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Abstract

This paper presents a knowledge graph-based approach for the dynamic control of
a district heating network with integrated emission dispersion modelling. We pro-
pose an interoperable and extensible implementation to forecast the anticipated heat
demand of a municipal heating network, minimise associated total generation cost
based on a set of available heat sources, and couple it with dispersion modelling of
corresponding emissions to provide automatic insights into air quality implications
of various heat sourcing strategies. We achieve cross-domain insights in the nexus
of energy and air quality via a set of developed ontologies and autonomous software
agents, which can be chained together via the World Avatar dynamic knowledge
graph to resemble the behaviour of complex systems. Furthermore, we have inte-
grated the City Energy Analyst into this ecosystem to provide building-level insights
into energy demand and generation potential to foster strategic analyses and sce-
nario planning. Utilising actual instantiated building and weather data, this enhanced
bottom-up version addresses inherent assumptions in the official software release, fa-
cilitating a more data-driven approach. All use cases are implemented for a mid-size
town in Germany as a proof-of-concept, and a unified visualisation interface is pro-
vided, allowing for the examination of 3D buildings alongside their corresponding
energy demand and supply time series, as well as emission dispersion data. With
this work, we outline the potential of Semantic Web technologies to connect digital
twins for holistic energy modelling in smart cities, thereby addressing the increasing
complexity of interconnected energy systems.

Highlights
• Implement knowledge graph native model predictive control-style optimisa-

tion.

• Connect energy and air quality domain with integrated emission dispersion
modelling.

• Embed general forecasting capabilities within a dynamic knowledge graph.

• Develop domain ontologies to represent district heating operations data.
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1 Introduction

Climate change arguably poses humanity’s most formidable challenge, impacting almost
every aspect of our lives including public health, food safety, water supply, biodiversity,
and increasing the frequency of extreme weather events [49, 55]. Recognising greenhouse
gas emissions as key driver of climate change, the transition towards a low-carbon future
is widely acknowledged as a crucial imperative [11, 41]. There is consensus that the
decarbonisation of the energy sector requires significant changes, such as increased sector-
coupling and greater penetration of distributed renewable resources like wind and solar as
well as the development of intelligent infrastructure and modelling approaches [3, 41, 94].
Solutions for this inherently interdisciplinary transition require holistic consideration of
social, economic, environmental, and engineering factors across various geographic and
temporal scales [87].

Digital technologies like advanced metering infrastructure, big data, machine learning,
and the internet of things are increasingly recognised for facilitating cost-effective de-
carbonisation [69]. Orchestrating these technologies into cyber-physical systems yields
synergies that enhance energy and industrial efficiency, optimising both economic feasi-
bility and environmental impact [55]. The application of cyber-physical systems in en-
ergy research has grown significantly in recent years, often in the form of digital twins
to explore optimal solutions for real-world problems through the study of fully digital
replicas [105]. A digital twin can be understood as a realistic digital representation of as-
sets, processes, or entire systems describing their current state and how they behave over
time and under different conditions and constraints, offering augmented opportunities for
interaction with the physical counterpart, including analyses, optimisation, simulation or
active feedback into the physical twin [1]. Digital twins have effectively addressed nu-
merous real-world problems [114]; however, the majority remains isolated and lacks in-
teroperability due to differences in set-up, hardware or software, often stemming from
individual funding initiatives or business interests [91]. Interoperability is defined as the
ability of tools, systems, and data to understand and use each other’s functionalities, which
is essential to foster reusability and address cross-domain questions comprehensively and
collectively [110]. Challenges arise in sectors like energy with legacy structures, tradi-
tional silo-thinking, and the use of proprietary instead of open standards [94]. For future
energy systems, however, effective cooperation and coordination beyond the ’traditional’
energy sector are essential to maximise synergies of increasingly intertwined systems, en-
compassing the built environment, transportation, water, etc. But a holistic optimisation
framework requires more than just data assimilation. Instead, interoperability between
tools and models will be necessary [55, 89, 94].

Integrated energy system modelling represents a promising direction for digital twins in
the energy transition [114]. Although it is anticipated that energy modelling will transition
from single-institution models to distributed, collaborative approaches, allowing multiple
domain experts to contribute [108], integrating data across domains and resolving ambi-
guities while ensuring openness and transparency remains a widespread problem [88, 89].
Data are highly heterogeneous in both format and semantics, as different sources (i.e., sen-
sors, texts, web, etc.) use individual formats (e.g., tabular data, geospatial data, natural
language, etc.) [92]. Moreover, a lack of semantic interoperability can arise when cer-
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tain information is only known implicitly by domain experts or when the same concept
might possess different meanings in different domains; however, an aligned understand-
ing and transparency of models, assumptions, and data is pivotal [55]. O’Dwyer et al. [84]
demonstrate a sustainable energy management system to manage the flow of data between
machine learning models, cities and districts; however a general and scalable solution for
the construction of cross-domain models remains unrealised, impeding the ability to re-
produce results as well as to adapt and combine existing models [88]. A potential solution
to this theme of problems can be generalised in the form of connected digital twins — dis-
tributed collaborative entities that share data and computational capabilities to efficiently
and effectively address complex questions [1]. As the value of providing meaningful
decision-making support relies on the availability, accessibility, and compatibility of data
and computational capabilities [105], a comprehensive energy digital twin for a smart city,
for instance, must integrate diverse data formats, existing applications, and even other dig-
ital twins to enable holistic analyses across different levels of aggregation, from individual
building to city scale.

The World Avatar project [1] creates an ecosystem that enables the transparent integration
of heterogeneous models and data, improving interoperability between various formats
and software [99]. It leverages technologies from the Semantic Web stack to create a dis-
tributed dynamic knowledge graph, which by design is well suited to effectively address
cross-domain questions. The World Avatar combines ontologies (i.e., data definitions)
with actual data instances and computational agents, which provide the dynamic nature of
the knowledge graph. These autonomous agents act as executable knowledge components
and accomplish tasks such as updating the graph to ensure it remains current in time, simu-
lating systems, or transmitting responses to the physical world. As all data are instantiated
based on aligned modular ontologies with explicit descriptions of notions for different do-
mains, all agents share a common world view and ensure self-consistent analyses. Agents
can represent black box, grey box or physics-based models and also wrap around existing
software or third party application programming interface (APIs) to make them available
semantically. With an initial focus on chemical and process engineering [33, 96, 117], the
World Avatar has evolved into a versatile tool to address decarbonisation questions in the
energy sector [6, 27, 99, 100], overcome cross-domain interoperability challenges in smart
cities and city planning [20, 52], and improve the resilience of complex systems [28].
Akroyd et al. [1] showed how a dynamic general-purpose knowledge graph-based on on-
tologies and autonomous semantic agents is ideally suited to realising connected digital
twins, e.g., to control real-world assets, perform cross-domain simulations, or conducting
geospatial and scenario analyses.

The purpose of this paper is to provide an example of dynamic knowledge graph capabil-
ities to realise connected digital twins, illustrated using the World Avatar as versatile tool
to provide a holistic energy perspective for smart cities: We present a proof-of-concept
for a model predictive control-style optimisation of heat generation in a district heating
network, executed entirely within the knowledge graph. Optimisation outputs are directly
used for integrated emission dispersion modelling to understand the impact of various
heat generation and sourcing strategies on air pollution. Beyond this dynamic and supply-
side-focused optimisation, the City Energy Analyst is made available as part of the World
Avatar to provide strategic demand-side insights into buildings’ energy profiles and own
generation potentials based on latest instantiated building stock data. With this we pro-
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vide concrete implementation examples that showcase capabilities previously introduced
conceptually by Akroyd et al. [1].

The structure of this paper is as follows: Section 2 provides an overview of the current en-
ergy modelling landscape for cities, together with its challenges, as well as an introduction
to the World Avatar dynamic knowledge graph; section 3 details newly developed ontolo-
gies and software capabilities to address identified interoperability gaps using the World
Avatar; section 4 highlights the results from the connected digital twin implementation;
and section 5 concludes the work.

2 Background

This section provides an overview of previous research and the status quo in several fields
relevant to this work, namely energy system and dispersion modelling as well as prevalent
interoperability gaps within the energy domain. Each topic is introduced independently,
following conventional community practices; however, these silos are resolved in the next
chapter using a dynamic knowledge graph approach. The World Avatar dynamic knowl-
edge graph, which enables this integration, is also introduced here, alongside existing and
reused ontology efforts.

2.1 Energy system modelling for smart cities

Energy systems are increasingly intertwined and demand a comprehensive approach to
drive overall resource efficiency and decrease emissions [3, 11]. Moreover, they are
closely tied to numerous key challenges of the twenty-first century, including security,
affordability, and resilience of energy supply, as well as political, socio-economic, and
environmental concerns, ranging from local air and water pollution to, most importantly,
climate change and global sustainability [87, 113]. Initially focused on security of sup-
ply and costs, energy system modelling has pivoted to also study transition pathways and
strategies for a carbon-neutral future. An integrated energy system approach is imper-
ative to provide an efficient, low-carbon, and reliable energy supply, consolidating the
planning and scheduling of diverse energy carriers, such as electricity, gas, heating, and
cooling [114].

In this context, the established methods to model energy systems are being challenged by
several emerging themes, as extensively and consistently discussed in the literature [41,
49, 108, 113]: increased sector-coupling and interactions between energy vectors (i.e.,
electricity, natural gas, hydrogen, heating and cooling) at various scales (e.g., from multi-
national, national, community scale down to building level); rising flexibility of demand
driven by new technologies such as smart meters and load shifting; enhanced integra-
tion of intermittent renewable resources, with the resulting need for more temporal detail;
distributed generation and an increasing share of prosumers, with the resulting need for
higher spatial granularity. To address the increased complexity of multi-carrier energy
systems, modelling frameworks need to balance uncertainty and transparency while opti-
mising across scales, considering multiple spatial and temporal resolutions [41, 87].
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A strong push towards open and transparent simulation and planning tools has been ob-
served in recent years as vital building blocks for modelling approaches that bridge these
scales and domains [49, 114]. While it has been demonstrated that open-source mod-
elling frameworks and data platforms are often on par with proprietary or commercial
models [41], impediments to interoperability persist due to technical and market barriers.
Diverse requirements and limitations (e.g., regional scope) of individual tools, coupled
with variations in applicability to specific problems and scenarios, pose a real challenge in
integrating data and models [66, 114]. To address these challenges, semantic approaches
have been proposed, such as by Li and Hong [66], who developed a framework for grid-
interactive efficient buildings which are responsive to grid pricing or carbon signals to
achieve energy and carbon neutrality.

2.2 The City Energy Analyst

The City Energy Analyst (CEA) is an established open-source computational framework
for urban energy system analysis [42], offering insights into buildings’ overall energy
demand, heating and cooling requirements, etc. as well as on-site renewable energy
generation potentials. It has a global user base and has been applied to numerous case
studies across the world. In Switzerland, CEA has been used to study the impact of sea-
sonal effects [75] and air infiltration rates [45] on building energy demands, as well as for
the analysis of photovoltaic (PV) system adoption [71]. Moreover, CEA has been used
to assess the energetic implications of proposed master plans for residential districts in
Almere [76], the Netherlands, as well as the analysis of building integrated PV installa-
tions in Singapore [46].

