation. For example, the
platform models how flood-induced failures can propagate both within and across net-
works, offering both tactical and strategic planning dimensions. This dual perspective
enables the simultaneous management of immediate risks and long-term preparedness.

While the implementation in CReDo focuses on the UK, the extensibility of TWA al-
lows for broader applications. For instance, TWA could support sea-level rise vulner-
ability assessments in regions like Singapore, incorporating diverse factors such as in-
frastructural, economic, cultural, and planning constraints. By combining geospatial and
non-geospatial data into a unified representation, TWA facilitates integrated analyses that
account for land use regulations, population distributions, and existing infrastructure.

With TWA, urban planners can evaluate multiple conflicting constraints, avoiding high-
value developments in vulnerable areas while adhering to regulatory and land-use policies.
Figure 13 illustrates how combining domains such as population distribution, designated
land use, building types, and sea-level rise vulnerability zones enhances multi-perspective
decision-making. This approach with TWA helps minimise risks while maximising the
effectiveness of urban development plans.
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Figure 12: The World Avatar enables strategic planning and scenario analyses to under-
stand potential failure propagation of network infrastructure due to flooding,
i.e., whether and how a potential failure could cascade (1) across networks
and (2) out of the geographic scope of the flooding (in red). Screenshot taken
from CReDO.

Figure 13: The combination of population distribution, designated land use, building
types, vulnerable area from sea level rise enables a multi-perspective visu-
alisation, enhancing integrated analysis.
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6.5 Optimise evacuation routing

In the event of disaster, such as a flood, specialised vehicles such as helicopters, boats,
ambulances, fire trucks, and high-water trucks are limited resources. However, rapid,
efficient, and specialised assistance is crucial, especially for aging and vulnerable demo-
graphics. Loss of local medical services combined with restricted accessibility to people
at risk are factors that will drastically increase the mortality rate. Hence, advanced pre-
paredness and anticipatory actions are required to provide a quicker and more effective
response during a sudden disaster.

One way to achieve this is by integrating flood depth level dynamically into routing cal-
culations to account for distinct operational speeds, allowable water wading depth, and
deployment times. TWA supports this approach by semantically connecting all necessary
data, enabling the effective coordination and allocation of vehicles based on rescue loca-
tions and current flooding conditions. Figure 14 illustrates this approach, showcasing the
selection of various routes circumventing flooded areas for vehicles with three different
wading depths, leading to a swift and efficient emergency response [61].

Figure 14: Optimal route selection under flooded conditions where orange, green, and
purple lines represent the fastest paths taken by vehicles with 10cm, 30cm,
and 90cm wading depth capabilities, respectively [61].
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6.6 Support municipal heat planning

The City Energy Analyst (CEA) agent has been developed within TWA to offer versatile
energy simulation capabilities, enabling precise assessment of current energy demands
and estimations of renewable energy potential required to developed future energy plan-
ning scenarios. By integrating the CEA simulation engine into TWA, previous generic
built-in assumptions can be replaced with actual and up-to-date building properties as
well as environmental conditions to enhance simulation accuracy [77].

In 2023, the German Bundestag passed the Heat Planning Act that makes municipal heat
planning mandatory and aims at climate-neutral heat supply by 2045 [36]. There are four
phases to the municipal heat planning: inventory analysis, potential analysis, development
of heating plans, and development of an implementation strategy. Granular heat density
and renewable generation potential maps are essential for the analysis of municipal heat
planning; however, publicly available datasets tend to be rather coarse or might even lack
relevant information. The CEA agent can provide both granular, building-level heating
demand and solar potential estimates to complement potentially missing actual data for
required analyses.

For a mid-sized town in Germany, the CEA agent has been demonstrated to be applicable
in supporting municipal heating planning, especially from inventory analysis to the de-
velopment of heating plans [77]. For both the inventory and potential analyses, the CEA
agent provides granular heat and potential maps for the quick identification of areas of
high heating demand or high solar energy potential (see Figure 15). The data provided
by the CEA agent on the building heating demand and the heat generation from solar
collectors are also available as time series, and can be aggregated across different spatial
and time scales. The aggregation capability allows policy makers to better understand the
variation of heating demand or solar potential across different areas such as districts or
postcode zones.