The CEA toolkit comes with built-in databases, containing numerous assumptions re-
quired to run simulations. The databases include information about building properties
(i.e., OpenStreetMap (OSM) [83] building footprint, height and building usage) as well
as environmental data such as weather and terrain [42]. Although this approach enables
users to conduct simulations without the requirement for specific input data, the built-in
assumptions may not always be representative. Prioritising broad applicability over the in-
tegration of actual building-specific characteristics is a deliberate design choice, inherent
to many top-down energy assessment tools.

2.3 Interoperability gaps in current energy modelling landscape

Interoperability is the ability of different systems, devices, or applications to exchange
and use information effectively and collectively. While technical interoperability within
the energy sector is quite well-established, there is a need for more informational, func-
tional, and business interoperability [92]. Despite numerous initiatives involving both
academia and industry, many interoperability gaps remain, such as coordination issues
between relevant stakeholders and efforts as well as a lack of practical tools for assessing
interoperability capabilities of individual platform solutions [57, 94]. Fragmented plat-
forms dominate the energy modelling landscape, with no unified approach to harmonise
data models or knowledge across all domains of the value chain [29]. This poses chal-
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lenges for data integration, model validation, scenario comparisons, policy evaluation,
and often results in biased or subpar overall system performance, as decision-makers lack
valuable information to assess certain cross-domain trade-offs or co-benefits of different
scenarios.

Just to name a few examples, cross-domain interoperability would allow for the assess-
ment of life cycle environmental impacts of diverse building design alternatives, including
materials, appliances, building orientation, shape, etc. Furthermore, the effects of extreme
weather events, such as heat waves, floods, storms, and earthquakes, on both the built en-
vironment and smart grid infrastructure can be studies, aiding in identifying potential
weak points and enhancing resilience [28]. Moreover, emission analyses could extend
beyond the established assessment of overall amounts to explore detailed dispersion pat-
terns of individual air pollutants as the result of different energy provision strategies, by
incorporating location and weather data.

Current interoperability gaps can be addressed by adopting standards and frameworks to
facilitate communication and collaboration among different modelling tools, stakehold-
ers, and platforms or enhancing information exchange using common data models, on-
tologies, and Semantic Web technologies [94]. While the first approach remains focused
on the broader energy domain (e.g., by incorporating solar panels, battery storage, heat
pumps, boilers and electric vehicles) [29], the latter one is in principle capable to connect
seamlessly with any related domain, such as transport, agriculture and industrial produc-
tion [57]. Eibeck et al. [33] discuss an initial Semantic Web-based attempt to estimate
dispersion profiles for emissions of a power plant considering the effects of surround-
ing buildings and real-time weather conditions. In this work, we expand upon this study
and integrate dispersion modelling into a dynamic energy generation dispatch problem to
showcase interoperability between the energy and air quality domain.

2.4 Dispersion modelling

Dispersion models can broadly be categorised as box models, Gaussian plume mod-
els, or advanced physical models (e.g., computational fluid dynamics, Eulerian or La-
grangian) [35, 53, 62, 82]. Box models utilise a rectangular control volume to estimate
the average concentrations of pollutants. They assume that all air in the box is well-mixed
and pollutants can enter and exit the box freely. Due to their simplicity, they can accom-
modate detailed chemical reactions. Gaussian plume models assume that the pollutant
concentrations follow a Gaussian distribution. Advanced models typically solve detailed
transport equations to conserve mass and momentum, and are usually more computation-
ally expensive.

Due to their popularity and ability to incorporate a wide variety of input types [35, 53],
e.g., complex terrains and buildings in the dispersion pathway, a Gaussian plume model
is selected for our work. Box models are dismissed due to their over-simplicity and since
advanced chemical interactions are neglected due to high computational cost. More pre-
cisely, AERMOD [21], a steady-state Gaussian plume model, also deployed by the United
States Environmental Protection Agency to assess air pollution, is chosen for this study.
The key deciding factors are the availability of the source code, good documentation, the
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support for multiple emission sources, and achievable input data requirements (i.e., to
ensure the availability of all required inputs to run the model).

AERMOD has been applied and validated for a wide variety of conditions: flat and com-
plex terrains [17, 18, 85], various time scales [119] and emission sources, such as a cement
complex [101] or a coal-fired power plant [74], and many more available in the literature.
To account for the effect of buildings on the dispersion of air pollutants, AERMOD incor-
porates a validated downwash model to capture relevant turbulence effects [86].

2.5 The World Avatar dynamic knowledge graph

As introduced by Akroyd et al. [1], the World Avatar (TWA) project aims to create a
digital ‘avatar’ of the world. This vision of an all-encompassing world model is currently
worked towards using Semantic Web technology, following a general-purpose dynamic
knowledge graph (dKG) approach [69].

The Semantic Web [13] is an extension of the World Wide Web with the aim of cre-
ating an interoperable "web of data", making web content machine-readable by adding
structured metadata. It builds on the use of ontologies and the Resource Description
Framework (RDF) [63] for representing such metadata. An ontology represents a con-
ceptual descriptions of a specific domain by providing formal and explicit definitions of
relevant concepts, properties, and relationships between them. Using strict formalisa-
tion, ontologies ease unambiguous data sharing and reuse, and enable automation, rea-
soning, knowledge discovery as well as inference of implicit information. Representing
data using ontologies results in the formation of directed graphs, known as knowledge
graphs (KGs), where nodes define concepts, instances, or data, and edges denote their
relationships (i.e., properties). KGs provide extensible data structures well suited to rep-
resent arbitrarily structured data. Using Internationalised Resource Identifiers (IRIs), KG
resources can be uniquely identified, allowing data to be decentralised, i.e., distributed
across the web, while maintaining unambiguous links between entities. The approach of
Linked Data [12, 14] supports FAIR data principles [110] and amplifies the discoverabil-
ity of information. Additionally, concepts or relationships can ultimately be traced back
to their original definitions. Knowledge graphs can be stored in graph databases, such
as RDF4J or Blazegraph [15]. Graph databases are designed to host RDF data, and thus
KGs, in the form of subject-predicate-object triples and can be queried and updated using
SPARQL [4], a query language designed to interact with semantic information.

Beyond the capabilities of conventional KGs, such as DBpedia or Wikidata, TWA also in-
cludes semantically annotated computational capabilities, so-called agents, which operate
upon instantiated entities and make the graph inherently dynamic. Computational agents
within TWA can be seen as executable knowledge components and perform diverse tasks,
such as ingesting real-world data, performing calculations, updating the graph, or trans-
mitting responses to the physical world. By introducing agents as integrated part of the
KG, computational capabilities also become discoverable [117]. This means the graph
not only provides information about its data, but also reveals potential actions.

Additionally, the derived information framework (DIF) [8] has been proposed as KG-
native solution to track data dependencies and manage information flow within TWA. Of-
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fering granular data provenance on an instance level, it provides details about the origin
of any information and the agent responsible for its acquisition. By representing intrin-
sic dependencies within the KG, the DIF enables autonomous data handling, allowing
information to cascade automatically across the graph.

The combination of ontological descriptions, instantiated data, and autonomous agents
makes TWA a powerful, extensible, and FAIR-compliant system for representing and
reasoning about complex domains of knowledge. As everything is connected (i.e., data,
concepts, and agents), the design creates an interoperable ecosystem of connected digital
twins (i.e., tools and services) to describe the behaviour of complex systems of systems.
TWA is modular and scalable by design, supporting both decentralisation and interop-
erability across heterogeneous data sources and software. The knowledge-model based
approach aims to provide a technology agnostic and distributed architecture based on
open standards and protocols to ensure secure data sharing for both private and public
data [28].

2.6 Existing ontologies

This section briefly summarises existing ontologies relevant to this work: Rijgersberg
et al. [98] have developed the meanwhile widely adopted ontology of units of mea-
sure (OM) to represent (measured) quantities, their numerical values, and associated units.
For geospatial data, the Open Geospatial Consortium has published several encoding stan-
dards, including GeoSPARQL [80] and CityGML [81]. GeoSPARQL forms the de-facto
standard for representing and querying geospatial data on the Semantic Web and provides
an extension to the SPARQL query language for processing geospatial data. The prevalent
approach for handling CityGML data involves storing them in the 3DCityDB database as
relational tables without explicit semantics; however, ontology-based data access, as ad-
vocated by Botoeva et al. [16] and implemented via tools like Ontop [115], can be used
to access such structured data as virtual knowledge graph compliant to underlying ontolo-
gies. Ding et al. [30] have proposed a set of declarative mappings to expose 3DCityDB
buildings as CityGML ontology concepts, making instantiated buildings available as KG
and supporting key GeoSPARQL functions.

Time series data Numerous ontologies have been proposed to represent temporal con-
cepts and/or time dependent measurements of (physical) quantities: The time ontology
proposed by the World Wide Web Consortium (W3C) [22] provides a vocabulary for
describing temporal properties of resources in the world or the web (e.g., instants, inter-
vals, durations). 4D ontologies, like the UK Government’s Information Exchange Stan-
dard 4 [106], have emerged to honour the fact that certain relationships may only apply to
a certain locations and/or phase of an entity and develop over time. While these ontolo-
gies offer precise representations in spacetime, simpler alternatives exist for more specific
use cases.

The Semantic Sensor Network ontology [59, 112] introduces concepts and relationships to
capture the observation time associated with any measurement, reusing concepts from the
W3C time ontology. The Smart Applications REFerence ontology (SAREF) [37] adopts
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a comparable approach by associating timestamps with entities (e.g., a measurement),
again reusing temporal entities from the W3C time ontology. However, both approaches
focus on a semantically rich representation of measurements and their corresponding ob-
servation times rather than an efficient storage of actual time series data. Representing
large amounts of time series data as individual triples with full semantic markup can lead
to performance issues due to the sheer volume of (partially redundant) statements. This
gap has been addressed by a domain extension to SAREF [38], acknowledging that mea-
surements can be either single values or dedicated time series. However, it mandates the
arrangement of data in a successive and equally spaced sequence of points in time.

District heating networks Becker et al. [9] have proposed a utility network applica-
tion domain extension for CityGML, introducing concepts for modelling diverse networks
in 3D city models, including electricity, freshwater, wastewater, gas, or telecommunica-
tion networks. The data model incorporates detailed 3D topography, topology, and func-
tional properties, enabling comprehensive geospatial surveys such as collision analysis
and leakage detection. Xu and Cai [116] expanded upon this work, incorporating addi-
tional concepts from domain glossaries through natural language processing to create a
broad domain ontology for utility infrastructure with high interoperability. The ontology
captures both network level (e.g., links between components and their functions in the
overall system) and component specific information (e.g., material, elevation, geometry),
and focuses on water network related terms for an initial proof-of-concept. Similarly, El-
Diraby and Osman [34] proposed an ontology, offering a hierarchical structure of core
concepts in the utility infrastructure domain across various media.

The feasibility to automate the optimal coordination of district energy resources using on-
tologies has been studied by Hippolyte et al. [48]. The work introduces a socio-technical
ontology to conceptualise district heating networks, incorporating buildings, sensing and
actuation infrastructure, and stakeholders. Web-based services for real-time decision-
making have been outlined, positioning the ontology as an intermediary layer between
high-level energy management applications and local devices. Li et al. [67] further ex-
tended this work to demonstrate its efficacy for real-time optimal control of heat gen-
eration, employing a three-layer framework: a sensing and actuation layer, an interop-
erability layer with semantic data models, and an intelligence layer. Although offering
valuable conceptualisations of various district heating network related aspects, reusability
is limited as none of these ontologies is publicly available.

Dispersion data Eibeck et al. [33] and Zhou et al. [117] presented an initial KG-based
attempt to model air pollution dispersion based on power plant emissions. Their work
links ontologies from different domains such as chemical plants, weather, and buildings
to create dispersion profiles in both Berlin and The Hague. However, no GeoSPARQL
is used to represent geospatial features, which makes it difficult to extend their work to
different locations in the world. Additionally, the authors do not provide methodologies
for storing pollution concentration raster data, an essential aspect we aim to address in
this work. Metral et al. [72] attempted to link air quality models and CityGML data,
focusing mainly on representing air quality models using ontologies. As we aim to add
semantic information to data generated by dispersion simulations to foster cross-domain
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interoperability between models, their work cannot be directly reused.

Dispersion simulations produce pollutant concentration as a function of coordinates, form-
ing a type of raster data. A number of studies have investigated semantic representation
of raster data, but none of them proposed a viable solution [35, 53, 62, 82]. Moreover,
the current version of GeoSPARQL [80] only supports vector and not raster data types.
It is highly challenging to support raster data in RDF format, as each raster cell is asso-
ciated with one or more values. Materialising one triple per raster value requires unnec-
essary high storage and will result in very poor scalability [10, 43]. There is a promising
GeoSPARQL extension called GeoLD [2] which was developed to support raster data;
however, the system is in the early development stage and, hence, not considered here.
Furthermore, it currently does not support aggregation functions (e.g., sum, min, max)
which are essential for processing raster data. Lastly, GeoLD requires Rasdaman [93], a
specialised database for raster data which is currently not supported by TWA.

Building energy data and master planning Reinisch et al. [95] have proposed an on-
tology to represent home energy consumption; however, multiple essential concepts for
urban building energy modelling, such as heating demand or solar potential, are absent.
Cuenca et al. [23] have proposed an ontology to represent energy management informa-
tion in an attempt to unify previous ontologies for energy performance and contextual
data, such as building and infrastructure information; however, the ontology lacks suf-
ficient level of detail to describe solar technologies as often required in urban building
energy modelling. Moreover, the ontology is not publicly available. Cuenca et al. [24]
have proposed another ontology for the energy management domain, including common
vocabularies for relevant sub-domains. Despite capturing key energy equipment concepts,
the ontology lacks important solar device definitions.

Chadzynski et al. [19] have proposed an ontology based on CityGML 2.0 to represent ur-
ban environments, such as transportation networks and buildings. The ontology includes
classes to describe buildings in different levels of detail, from simple footprints to detailed
architectural models, as defined by CityGML. The ontology captures relevant concepts
for city master planning, but lacks a building energy modelling extension. Similarly, both
energy ontologies [23, 24] lack interoperability with master planning.

3 Implementation

The goal of developing connected digital twins is to operationalise actual real-world data.
To harness the advantages of the Semantic Web and Linked Data, it is necessary to de-
velop ontologies as foundational knowledge models. Existing ontologies, as introduced
earlier, are reused where applicable, and new ontologies are proposed for identified gaps.
This approach honours existing domain expertise and ensures compatibility with estab-
lished community understanding, while satisfying requirements of the provided data and
target use case. The proposed agents exchange data and interact with one another via
instantiated ontologies in the dKG, promoting a shared understanding among all actors.
In contrast to conventional API-based methods, the explicit semantics of ontologically
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defined communication establish a uniform, public, and well-controlled framework for
expressing and interpreting data. This eliminates ambiguity in data representation, allow-
ing agents to navigate and comprehend information consistently.

3.1 Ontologies

Within TWA, ontologies serve as modular components to represent and connect diverse
concepts across domains. The used ontologies are supposed to offer a balanced approach
between generality and specificity tailored to the target use case. After reviewing the lit-
erature, it became clear that prior ontology efforts are either not publicly available (see
section 2.6) or do not adequately address the required level of detail in the domain of
interest. Consequently, four novel ontologies are proposed to represent time series data
as well as relevant aspects of district heating network operations, emission dispersion
and the building energy domain. While developing these ontologies, concepts of avail-
able ontologies have been reused to the extend possible to comply with the Linked Data
paradigm.

We adopt a bottom-up approach in developing our ontologies, with a primary focus on
representing real district heating operations data from our industrial partner, Stadtwerke
Pirmasens, and capturing outputs from the City Energy Analyst. However, a sufficient
level of generality is maintained to foster reusability beyond the target use case. The
consistency of all proposed ontologies has been verified using the HermiT reasoner [25].
For a formal representation of the ontologies using description logic [7], please refer to
Appendix A.6. The codified [109] versions are publicly accessible on GitHub in OWL
format.

3.1.1 Time series ontology

This work elaborates an initial approach for a light-weight time series ontology [51],
primarily to include a description of forecasts and how they have been derived. The key
structure of the ontology is provided in Fig. 1.

While SAREF’s extension [38] acknowledges that any entity (e.g., measurement) could
be represented as either single value or time series, our approach, furthermore, consid-
ers cases where entities also have associated time series forecasts. Hence, the domain
of hasTimeSeries and hasForecast remains unconstrained. The Forecast concept
is the central entity to represent any forecast and is associated with both a TimeSeries
concept holding the actual predicted values and further meta data about the forecast to
ensure proper provenance information. This includes the ForecastingModel used to
derive the prediction, the length of the historical time series used for training and/or scal-
ing, and the forecast horizon. Concepts from OM and the W3C time ontology are used
to represent corresponding units and temporal entities, such as the interval of the fore-
cast horizon. The ForecastingModel concept captures key aspects of how forecasts are
calculated, including the used training TimeSeries to fit the model, potential covariates
to be used when creating a forecast, and whether the data shall be scaled when creating
predictions (i.e., as required by many neural methods). Previously fitted models can be
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Figure 1: Time series ontology. The OntoTimeSeries ontology provides a light-weight
representation for time series data within TWA. It further includes a general
description of related forecasting concepts. All referenced namespaces are de-
clared in Appendix A.1.

incorporated by specifying resolvable URLs for both the saved model and checkpoint files
(e.g., pickled pytorch models). Otherwise, default forecast models can be specified using a
certain label. Further details on how the forecasting agent uses the ontology are provided
in section 3.2.1 below. In contrast to the SAREF extension [38], no explicit restriction
on the frequency of the represented data is imposed; however, a Frequency concept is
included, along with a resampleData property, indicating whether a time series needs
to be resampled when creating a forecast (e.g., to comply with frequency requirements of
certain forecasting techniques).

3.1.2 District heating network ontology

This ontology aims to conceptualise district heating network operations and has been
designed based on actual operations data from Stadtwerke Pirmasens. While previous
works often focus on rather static topology and 3D representations [34, 116], the shared
information does not contain detailed geo-references to describe the grid structure (e.g.,
pipes, connectors). Moreover, the operations of the grid are rather dynamic, including
customers’ heat demand and flow temperature profiles. As the work by Li et al. [67] is
not publicly available for direct reuse, this novel ontology is proposed to capture essen-
tial aspects of district heating operations, leveraging some design choices from previous
works.

The three key concepts in the ontology are HeatingNetwork, HeatProvider, and
HeatGenerator. The HeatingNetwork connects HeatProvider with Consumer in-
stances to satisfy their HeatDemand (i.e., instantiated as time series). While the location
of an individual Consumer presently remains undisclosed and is, hence, not explicitly
modelled, any HeatProvider is connected to the grid via a GridConnection with ob-
servable properties. These properties include pressure as well as flow and return om:Tem-
perature, and provide insights into the temperature spread at these locations and, con-
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Figure 2: Coupled heating network and dispersion modelling ontology. The OntoHeat-
Network ontology conceptualises the operations of a district heating network,
while OntoDispersion provides a semantic description of air pollutant emission
dispersion. Both ontologies can be linked through shared building instances to
support geospatial emission analyses of district heating operations. All refer-
enced namespaces are declared in Appendix A.1.

sequently, corresponding feed-in heat amounts.

While the HeatProvider concept is kept general and represents any entity supply-
ing heat to the grid, two subclasses relevant to the given use case are defined, namely
MunicipalUtility and IncinerationPlant. The geospatial location of a Heat-
Provider is not explicitly modelled as part of this ontology. Instead, geo-references are
established via links to corresponding building instances with detailed geometrical and
geospatial information as part of the derivation markup as described in section 3.3 and
illustrated in Fig. 2. This approach keeps the OntoHeatNetwork ontology completely free
of geospatial information, by reusing the capabilities of existing ontologies.

An IncinerationPlant provides a certain ProvidedHeatAmount to the grid based
on a supply contract with the grid operator (for details see Fig. 22 in the Appendix). A
MunicipalUtility company can own multiple HeatGenerators, including conven-
tional HeatBoilers and combined heat and power (CHP) GasTurbines. Each Heat-
Generator is associated with a GeneratedHeatAmount and a corresponding Consumed-
GasAmount concept, according to the generator’s efficiency and used ocp:FuelType.
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Relevant costs are represented on both an individual generator and operator level. As
CO2 emissions directly influence operating expenses (OPEX) due to emission certificate
cost, they are modelled explicitly as part of OntoHeatNetwork, while other air pollutants
are conceptualised as part of OntoDispersion. Similarly, the electricity co-generation of
a GasTurbine is captured, since respective revenue offsets heat generation OPEX. A
detailed overview of the hierarchical cost structure and its components is provided in
Fig. 21 in the Appendix. An Availability concept is introduced to account for periods
of plant shut-downs or required idle times of individual generators. Most properties will
be instantiated as time series to account for dynamic conditions (i.e., fluctuating prices,
time-dependent heat demand) and to align with the hourly-resolved optimisation strategy
applied by the municipal utility operator in the target use case.

3.1.3 Dispersion ontology

This light-weight ontology aims to provide semantic markup for dispersion simulation
data to create machine-readable inputs and outputs for agents and to foster cross-domain
interoperability between various models. The key concepts of OntoDispersion are located
in the bottom of Fig. 2, including their intended link to the OntoHeatNetwork ontology.

A geospatial Scope concept specifies the simulation domain for the dispersion calculation
and is defined as a subclass of geo:Feature to enable various geospatial querying and
processing capabilities via GeoSPARQL. By using concepts from GeoSPARQL, the on-
tology is designed to be as robust as possible and easily extendable to different areas. Ver-
satile geospatial capabilities are essential to query which StaticPointSources, emit-
ting one or more pollutant types, are located within a certain scope of interest. Static-
PointSources link to corresponding building instances, which describe the actual ge-
ometries of the emission outlets. Each instance of DispersionOutput holds informa-
tion on a set of raster data (DispersionRaster) for any arbitrary combination of pol-
lutant type (PollutantID) and simulated height (z). In this work, we do not attempt to
materialise raster data as RDF triples. Instead, any DispersionRaster instance simply
provides the metadata (e.g., name of a GeoTIFF file) of a raster stored in an associated
PostGIS database. Thus, an agent querying for dispersion raster data would obtain the
metadata via a SPARQL query and perform a subsequent SQL query to obtain the under-
lying raster values.