Figure 15: Building-resolved heating demand and solar generation potential simulated
by the City Energy Analyst agent, leverage detailed building geometries as
well as local weather and terrain data [77].
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For the development of heating plans, the data provided by the CEA agent enables the
planning of installing on-site solar collectors to offset heating demand. We analysed the
installation of solar collectors with and without thermal heat storage and derived the net
present value (NPV) of the two scenarios. We found that around 69 percent of the build-
ings investigated in the city has positive NPV after 25 years (typical lifetime of the inves-
tigated solar systems). Based on the NPV results, and the heat density map, we were able
to recommend the central area of the city for the prioritised installation of solar collectors
due to the high density of buildings with high NPV and high heating demand in that area.

6.7 Analysis of social inequality from heat pumps

In scenarios such as evaluating the socioeconomic impact of large-scale adoption of heat
pumps in the domestic heating sector of the UK, TWA has also been useful in linking
data from different agencies to gain insight [85]. As illustrated in Figure 16, with TWA
enabled integrated geospatial data analysis, detailed analysis of how household fuel con-
sumption, fuel poverty, climate data, and future energy prices affect regional inequalities
can be performed. This is crucial to understanding how different regions respond to de-
carbonisation efforts.

Figure 16: Inequality index for electricity and gas at 2019 and 2022 prices. Each bar
represents a single Lower Layer Super Output Areas region. Regions are ar-
ranged in the order of increasing proportion of fuel poverty (2019, left to
right). The maps (top) show the 10,000 regions with the lowest (left) and
highest (right) proportions of fuel poverty (2019). Figure adapted from [85].
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The adoption of heat pumps could have varied results depending on the electricity-to-gas
price ratio. For example, under the 2019 fuel prices, regions with high fuel poverty, par-
ticularly in northern England, show increased inequality, while the 2022 prices reduce this
inequality. The analysis emphasises the sensitivity of inequality to the price ratio, illus-
trating how TWA can provide critical insights into the unintended social consequences of
decarbonisation policies, which would be difficult to capture with traditional models. This
comprehensive data integration enables policymakers to predict future trends and adjust
strategies accordingly.

Further inspection of the results from Figure 16 revealed that the inequality index re-
sponded to the socioeconomic vulnerability of regions to price changes, with northern
regions, where fuel poverty is more prevalent, being disproportionately affected. The
dynamic modelling capabilities of TWA allow for scenario analyses that highlight po-
tential risks, such as how a return to the 2019 price levels could exacerbate inequality.
Conversely, the 2022 price scenario indicates that under the right conditions, heat pump
adoption can help reduce both carbon emissions and inequality. Policymakers can lever-
age these insights to formulate financial support mechanisms, such as subsidies targeted
at regions with high fuel poverty, to mitigate the adverse effects of fluctuating fuel prices.
The data-driven decision-making enabled by TWA ensures that decarbonisation efforts
are aligned with social equity goals, addressing both environmental sustainability and
regional disparities.

6.8 Power system decarbonisation with small modular reactor de-
ployment

TWA’s dynamic and interoperable structure is designed to be reusable across various sec-
tors, enabling more informed decision-making in clean energy transitions. In the cur-
rent case study, TWA facilitated the integration and modelling of large, complex datasets
relevant to energy systems (e.g. infrastructure data, power system models, and socio-
demographic attributes), especially in efforts to assess clean energy trajectories and enable
the smooth transition towards decarbonised power system.

One notable application of this approach is outlined in a study on decarbonising the
UK power system [84]. TWA populated with power plant data and administrative re-
gion details, allows computational agents to automate tasks like data processing, scenario
analysis, and simulation. This has enabled the exploration of how different deployment
strategies for Small Modular Reactors (SMRs) could facilitate the UK’s energy transition.
The computational agents not only simulated the effects of SMRs but also performed
geospatial queries to assess their proximity to population centers and overall network ef-
ficiency [83, 84].