3.1.4 Building energy ontology

Energy considerations are important in master planning, and buildings are the main user
of urban energy. There are ontologies for urban building energy modelling [23, 24, 95]
and master planning [19], but none really links the two fields. This ontology aims to
bridge this gap to facilitate information exchange between these closely related domains.

An extract of the proposed OntoUBEMMP ontology is shown in Fig. 3. The key concepts
are dabgeo:Building, EnergyConsumption and EnergySupply, while the core build-
ing concept is shared with the OntoBuiltEnv ontology to facilitate interoperability be-
tween this energy-specific perspective and a more comprehensive building description
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Figure 3: Urban Building Energy Modelling and Master Planning ontology. The On-
toUBEMMP ontology represents key concepts in the nexus of urban energy
modelling and master planning, including building energy demands and solar
potentials. All referenced namespaces are declared in Appendix A.1.

provided by OntoBuiltEnv. An EnergyConsumption concept is linked to its applicable
building instance via a consumesEnergy relationship to represent a building’s energy
demand. Renewable energy sources should be taken into consideration during master
planning to help offset EnergyConsumption. For example, a building can be equipped
with SolarDevices on its bs:RoofFacade and its bs:WallFacade. For buildings
with suitable areas for solar generation (i.e., hasSolarSuitableArea links to a non-
zero area), the hasTheoreticalEnergyProduction relationship connects relevant ar-
eas with their potential EnergySupply via the respective SolarDevice. There are dif-
ferent subclasses of EnergySupply, namely ElectricitySupply and HeatSupply,
depending on the type of SolarDevice that could be installed. Installation of PVPanel
will generate ElectricitySupply, whereas SolarCollector will generate Heat-
Supply and the hybrid PVTCollector will generate both. The ontology uses Onto-
TimeSeries to instantiate EnergyConsumption and EnergySupply concepts as well as
their subclasses to account for variable demand patterns or changing weather conditions.

3.2 Agents

Several agents have been developed to operationalise the proposed ontologies. An overview
of all involved agents is provided in Fig. 4 and described below. All agents are packaged
as individual Docker services to foster distributed and platform-agnostic deployment (e.g.,
remotely in the cloud, as implemented for this use case).

We were given actual historical operations data for a municipal district heating network of
a midsize German town, Pirmasens. Based on this data, the district heating grid is instan-
tiated per OntoHeatNetwork, using 2020 historical time series data. Utilising the instan-
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Figure 4: Agent interplay. Sequence diagram of all agents involved in the heat generation
optimisation with integrated emission dispersion modelling (depicted for case
of already instantiated derivation markups).

tiated time series data, a forecasting agent can be used to predict any quantity, including
the community’s HeatDemand. A district heating optimisation agent then generates a
cost-optimised generator dispatch strategy to satisfy the forecast HeatDemand, consider-
ing both internal heat generators and sourcing from an external waste incineration plant.
The respective amounts of burned natural gas as well as heat from waste incineration
are then converted by an emission estimation agent into corresponding NOx, PM2.5, and
PM10 emission streams. Together with the associated location information, these emission
streams form inputs to an dispersion modelling agent to create a steady-state emission dis-
persion map using actual historical wind data. All agents are implemented as derivation
agents based on the DIF [8] and communicate directly via the dKG to ensure unambiguous
provenance tracking of how a certain output has been derived and which inputs it depends
on. We introduce an optimisation trigger agent as coordinating link between a user and
the automated forecasting, optimisation, and subsequent emission dispersion simulation.

While the dynamic load forecasting and supply-side optimisation use actual historical

18



data, the City Energy Analyst agent can provide general insights into the energy per-
formance of buildings in case historical data is not available: utilising building-specific
construction characteristics and weather data, various energy demand and generation pro-
files can be estimated. This complementary perspective provides valuable insights into
building-resolved heat demands, e.g., relevant to analyse any potential extension of the
district heating grid.

3.2.1 Forecasting agent

This agent provides generic forecasting capabilities as part of TWA: it can retrieve in-
stantiated time series, predict future values, and instantiate respective forecasts back into
the dKG using the OntoTimeSeries ontology. Based on the Python library Darts [47], the
agent supports forecasting via a wide range of methods, ranging from classical white box
models (e.g., established statistical methods such as autoregressive integrated moving-
average (ARIMA) models and its derivatives) to black box machine learning techniques
(e.g., state-of-the-art transformer models), as well as grey box approaches such as Face-
book’s Prophet [104].

The required input instances to derive any forecast comprise the instance associated with
the time series to predict, a ts:ForecastingModel describing the prediction model to
use, the target ts:Frequency of the forecast to be created, a time:Interval denoting
the target forecast horizon, and a time:Duration denoting the historical data length
to use for fitting and/or scaling of the historical time series data prior to creating the
forecast. New forecasts are instantiated with relevant metadata, such as input and output
time intervals as well as potentially applicable unit, as depicted in Fig. 1.

The agent supports most forecasting models from Darts by instantiating a ts:Fore-
castingModel instance with the corresponding properties. If an instance is labelled
"Prophet", it utilises Prophet [104] for forecasting, which represents the default model for
arbitrary time series. Predictions with and without covariates are supported, depending
on whether ts:hasCovariate relationships are present for the target model instance.
Additionally, custom models can be trained and stored within TWA for future forecast-
ing. This involves creating custom ts:ForecastingModel instances with specific prop-
erties, such as resolvable URLs for saved model files, relevant covariates, and scaling
parameters. Thus, the agent offers both out-of-the-box forecasting capabilities and the
flexibility to leverage custom fine-tuned models as needed.

The agent can be used to predict any arbitrary time series and is deployed to forecast
heat demand and grid temperatures of a district heating network, using fine-tuned tem-
poral fusion transformer (TFT) [68] models in the context of the current work. Further
implementation details as well as a comparison of the trained TFTs and previously fitted
SARIMAX models [50] are provided in Appendix A.4.1. Compared to many other deep
learning methods, attention-based TFTs provide better explainability and interpretability
thanks to insights into underlying attention weights, which outline what a model focuses
on. For instance, it can be observed that the heat demand model shows a clear daily sea-
sonal pattern, with increased attention to the last few hours, which aligns well with prior
expectations (see Fig. 23 in the Appendix).
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3.2.2 District heating optimisation agent

This agent leverages a previously developed optimisation routine to minimise total heat
generation cost for a district heating provider [50]. The optimisation follows a hierarchical
approach based on a merit-order principle to determine the OPEX-optimised short-term
heat generation mix for a system comprised of multiple gas boilers, a CHP gas turbine as
well as external heat sourcing from a waste incineration plant. While the effectiveness of
the solution has been demonstrated elsewhere based on real-world operations data [50],
this agent integrates the existing model semantically into TWA.

While the initial optimisation relied on internally created SARIMAX predictions for key
inputs, this agent increases modularity and fosters a micro-service architecture enabled
through task-oriented connected digital twins by using externally instantiated forecasts.
The agent requires five ts:Forecast and one time:Interval instance to perform an
optimisation. The interval specifies the optimisation horizon, describing the period for
which to derive the optimal dispatch strategy, while the five forecasts denote the fore-
casted oh:HeatDemand and four om:Temperatures (i.e., representing flow and return
temperatures at the waste incineration and municipal heating plant) over this period, re-
spectively. Besides these key inputs, further information are queried from the dKG dur-
ing agent operation. Upon successful optimisation, the following results are instanti-
ated back into the dKG according to the OntoHeatNet ontology: a oh:ProvidedHeat-
Amount instance describing the heat amount to be sourced from the waste incineration
plant; an oh:GeneratedHeatAmount and oh:ConsumedGasAmount instance for each
gas boiler and CHP gas turbine denoting the heat amount to be provided and correspond-
ing gas amount to be consumed by each heat generator, respectively; an oh:CoGen-
ElectricityAmount instance describing the amount of co-generated electricity by the
gas turbine while providing the required amount of heat; an oh:Availability instance
for each heat provider indicating its anticipated availability in the coming time steps. All
optimisation outputs are instantiated as ts:Forecast instances for the respective con-
cepts to not interfere with instantiated actual historical data. Newly created optimisation
outputs automatically overwrite previously instantiated ones.

Upon first invocation of the agent, historical gas consumption, heat generation, and (if
applicable) electricity generation data is queried to fit data-driven generator specific gas
consumption and co-generation models to be used during the optimisation. These models
will be reused for all subsequent optimisation requests. The results of the agent imple-
mentation have been verified against previous optimisation results [50].

3.2.3 Emission estimation agent

This agent estimates the emission rates associated with heat production from burning nat-
ural gas (i.e., in gas boilers or the CHP gas turbine) or waste (i.e., in the waste incineration
plant). For the time being, the assessment is limited to NOx, PM2.5, and PM10 as the major
airborne emissions [39, 40, 111] and relies on literature-based emission factors instead of
detailed combustion models for this proof-of-concept and due to the absence of detailed
information on the waste incineration plant internals.

Implemented as a derivation agent, all required inputs need to be available in the KG. This
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includes one dh:ProvidedHeatAmount or, alternatively, one or more dh:Consumed-
GasAmounts representing the (optimised) time series for externally sourced heat or con-
sumed gas amounts, respectively. A collection of consumed gas amounts resembles mul-
tiple gas boilers and gas turbines housed within the same building, emitting exhausts
through a shared chimney. A disp:SimulationTime marks the timestamp for which to
estimate the emissions, i.e., for which later to simulate the emission dispersion. Lastly, a
disp:StaticPointSource instance specifies the location at which the estimated emis-
sions will be emitted.

During assessment, the time series values for provided heat or consumed gas correspond-
ing to the target disp:SimulationTime are extracted. If multiple dh:ConsumedGas-
Amounts are given, their individual values are added together and processed collectively.
Subsequently, emission factors are applied to convert the energy amounts into correspond-
ing mass flow rates for NOx, PM2.5, and PM10, as required for the air pollutant dispersion
simulation. The flue gas stream is treated as hot air, using typical values from the liter-
ature. Refer to Appendix A.4.2 for detailed information on the estimation methods. All
outputs are instantiated according to the OntoDispersion ontology as disp:Emission
instances with associated quantities for mass flow rate of pollutant as well as temperature
and density of the exhaust stream. One emission instance per pollutant type is created.

3.2.4 Dispersion modelling agent

This agent utilises AERMOD [21, 85] to simulate the dispersion of various air pollutants
in a specific area of interest. It considers instantiated wind and emission stream data (i.e.,
mass flow rate, temperature) from multiple point sources to generate emission concen-
tration maps. Upon invocation, the agent performs three key steps: querying relevant
inputs from the KG, executing AERMOD using this information, and finally instantiating
the results back into the KG. As shown in Fig. 5, the key inputs are disp:Scope and
disp:SimulationTime. The disp:Scope defines the polygon of the simulation do-
main (i.e., a rectangle) and disp:SimulationTime determines the time step of interest
for which to run the dispersion calculation. Note that this input is shared with the emission
estimation agent.

The agent requires at least one instance of disp:StaticPointSource (e.g., a chimney
emitting pollutants) that is located within disp:Scope to simulate a plume. Instances of
disp:StaticPointSource are not linked directly to dispersion derivations in order to
facilitate future use cases involving mobile point sources (e.g., ships), which may move
in and out of disp:Scope, making explicit markups very difficult to maintain. Instead,
the agent uses disp:Scope to obtain relevant buildings and emission sources within the
simulation area for the relevant timestamp. The disp:SimulationTime is also used
to query the actual (historical) weather data for that given time. Having retrieved all
necessary information, the agent composes relevant input files and executes AERMOD.
Subsequently, the agent processes the dispersion results into raster form and updates the
disp:DispersionOutput time series instance in the dKG.

Although we use AERMOD in this work, it could be swapped with any other disper-
sion model (e.g., EPISODE [44]) with minimal changes to the overall workflow outlined
in Fig. 5. It is inevitable that a new agent would need to be developed; however, the

21



proposed ontology would still suffice to represent relevant concepts (e.g., disp:Dis-
persionRaster).

3.2.5 City Energy Analyst agent

This agent calculates various aspects of a building’s energy performance using CEA as
its simulation engine. To overcome limitations with built-in CEA assumptions, actual
building stock data from the dKG are incorporated to allow for building-specific analyses,
namely a building’s geometry and usage, the geometry of surrounding buildings, weather,
and terrain data. The implementation maintains CEA’s broad applicability while adopting
a building-resolved bottom-up approach.

Upon invocation, the CEA agent attempts to retrieve the geometry of the target build-
ing(s) (i.e., specified by the building IRI(s) in the received HTTP request) as well as the
geometries of the surrounding buildings. Retrieved geometries from TWA replace CEA’s
default OSM footprints. Subsequently, the agent will attempt to retrieve building specific
usage data from TWA to produce most meaningful energy consumption profiles. After
retrieving building level input data, the agent attempts to retrieve actual weather informa-
tion at the target location from the dKG. Available local weather data supersedes CEA’s
default behaviour of interpolating weather information based on a few selected locations
within its own database. Lastly, the agent attempts to retrieve terrain data, specifically, the
elevation of the land surrounding the target building(s) from TWA, to replace CEA’s de-
fault terrain input of a fixed elevation. Only a building’s geometry is strictly necessary for
the agent to run successfully. In cases where other inputs cannot be retrieved from TWA
(i.e., surroundings, usage, weather, terrain), it proceeds to run CEA with its corresponding
default assumptions. For details please refer to Appendix A.4.3.

After running the simulations, relevant results are instantiated according to OntoUBE-
MMP in TWA. The various building energy demands (i.e., heating, cooling, electricity,
grid) are instantiated as ub:EnergyConsumption instances. The agent also provides so-
lar potential estimates for various types of solar generators: PV panels, flat plate and evac-
uated tube solar collectors, and combined flat plate and evacuated tube PV-thermal col-
lectors. These generators are instantiated as the corresponding subclasses of ub:Solar-
Device, with their associated energy potentials instantiated as ub:EnergySupply enti-
ties. The suitable area for installing solar devices is instantiated via the ub:hasSolar-
SuitableArea property.

3.3 Connecting agents to create cross-domain interoperability

Individual agents are chained together via their input and output instances using TWA’s
native derived information framework. This ensures that whenever a specific piece of
information is requested from the dKG, all dependent upstream inputs are scrutinised first
to determine if they are still up-to-date or require updating before retrieval. We leverage
this infrastructure to automatically simulate associated air pollution dispersion whenever
a new heat generation optimisation is computed and corresponding emission streams get
instantiated.
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Figure 5: Derivation chain (simplified). Schematic depiction of knowledge graph native
instance markup to resemble a model predictive control loop, coupled with
automated air pollutant dispersion modelling. All referenced namespaces are
declared in Appendix A.1, with not explicitly stated prefixes referring to On-
toDerivation.

As illustrated in Fig. 4, the optimisation trigger agent acts as external input and coordina-
tion agent. To initiate an optimisation run, an HTTP POST request is expected, specifying
1) the optimisation start time, 2) the optimisation horizon (i.e., the number of time steps
to be considered within each optimisation), and 3) the number of subsequent time steps
to optimise in total. Upon receiving and verifying a request, corresponding instances are
created/updated within the dKG, and an update is requested from the dispersion modelling
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agent (also referred to as AERMOD agent due to the implemented model) via the DIF. The
DIF then assesses whether an up-to-date dispersion instance already exists by comparing
the instantiation timestamp of the derivation instance against the ones of corresponding
inputs. If necessary, an update is requested, in which case the DIF works backwards
through the dependencies: dispersion simulations depend on emission estimation outputs,
which depend on the heat generation optimisation, itself dependent on heat demand and
grid temperature forecasts. The DIF initiates updates by invoking the associated agents,
starting with the forecasting agent, responsible for the most upstream derivation, to en-
sure a proper cascade of all dependent information. Once all information is up-to-date,
the initially requested dispersion outputs are simulated, which marks the end of the cur-
rent optimisation run. This loop is repeated until the number of time steps to optimise is
reached.

To ensure automated information cascading, derivation markups need to be instantiated at
the instance level, as illustrated in Fig. 5. It is important to note that this figure is a simpli-
fied representation for readability, with a more detailed diagram provided in Fig. 25 in the
Appendix. The optimisation trigger agent instantiates initial inputs for time:Interval,
time:Duration, and ts:Frequency for each requested optimisation run (and updates
them accordingly for subsequent time steps). Additionally, the agent programmatically
creates the depicted derivation markup if not already present and requests an initial as-
sessment from responsible agents to generate corresponding outputs for further markup.

One derivation instance is created for each required forecast, i.e., one oh:HeatDemand
and four om:Temperature instances denoting the flow and return temperatures at the
municipal heat and waste incineration plant, respectively. The derivation outputs (i.e.,
updated ts:Forecast instances) are then collectively marked up as inputs to the heat
generation optimisation derivation. After optimising the generation dispatch based on the
provided forecasts, multiple outputs are instantiated by the district heating optimisation
agent, including one oh:ProvidedHeatAmount and several oh:ConsumedGasAmount
instances, representing the time series of external heat provision from the waste incinera-
tion plant and gas consumption of several internal heat generators, respectively.

Subsequently, two individual emission derivations are marked up to account for differ-
ent emission factors used for waste and natural gas burning when estimating associated
emission rates. Different derivation instances also account for different locations of the
respective pollutant streams, as each derivation is derived from a disp:StaticPoint-
Source, which introduces a geospatial reference to the dynamic optimisation. The esti-
mated disp:Emission outputs are used as source terms by AERMOD to simulate pol-
lutant dispersion maps. Although not explicitly marked up as inputs, the agent requires
at least one StaticPointSource (e.g., a chimney) within the disp:Scope of inter-
est. The disp:SimulationTime instance represents the time for which to simulate the
emission dispersion, and matches the first time step of the forecast and optimised heat
generation.

The district heating optimisation agent is designed to handle each optimisation request
independently, i.e., without consideration of any preceding requests. The sole exception
to this behaviour occurs when two consecutive requests are precisely +1 hour apart. In
this scenario, the second request is treated as dependent on the previous one, facilitating
the tracking of relevant system state variables, such as cumulative profit from ongoing gas
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turbine activity. This enables a dKG-native receding horizon optimisation implementa-
tion, representing the first model predictive control-style application within TWA. While
demonstrated for energy dispatch with integrated emission modelling, similar derivation
chains can automate various other (cross-domain) smart city workflows. Although the
current implementation relies on an optimisation trigger agent as external input agent,
this can easily be replaced with autonomous input agents in the future.

4 Comprehensive energy perspective

This section unveils the results and insights from our connected digital twin use case.
Utilising the developed ontologies and semantic agents, connected via the derived infor-
mation framework, allows for novel insights and capabilities, such as 1) the knowledge
graph-native control of a district heating system, 2) the refinement of building energy
analyses with latest instantiated building stock data, and 3) cross-domain insights into
heat generation induced air pollutants dispersion.

The World Avatar offers a versatile visualisation interface to explore and interact with the
underlying data, and supports both Mapbox (i.e., mainly for geographic information) and
Cesium (i.e., mainly for detailed geometrical representations) as well-established visual-
isation frameworks; however, it is crucial to understand that the presented visualisations
are not the digital twin itself. Instead, the digital twins are a dynamic collection of knowl-
edge, data, and models embedded in the dynamic knowledge graph running in the back-
ground, with the visualisation being only one way to access it. Further options include a
mobile app [97], virtual reality goggles, and a question answering system [118] besides a
unified SPARQL endpoint.

The integrated visualisation interface provides both map-based and (real-time) dashboard
features. While map-based visualisations can help to understand the geospatial distri-
bution of energy demand or the implications of certain heat sourcing strategies on air
pollution, dashboards focus on time series data and offer more details about the current
operational state of assets, such as the latest historical and forecast heat demand or the
optimised generation strategy to satisfy it.

4.1 Resource-efficient heat provision

The municipal district heating network has been instantiated based on actual data, includ-
ing historical operation, weather, and market conditions. Operations data include details
about the grid itself as well as attached heat providers, while market conditions cover
electricity spot, gas, or CO2 certificate price time series. Instantiated heating network data
comprises the total heat demand profile of all attached customers, operational boundaries
of the grid (e.g., minimum volumetric flow rate to ensure hydrodynamic stability), and
connection properties for the municipal heating and waste incineration plant, such as ob-
served flow and return temperatures. Plant data includes information about the buildings
hosting individual heat generators, along with their design characteristics (e.g., rated ther-
mal power) and dynamic properties, such as time series of generated heat and electricity

25



as well as consumed gas. The integration across scales (i.e., from city level to detailed
boiler specifications) as well as the inherent dynamism due to the dKG-native control im-
plementation combines and exceeds the capabilities of isolated energy system modelling
and geographic information system-based approaches.

Figure 6: Heat demand forecast. Dashboard view of the latest historical and forecast
heat demand at any given time step. The historical load profile is shown left of
the dashed line, with predicted values to its right.

Figure 7: Optimised heat generation. Dashboard view of the cost-optimised heat distri-
bution across generators and external sources, considering a waste incinera-
tion plant, three conventional gas boilers, and a gas turbine (based on forecast
heat demand).

Figure 6 presents a snapshot of the dynamic heat demand forecast dashboard. It shows
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the recent municipal heat demand history of all district heating consumers as well as the
latest 24-hour demand forecast. The dashboard updates automatically with each new fore-
cast, offering real-time insights into the latest operational state. In addition to time series
visualisation (right), a gauge indicates the current state relative to operational/observed
minimum and maximum values (left).

Figure 7 illustrates the optimal dispatch of three conventional heat boilers, one CHP gas
turbine, and external heat sourcing from the nearby waste incineration plant to satisfy the
predicted demand (refer to Fig. 6). Currently, the demand of approximately 10.5 MWh
is met through external sourcing and one heat boiler, while the remaining heat generators
remain idle. Based on the projected demand as well as anticipated electricity spot prices,
the CHP gas turbine is expected to be the main contributor to heat production as of in 4
hours, with minor support from the waste incineration plant and one additional gas boiler.