Another key study explored the role of SMRs in the UK’s energy transition under dif-
ferent carbon tax scenarios, focusing on minimising transmission losses and population
risk [83]. The use of SMRs presents an opportunity to complement renewable energy
sources like wind and solar, offering consistent base-load power while reducing green-
house gas emissions. Analysis using TWA highlights the importance of optimising SMR
placement to strike a balance between cost, risk, and energy efficiency, enabling the de-
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sign of effective clean energy policies that align with national decarbonisation goals, as
shown in Figure 17 [83, 84].

Figure 17: Balancing between cost, risk, and energy efficiency, enabling the design of
effective clean energy policies. Figure reprinted from Xie et al. [83].

This integration of TWA’s real-time data processing and dynamic modelling capabilities
marks a significant step forward in achieving a sustainable, decarbonised power grid.
The use of KG facilitates a multi-dimensional understanding of complex power systems,
ensuring that solutions like SMRs are deployed optimally within future low-carbon energy
networks.

7 Discussion and future work

TWA represents a significant advancement in integrating dynamic, multi-domain data to
address complex challenges in urban systems. Through the demonstration of typical GIS
use cases, this paper highlights the capabilities of TWA to enable fine-grained, real-time
analyses of urban phenomena. However, it is important to emphasise that these use cases
are not isolated applications; rather, they are integral components of a larger distributed
TWA system. TWA functions as a unified and interconnected entity, but its distributed
nature ensures scalability and adaptability across various contexts and domains.

The focus on GIS use cases in this paper reflects the target readership, which is predom-
inantly within the GIS community. These examples demonstrate the capacity of TWA to
address critical challenges in urban planning and management, such as integrating data
from BMS and other fine-grained city-level representations. However, the potential appli-
cations of TWA extend far beyond GIS, with aggregated values and connections becoming
increasingly significant as the framework evolves. Establishing these connections will rely
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on a detailed, fine-grained representation of cities, ensuring that diverse domains, such as
infrastructure, energy systems, and social data, are seamlessly integrated.

At its core, TWA operates at the logical level, abstracting complexities related to hardware
and software dependencies. Although this paper demonstrates specific technical imple-
mentations using standard technologies, such as Docker stacks, these are merely tools
to support the logical framework. The ultimate aim is to achieve hardware and software
independence, allowing users to interact with TWA without having to consider underly-
ing technical requirements. This abstraction is essential for accessibility and scalability,
enabling broader adoption across industries and disciplines. The ontologisation of hard-
ware and software dependencies further strengthens this vision, ensuring that technical
implementation details are modular and adaptable.

Do note that this paper focusses on demonstrating the foundational capabilities of TWA,
the ongoing development of TWA is geared toward simplification the engagement and
usage of TWA for different domains. Future work will focus on expanding the use cases,
improving interoperability, and addressing challenges related to data security, federated
queries, and dynamic updates. Ultimately, TWA seeks to enable a comprehensive, robust,
and user-friendly means of modelling, analysing, and optimising interconnected systems,
with far-reaching implications for public health, urban sustainability, resilience, and inno-
vation.

8 Conclusion

The World Avatar (TWA) represents a significant step forward in the building of a world
model, offering a dynamic and scalable framework that integrates data across multiple
domains. Using knowledge graphs to unify GIS, BIM, and other environmental mod-
els, TWA enables more comprehensive urban planning and management. Its ability to
seamlessly connect disparate data sources and provide real-time analysis empowers stake-
holders to make informed decisions on critical issues such as climate resilience, energy
optimisation, and infrastructure placement.

One of TWA’s core strengths lies in its open-source, platform-agnostic design, which en-
sures accessibility for a wide range of users, from local authorities to research institutions.
The modularity and flexibility of the system allow the integration of various data sources,
fostering collaboration between sectors, and enabling cities of all sizes to adopt cutting-
edge planning tools without prohibitive costs. The use cases provided in the current paper
such as municipal heat planning and small modular reactor deployment, demonstrate the
capacity of TWA in addressing complex challenges in energy, sustainability, and social
equity.

As development continues, challenges remain in refining user interfaces, enhancing data
security, and managing the complexity of integrating large-scale data systems. However,
the potential of TWA to transform urban management is clear, with ongoing collaborations
offering valuable insights to refine the platform. By continuing to engage stakeholders and
expand its capabilities, TWA is well-positioned to become an essential tool for building
smarter, more resilient cities in the face of emerging global challenges.
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