4.2 City energy analyses and scenario planning

As actual (historical) energy data are not always available, an alternative approach is
needed to estimate relevant quantities and gain insights on a broader scale, such as city
level. The CEA agent provides estimates for various aspects of buildings’ energy per-
formance, such as demands for different types of energy and on-site solar generation
potentials. Compared to the official CEA toolkit, actual building stock (i.e., building ge-
ometry, geometry of surrounding buildings, property usage) as well as weather and terrain
data are used for the underlying simulations (where available) to derive building-specific

Figure 8: Visualisation of annual heating demand of each building simulated by the CEA
agent. While map-based visualisation allows for quick identification of build-
ings with high/low heating demand, time series support the inspection of load
profiles for individual buildings.
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estimates. The outputs of the agent are instantiated and attached to the corresponding
building in TWA and can be inspected via its unified visualisation interface. Figure 8, for
example, shows the annual heating demand for a selected neighbourhood in Pirmasens,
allowing for a quick identification of buildings (and areas) with high/low heating demand.
Further simulation results, such as photovoltaic potential or gross-floor area specific val-
ues are provided in Appendix A.2.3.

While Fig. 8 offers rather qualitative insights, the credibility of the results has been eval-
uated for both electricity consumption and on-site solar PV potential. The assessment
compares instantiated agent results with actual historical consumption data or the official
PV potential estimates provided by the state of Rhineland-Palatinate [73], respectively.
By leveraging more granular building an weather information from TWA, significant ac-
curacy improvements compared to native CEA (i.e., the unaltered CEA toolkit) can be
achieved. The mean absolute percentage error (MAPE) relative to the above benchmarks
could be reduced from 57.6% to 13.7% and from 28.1% to 12.9% for annual electricity
consumption and solar PV potential, respectively. This improvement outlines the value
of our bottom-up approach to remove default assumptions in the underlying CEA toolkit
where actual data is available from the dKG.

Figure 9: Heating load profiles simulated by the CEA agent. Heating demand and solar
generation time series can be used to evaluate potential energy savings of on-
site solar collector installations (depicted for a typical day in March).

Beyond cumulative annual figures, the CEA agent also provides both overall heat demand
and solar potential time series, which facilitate the assessment of possible energy savings
achievable with the installation of solar collectors. A basic analysis could explore utilising
heat from rooftop solar panels to directly offset a building’s heating demand, without fac-
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toring in any thermal storage. This simplistic assessment provides a preliminary estimate
for remaining heating demand from alternative sources such as gas or district heating, to-
gether with the potential energy savings conferred by on-site generation (see Fig. 9). This
capability can help to develop highly-granular heat maps of a city’s heating demand (with
or without considering on-site generation of solar energy), e.g., as currently required for
the municipal heat planning initiative in Germany. The building-resolved insights exceed
the accuracy of most publicly available dataset, which are usually restricted to simple
raster maps with 50×50 m or 100×100 m resolution [54]. Combined with actual district
heating grid location data, this information can be used to evaluate potential grid exten-
sion scenarios, both with regards to the total geospatially distributed heat demand as well
as prevalent heat demand profiles considering actual building usage patterns.

4.3 Impact on air quality

Beyond insights into the energetic behaviour of buildings and their optimised heat provi-
sion, a key strength of the World Avatar lies in generating cross-domain insights: Emission
dispersion simulations are triggered automatically by each heat generation optimisation
to immediately understand potential impacts of the projected heat sourcing strategy, com-
prising multiple locations, on the exposure of various parts of the surrounding population
to associated airborne emissions. While this proof-of-concept predominantly focuses on
connecting the dynamic cost optimisation with geospatial emission implications, a de-
tailed investigation of potential health consequences remains unexplored. Nevertheless,
this avenue holds promise for future research, potentially incorporating adverse health
impacts within a multi-objective optimisation framework.

To mirror actual operating conditions, the dynamic optimisation is deployed with an
hourly resolution. Hence, also the emission dispersion is simulated for each optimised
hour, producing one instantiated dispersion raster per air pollutant and elevation of inter-
est. As generic Gaussian plume model, AERMOD supports various emission types; how-
ever, this work focuses on NOx, PM2.5, and PM10 as major pollutants (see Appendix A.4.2
for details), with NOx typically exhibiting the highest proportional concentrations. While
the dispersion at arbitrary elevations relative to the underlying terrain can be studied, our
focus centres on ground level (i.e., 0 m of elevation), given its importance for pedestrians
and the general public. A summary of relevant parameters for the AERMOD simulations
is provided in Appendix A.2.2.

Instantiated dispersion maps can be overlaid with buildings or population density data to
inspect various aspects and potential implications of heat generation induced emissions.
In Fig. 10, this capability is showcased, displaying NOx emission values in conjunction
with instantiated building stock, where the colours indicate the usage of properties, with
blue representing predominantly residential buildings. The figure illustrates a historical
scenario across two consecutive hours, during which the start-up of the CHP gas turbine
has been deemed profitable by the optimisation routine.

Figure 10(a) illustrates a heat provision situation where the majority of heat is sourced
from the waste incineration plant situated in the North of the town. Figure 10(b) depicts
the heat generation one hour later, including the active gas turbine located at the munic-
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(a) Heat generation related NOx emission dispersion as of 09 Dec 2020 06:00 UTC.

(b) Heat generation related NOx emission dispersion as of 09 Dec 2020 07:00 UTC.

Figure 10: Integrated emission dispersion simulation. The integrated simulation of heat
generation induced air pollutants provides insights into air pollution implica-
tions of various heat generation/sourcing strategies, considering actual (his-
torical) weather data.

30



ipal heating plant in the Southern part of the town. Given the different geo-locations of
various heat sources, distinct exposure scenarios emerge based on the chosen heat provi-
sion strategy due to the incorporation of wind data. Despite similar wind conditions and
comparable maximum concentrations, both situations exhibit significantly different ex-
posure potentials. In the first scenario, multiple residential buildings face relatively high
NOx concentrations, whereas these areas are shifted to regions without residential build-
ings in the second scenario. For additional details on the emission exposure of various
population segments, refer to Appendix A.2.1, where emission maps are overlaid with
population density data.

Beyond the sole map view, virtual sensors can be placed at arbitrary locations to study
air pollution exposure over time. These sensors extract data from underlying raster files
and display corresponding values as time series for the respective pollutant types in the
visualisation side panel, as illustrated in Fig. 11. The depicted emission profiles for differ-
ent pollutants look similar due to deploying a Gaussian dispersion model. Results could
not explicitly be validated against actual local air quality readings due to a lack of avail-
able historical data (i.e., sensor readings) within the area of interest. However, given the
numerous previous calibration studies of AERMOD, we believe that the derived values
possess at least indicative meaning. Moreover, simulated values align well with applica-
ble emission thresholds (see Table 6 in the Appendix) as well as published hourly and
daily mean readings reported by the waste incineration plant operator [32]. While the cur-
rent dispersion model is intentionally simplistic for this proof-of-concept, the workflow

Figure 11: Emission time series. Virtual sensors allow to inspect simulated emission
concentrations for arbitrary locations of interest as well as time scales.
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can easily accommodate more sophisticated models in future iterations without significant
modifications.

4.4 Further directions

Having established the foundation for integrating district heating network operations with
an automated assessment of corresponding air pollutant dispersion, a logical extension
of this work involves evaluating the potential health implications of these emissions for
the community. Expanding on this, a health impact assessment could be integrated as an
additional target within the optimisation framework, adopting a multi-objective approach
that directly minimises exposure and potential health risks for the affected population.
Moreover, the current dynamic supply-side optimisation utilises historical district heating
data, while the building energy analyses based on CEA take a rather generic perspective
- also due to the current lack of information about which buildings are connected to the
heating grid. Once this data gap is addressed, the use of CEA to gradually replace the
reliance on historical data shall be explored. This advancement would allows for a more
robust link between demand and supply side in the district heating system.
To further improve the accuracy of the CEA agent, additional building data shall be in-
corporated. Currently, the agent still relies on CEA’s assumptions for parameters like set-
point temperature or the fraction of air-conditioned gross floor area, which significantly
influence energy demand calculations. While the agent already uses actual building us-
age, it lacks specific data on occupancy schedules and electrical appliance usage patterns.
With the ongoing integration of detailed building information models into TWA [90], the
agent shall be updated accordingly, thereby further improving the accuracy of deployed
energy simulation.

5 Conclusions

In this work we demonstrate the capabilities of the World Avatar dynamic knowledge
graphs to create comprehensive energy perspectives for smart cities by connecting detailed
energy analyses for individual buildings with the dynamic control of a municipal district
heating system and the simulation of associated emissions - all integrated within the very
same system, thereby bridging domains in the nexus of energy, the built environment, and
atmospheric emission dispersion.

We have extended the ontological coverage of the World Avatar with knowledge models
to describe time series and forecasts, district heating network operations, building energy
characteristics, and air pollutant dispersion and leverage these ontologies to instantiate
real-world data. We have developed multiple semantic agents to act upon the instantiated
data and deploy them in a connected fashion to provide the proof-of-concept for the first
model predictive control application within TWA. We have implemented a generic fore-
casting agent and use it as part of this knowledge graph-native receding horizon optimisa-
tion to minimise the total heat generation cost of a district heating network. The outputs
of the optimisation are directly linked with an integrated emission dispersion model to
understand the impact of various heat generation and sourcing strategies on air pollution.
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The showcased degree of interoperability and automation, spanning from energy forecast-
ing to cost-optimal generator dispatch to airborne emission dispersion, is enabled by the
automated tracking of dependencies between various agent and data instances within the
dynamic knowledge graph. This approach ensures convenient automated information flow
between interconnected entities, while upholding an extraordinary level of explainability
about how a certain piece of information has been derived.

Furthermore, the City Energy Analyst is made available as part of TWA to provide valu-
able information about buildings’ energy demands and on-site generation potentials with
regards to solar energy. The developed agent offers a flexible enhancement to the original
CEA toolkit by utilising latest instantiated building and weather data from the knowledge
graph to reduce the dependency on default assumptions; thus, promoting a data-driven
bottom-up approach for comprehensive energy assessments of building stock at various
levels (e.g., building level, district, and city). This perspective complements the dynamic
generation optimisation with a more strategic angle, relevant to analyse any potential ex-
pansion of the district heating grid to drive low-carbon heating solutions.

Given its extensibility, scalability, and suitability to represent arbitrary data, TWA pro-
vides a promising solution to merge and advance individual digital twins collectively,
with a semantic layer at its core ensuring that individual agents act upon an aligned data
basis. This work shows that semantically chained agents offer great potential to resem-
ble the behaviour of complex systems, address interoperability challenges holistically,
and implement automatable cross-domain smart city workflows, not only in the energy
space. By integrating real-world sensor data, the accuracy of deployed models, such as
AERMOD or the City Energy Analyst, can continuously be refined and, reversely, virtual
sensors can easily be deployed to fill gaps in the actual sensor landscape with simulated
readings, thereby creating a truly interoperable and dynamic cyber-physical system of
connected digital twins.
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Nomenclature

AERMOD AMS/EPA regulatory model (air dispersion model)
API Application programming interface
ARIMA Autoregressive integrated moving average
CEA City Energy Analyst
CHP Combined heat and power
DIF Derived information framework
dKG Dynamic knowledge graph
EEA European environment agency
GeoSPARQL Geographic query language for RDF Data
IRI Internationalized resource identifier
KG Knowledge graph
LSTM Long short-term memory
MAPE Mean absolute percentage error
ME Maximum error
NO2 Nitrogen dioxide
NOx Nitrogen oxides
OM Ontology of units of measure
OPEX Operating expense
OSM OpenStreetMap
PM10 Particulate matter less than 10 µm in diameter
PM2.5 Particulate matter less than 2.5µm in diameter
PM Particulate matter
PV Photovoltaics
RDF Resource description framework
RMSE Root mean square error
SAREF Smart Applications REFerence ontology
SARIMAX Seasonal autoregressive integrated moving average with exogenous regres-

sors
SMAPE Symmetric mean absolute percentage error
SPARQL SPARQL protocol and RDF query language
SQL Structured query language
TFT Temporal fusion transformer
TWA The World Avatar (dynamic knowledge graph)
W3C World Wide Web Consortium
WHO World Health Organization
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A Appendix

A.1 Namespaces

deriv: <https://www.theworldavatar.com/kg/ontoderivation/>
disp: <https://www.theworldavatar.com/kg/ontodispersion/>
oh: <https://www.theworldavatar.com/kg/ontoheatnetwork/>
ts: <https://www.theworldavatar.com/kg/ontotimeseries/>
ocp: <http://theworldavatar.com/ontology/ontochemplant/OntoChemPlant.ow
l#>
OntoCAPE: <http://www.theworldavatar.com/ontology/ontocape/chemical_proc
ess_system/CPS_performance/economic_performance.owl#>
OntoPowSys: <http://www.theworldavatar.com/ontology/ontopowsys/PowSysRea
lization.owl#>
ub: <https://www.theworldavatar.com/kg/ontoubemmp/>
bs: <https://www.theworldavatar.com/kg/ontobuildingstructure/>
contract: <https://spec.edmcouncil.org/fibo/ontology/FND/Agreements/Contrac
ts/>
dabgeo: <http://www.purl.org/oema/infrastructure/>
geo: <http://www.opengis.net/ont/geosparql#>
om: <http://www.ontology-of-units-of-measure.org/resource/om-2/>
owl: <http://www.w3.org/2002/07/owl#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
time: <http://www.w3.org/2006/time#>
xsd: <http://www.w3.org/2001/XMLSchema#>

A.2 Results continued

A.2.1 Emission dispersion

Figure 12 depicts the exposure of the town’s population to additional air pollution for two
different heat sourcing strategies by overlaying the dispersion visualisation over the pop-
ulation density raster: Despite similar weather conditions, certain population segments
experience significantly different exposure. The left strategy sources most of the heat
from the waste incineration plant located at the outskirts, resulting in relatively higher but
more remote emissions (i.e., further away from the town). The right strategy distributes
heat sourcing more evenly between the two available sites, resulting in lower overall con-
centrations; however, the municipal heating plant’s plume affects central areas with higher
population density. This trade-off shall be addressed in a future version of the optimisa-
tion by coupling heat generation with potential health implications for the surrounding
population.

36

https://www.theworldavatar.com/kg/ontoderivation/
https://www.theworldavatar.com/kg/ontodispersion/
https://www.theworldavatar.com/kg/ontoheatnetwork/
https://www.theworldavatar.com/kg/ontotimeseries/
http://theworldavatar.com/ontology/ontochemplant/OntoChemPlant.owl#
http://theworldavatar.com/ontology/ontochemplant/OntoChemPlant.owl#
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_performance/economic_performance.owl#
http://www.theworldavatar.com/ontology/ontocape/chemical_process_system/CPS_performance/economic_performance.owl#
http://www.theworldavatar.com/ontology/ontopowsys/PowSysRealization.owl#
http://www.theworldavatar.com/ontology/ontopowsys/PowSysRealization.owl#
https://www.theworldavatar.com/kg/ontoubemmp/
https://www.theworldavatar.com/kg/ontobuildingstructure/
https://spec.edmcouncil.org/fibo/ontology/FND/Agreements/Contracts/
https://spec.edmcouncil.org/fibo/ontology/FND/Agreements/Contracts/
http://www.purl.org/oema/infrastructure/
http://www.opengis.net/ont/geosparql#
http://www.ontology-of-units-of-measure.org/resource/om-2/
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2006/time#
http://www.w3.org/2001/XMLSchema#


Fi
gu

re
12

:E
m

is
si

on
ex

po
su

re
.T

he
in

te
gr

at
ed

di
sp

er
si

on
si

m
ul

at
io

n
pr

ov
id

es
in

si
gh

ts
in

to
th

e
ex

po
su

re
of

ce
rt

ai
n

pa
rt

s
of

th
e

po
pu

la
tio

n
to

ad
di

tio
na

la
ir

po
llu

ta
nt

s
as

a
re

su
lt

of
he

at
ge

ne
ra

tio
n.

Il
lu

st
ra

te
d

fo
r

N
O

x
ba

se
d

on
si

m
ul

at
ed

op
tim

is
at

io
n

re
su

lts
an

d
ac

tu
al

hi
st

or
ic

al
w

ea
th

er
da

ta
as

of
10

D
ec

20
20

04
:0

0
U

TC
(l

ef
t)

an
d

17
:0

0
U

TC
(r

ig
ht

),
ov

er
la

ye
d

w
ith

th
e

po
pu

la
tio

n
de

ns
ity

ra
st

er
.

37



A.2.2 AERMOD simulation inputs

Key emission outlet (i.e., stack) parameters used in the AERMOD simulations are sum-
marised in Table 1, with corresponding weather parameters provided in Table 2.

Table 1: Stack parameters used in the AERMOD simulations.

Simulation Figure 10(a) Figure 10(b) and 11

Emission
source

Waste incin-
eration plant

Municipal
heating plant

Waste incin-
eration plant

Municipal
heating plant

Height (m) 50 35 50 35

Diameter (m) 1.69 2.66 1.69 2.66

Exit velocity
(m/s)

3.14 0.02 0.42 0.15

Temperature
(K)

493.15 473.15 493.15 473.15

NOx emission
rate (g/s)

11.23 0.18 1.52 1.66

Table 2: Historical weather parameters used in AERMOD simulations.

Simulation Figure 10(a) Figures 10(b) and 11

Wind direction (◦) 290 290
Wind speed (knot) 6 7
Temperature (◦F) 33 33

Humidity (%) 98 98
Cloud cover (%) 90 90

A.2.3 City energy analyses

The CEA agent instantiates various energy outputs beyond heating demand which can also
be visualised via TWA, including a building’s annual electricity demand (Fig. 13) as well
as annual generation potential for heat from solar collectors (Fig. 14) or electricity from
PV installations on the different walls and roof. Furthermore, the gross floor area specific
values for electricity and heat demand (Fig. 15 and Fig. 16) as well as area normalised
values for solar potential (Fig. 17) can be assessed. The visualisations allow for quick
inspection and identification of different building demands and potentials, which can be a
good starting point for more detailed analyses or scenario planning.

The TWA visualisation uses OpenStreetMap [83] as base layer, which may result in the
perception that the instantiated building data is incomplete. However, this solely stems
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Figure 13: Visualisation of building annual electricity consumption as simulated by the
CEA agent.

Figure 14: Visualisation of potential heat generation by solar collectors on building roofs
as simulated by the CEA agent.

from the fact that the instantiated buildings for all analyses are derived from an official 3D
building stock data set of the state of Rhineland-Palatinate [65], with slight discrepancies
compared to OSM.

Beyond assessing a building’s annual consumption or generation potential, the CEA agent
also evaluates respective load profiles. The outputs can provide an initial assessment of
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Figure 15: Visualisation of building annual heating consumption per gross floor area as
simulated by the CEA agent.

Figure 16: Visualisation of building annual electricity consumption per gross floor area
as simulated by the CEA agent.

directly utilising own generated electricity from rooftop PV to offset demand, without
factoring in potential storage solutions, as shown in Fig. 18. Negative values indicate an
excess of electricity generation, which could be supplied to the grid in active prosumer
scenarios.

To benchmark the performance of the CEA agent with regards to electricity demand, sim-
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Figure 17: Visualisation of potential heat generation by solar collectors on building roofs
per suitable roof area as simulated by the CEA agent.

Figure 18: Electricity load profiles simulated by CEA agent. Electricity demand and PV
generation time series can be used to evaluate potential energy savings of on-
site PV collector installations (depicted for a typical day in March).

ulated values have been compared against actual historical readings. Annual electricity
consumption data for four buildings has been obtained and compared in Fig. 19, juxtapos-
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ing the CEA agent results with native CEA estimates (i.e., the unaltered CEA software)
and actual historical values. While using native CEA results in a MAPE of 57.6% com-
pared to historical consumption, the CEA agent yields a reduced MAPE of 13.7%, by
using building specific input data as well as actual weather and terrain inputs representa-
tive for the actual location. This improvement outlines the value of removing assumptions
in the underlying CEA toolkit by replacing them with actual data from the dKG; however,
the small sample size due to limited availability of historical electricity readings needs to
be noted. The improved accuracy can mainly be attributed to the use of actual location-
specific weather data, including dry bulb temperature, dew point temperature, cloud cover,
and direct normal as well as diffuse horizontal irradiance.

Figure 19: Comparison of annual electricity consumption estimates. Incorporating ac-
tual building stock data, the CEA agent aligns more closely with observed
historical consumption figures compared to the native CEA toolkit.

To scrutinise the reliability of CEA agent’s solar potential assessment, rooftop PV elec-
tricity estimates have been compared against figures published by the Ministry for Cli-
mate Protection, Environment, Energy, and Mobility in Rhineland-Palatinate (i.e., So-
larkataster [73]) for 25 buildings, as depicted in Fig. 20. Comparing generation potential
per area (i.e., to mitigate discrepancies stemming from differences in area estimations),
the native CEA toolkit yields a 28.1% MAPE, whereas the agent reduces this error to
12.9%. Detailed results can be found in Table 3. As shown in Fig. 20, the native CEA
consistently underestimates PV potential compared to Solarkataster. The agent, while
showing a slight overestimation, demonstrates a narrower distribution closer to a zero rel-
ative error. The significantly larger discrepancies in the native CEA are likely a result of
biased or incorrect built-in assumptions.

Despite significant improvement, certain discrepancies remain between the agent results
and the used benchmarks. This could be attributed to potential differences in comparison
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Figure 20: Comparison of simulated roof solar potentials per area. The CEA agent’s
photovoltaic estimations exhibit less bias and higher precision than native
CEA when compared to the official Solarkataster [73] values (analysed for
25 buildings).

bases due to a lack of detailed context information about the used benchmarks. Historical
electricity consumption figures, for instance, may represent aggregated data for complex
building structures (e.g., a school with an integrated laboratory and gym), while the agent
currently assumes a single overarching usage classification per building. This hypothesis
is supported by the residential building, being a single structure with one usage type, ex-
hibiting best alignment with historical data among all studied buildings (see Fig. 19). Dis-
crepancies in the solar potential estimation likely stem from unaligned assumptions in the
underlying simulations, including the use of slightly different roof geometries and angles,
as well as variations in PV panel materials and efficiency. The consistent overestimation
supports this hypothesis, though it cannot be verified as the Solarkataster methodology is
not published.

It has been highlighted that the use of actual weather data significantly contributes to the
agent’s improvement over native CEA. Three crucial weather parameters for PV potential
calculations are direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and
total sky cover. Hence, the difference between the actual historical values for the location
of interest has been compared against the CEA assumptions for these parameters. As CEA
simulations consider hourly weather data, the comparison has been conducted for weather
time series data in hourly format over a year. Comparing the weather data at the actual
building location used by CEA agent against the CEA assumptions, it has been found
that the DNI increased by 409.3 kWh/m2 and the DHI decreased by 118.8 kWh/m2 when
DNI and DHI are summed over the year. The total sky cover has been averaged over the
year and the average hourly value of the weather data used by the agent is 0.74 less than
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Table 3: Comparison of simulated roof PV potential per area against official So-
larkataster [73] estimates for 25 buildings.

Roof PV potential per area
(in kWhm−2)

Relative error compared to
Solarkataster estimate

# Solarkataster Native CEA CEA agent Native CEA CEA agent

1 155.7 121.0 185.7 −0.22 0.19
2 156.8 125.8 190.9 −0.20 0.22
3 161.2 101.5 191.0 −0.37 0.18
4 161.5 125.0 187.7 −0.23 0.16
5 164.4 122.3 190.9 −0.26 0.16
6 164.6 119.1 181.4 −0.28 0.10
7 166.1 126.3 189.9 −0.24 0.14
8 166.2 122.3 190.2 −0.26 0.14
9 166.2 125.0 191.0 −0.25 0.15
10 166.3 120.2 190.9 −0.28 0.15
11 166.9 92.6 190.1 −0.45 0.14
12 167.0 117.1 189.4 −0.30 0.13
13 167.2 126.1 186.2 −0.25 0.11
14 167.8 126.6 190.9 −0.25 0.14
15 167.8 125.2 191.0 −0.25 0.14
16 168.4 125.0 168.5 −0.26 0.00
17 168.9 112.5 190.4 −0.33 0.13
18 169.0 125.3 190.9 −0.26 0.13
19 169.0 126.4 190.9 −0.25 0.13
20 169.3 126.1 189.4 −0.26 0.12
21 169.8 125.9 191.1 −0.26 0.13
22 171.1 104.0 191.0 −0.39 0.12
23 171.8 115.5 191.0 −0.33 0.11
24 179.9 126.5 189.7 −0.30 0.05
25 181.5 124.6 191.0 −0.31 0.05

Average 0.281 0.129

the CEA assumption. This disparity in weather parameters indicates that native CEA cal-
culations assume lower solar irradiance and higher sky cover than the Pirmasens weather,
leading to an underestimation of solar radiation received by PV panels and, consequently,
a decrease in calculated PV potential. The CEA agent rectifies these inaccuracies by
utilising weather data representative for the actual building location.

A.3 District heating network ontology

Figure 22 provides a more detailed illustration of the proposed conceptualisation for (mu-
nicipal) district heating networks, encompassing the overall network structure down to
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generator-specific operational data. Figure 21 outlines the proposed hierarchical struc-
ture for organising key operational and cost concepts.

:CostIn
TimeInterval :FixedCost

:VariableCost

:EmissionCost

:LabourCost

:FuelCost:SwitchingCost
:Variable
WearCost

:StartUpCost :ShutDownCost

:CHPBonus

:Electricity
SpotPrice

:GridCharges:FuelUnitCost

:Hourly
LabourCost

:CO2Certificate
Price

:Hourly
WearCost

:DemandDriven
WearCost

:UnitPrice

:UnitRate

:GasUnitCost om:Quantity

OntoCAPE:
Costs

owl:equivalentClass

:FixedWearCost

om:Cost

:Generated
HeatAmount

:EnergyIn
TimeInterval

:Consumed
GasAmount

:CoGen
ElectricityAmount

om:Energy

:Provided
HeatAmount

:HeatDemand

Concept Literal

New / Re- used concept or relationshipColour coding:

Object property rdfs:subClassOf

Figure 21: Hierarchical structure of relevant cost components and heat generation out-
puts as defined by the OntoHeatNetwork ontology. All concepts are instanti-
ated using the om or ts ontology, as single values or time series, respectively.
All referenced namespaces are declared in Appendix A.1, with not explicitly
stated prefixes referring to OntoHeatNetwork.
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A.4 Agent details

A.4.1 Forecasting agent

Forecasting logic Upon invocation, the agent first verifies the suitability of received in-
puts to derive a forecast, i.e., checks that exactly one IRI to forecast, one ts:Forecasting-
Model, one ts:Frequency, one time:Interval, and one time:Duration concept
are marked up as derivation inputs. The instance to be predicted must pertain to a type
that is either a direct or nested subclass of om:Quantity or owl:Thing. Although most
instances to forecast will likely be of (sub-)class om:Quantity, the support for the more
general owl:Thing ensures that anything with an associated time series can be predicted.
After successful verification, the agent queries further relevant inputs from the KG and
creates an overarching configuration dictionary describing the forecast to create. If the
instantiated rdfs:label of the target forecasting model is "prophet" (irrespective of cap-
italisation), the default Prophet model [104] will be used. Otherwise, the agent will try to
load the corresponding custom pre-trained model as specified in a model mapping file.

Facebook Open Source has published Prophet [104] as a modular regression model de-
signed for univariate automatic forecasting. Accepting a univariate time series as input,
Prophet autonomously identifies data frequency and conducts seasonality analysis. More-
over, it can effectively model special events, holidays, and series with multiple season-
alities, overcoming common challenges like stationarity requirements or manual param-
eterisation as posed by the ARIMA family. In contrast to many machine learning-based
forecasting methods, Prophet is less complex, easier to implement and computationally
less intensive; hence, perfectly suited as versatile default forecasting model.

To use pre-trained custom models, both a model and covariate loading function need to
be specified in a model mapping file. The mapping file is added as bind mount into the
agent Docker container to allow for seamless addition of custom models even after agent
deployment. Custom loading functions are required to 1) ensure consistent handling of
time series data between training and forecasting (i.e., identification of covariate order,
data scaling, pre-processing, etc.) and 2) capture model specific requirements of different
forecasting techniques (e.g., custom handling of GPU trained models on a CPU machine).
Furthermore, custom covariate loading functions allow for the incorporation of additional
time-dependent covariates, such as representing (long-term) seasonalities through (multi-
ple) Fourier series.

After creating the forecast configuration, the agent loads the time series data, including
covariates if specified. Potentially required resampling of the retrieved time series (i.e.,
as most forecasting models require equally spaced time series data) does not alter the in-
stantiated data, but creates an internal copy for forecasting. Subsequently, the pre-trained
model is loaded or a new Prophet model is created and fitted to the retrieved time series to
predict the data. Afterwards, the forecast is created for the specified time:Interval
(with both bounds inclusive). If the forecasting model requires scaled data, both the
time series and covariates (if applicable) are scaled based on their historical values during
time:Duration prior to the forecast start date. Lastly, the predicted time series is trans-
formed back to its original scale and instantiated/updated in the dKG. For new forecasts, a
new ts:Forecast instance is created and attached to the om:Quantity or owl:Thing
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IRI which has been forecasted. Further metadata, e.g., which data and model have been
used, are instantiated according to the OntoTimeSeries ontology. For existing forecasts,
only the time series value in the relational database are replaced and respective meta data
gets updated.

Forecasting performance Temporal fusion transformers have been fitted to the histor-
ical hourly spaced data and instantiated in TWA to forecast heat demand and grid tem-
peratures for the target use case. TFTs have initially been developed to overcome typical
forecasting problems, such as considering the interaction between time-invariant covari-
ates, known future inputs (e.g., tomorrow is Friday), and (un)known exogenous future
time series (e.g., tomorrow’s outside temperature). TFTs have shown significant perfor-
mance improvements and interpretability gains compared to complete black box neural
networks [68].
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Figure 23: TFT attention weights for heat demand. Attention values for a multi-step fore-
cast with 24 steps and 168 given past values, averaged over 365 forecast days.
The plot shows a clear increased attention to the recent history, as well as re-
lated times in the more distant past (i.e., 24 steps seasonal cycle).

Both district heating demand and grid flow and return temperatures show typical daily
and weekly patterns, similar to many other energy consumption time series. The attention
weights of the TFT model used for heat demand forecasting is shown in Fig. 23, high-
lighting the relative importance of the recent history as well as the expected daily pattern.
The performance of the fine-tuned TFT models for both heat demand and grid flow tem-
perature has been compared to a previously suggested fine-tuned SARIMAX model [50].
Considered error metrics are the root mean squared error (RMSE) (in MWh), the sym-
metric mean absolute percentage error (SMAPE) (in %) and the maximum error (ME) (in
MWh) for 1 day, 1 week and 1 month ahead forecasts. The results are provided in Table 4
and Table 5, respectively, outlining the improved accuracy of the fine-tuned TFT model
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Table 4: Forecast error comparison for municipal heat demand. The stated SARIMAX
model refers to the fine-tuned model from a previous study [50] and the prefix
"_X" refers to forecasting models with covariates.

24 (1 day) 168 (1 week) 720 (1 month)

RMSE SMAPE ME RMSE SMAPE ME RMSE SMAPE ME

Prophet 1.53 30.61 2.58 1.43 28.99 3.13 1.55 32.47 4.54
SARIMA 0.90 14.65 1.79 1.47 23.63 3.43 2.16 31.23 5.41
LSTM 1.12 18.72 2.24 1.68 36.27 4.23 2.87 66.80 6.90
TFT 1.25 19.89 2.69 1.76 25.27 4.49 2.40 36.91 6.31

SARIMAX 0.74 15.62 1.38 0.94 17.94 2.58 1.29 26.52 3.97
LSTM_X 0.84 13.75 1.77 0.99 20.04 2.57 1.27 23.02 3.91
TFT_X 0.73 12.28 1.43 0.76 12.41 2.12 0.89 14.76 2.91
TFT_X_tuned 0.53 9.48 1.06 0.61 10.43 1.80 0.72 11.81 2.27

Table 5: Forecast error comparison for grid flow temperature. The stated SARIMAX
model refers to the fine-tuned model from a previous study [50] and the pre-
fix "_X" refers to forecasting models with covariates.

24 (1 day) 168 (1 week) 720 (1 month)

RMSE SMAPE ME RMSE SMAPE ME RMSE SMAPE ME

Prophet 2.87 2.61 5.26 3.10 2.68 8.39 3.50 3.01 10.70
SARIMA 2.70 2.30 5.42 4.30 3.76 10.28 5.84 5.44 14.47
LSTM 2.97 2.62 5.59 5.39 4.71 11.86 7.57 7.15 17.11
TFT 2.56 2.15 5.12 3.95 3.35 10.14 4.85 4.11 13.81

SARIMAX 2.00 1.71 4.09 3.03 2.59 7.82 3.97 3.57 10.57
LSTM_X 2.28 1.94 4.63 2.63 2.15 7.70 2.69 2.22 8.89
TFT_X 0.90 0.79 2.02 1.09 0.83 4.22 1.20 0.93 6.20

over the previously deployed SARIMAX one, especially for longer forecast horizons.

A.4.2 Emission estimation agent

Both the European Environment Agency (EEA) [39] and the World Health Organization
(WHO) [111] specify threshold concentrations for various airborne pollutants. Exposure
to air containing pollutant concentrations above these values may increase the risk of
various respiratory diseases [111]. The annual, daily, and hourly average threshold con-
centrations for some pollutants are summarised in Table 6. For other pollutants, different
averaging periods are used to formulate air quality standards.

Emissions rates of various pollutants such as SOx, NOx and PM2.5 were decreasing in
Europe between 2000 and 2017 due to the implementation of pollution control mea-
sures [102]. Nevertheless, the concentrations of PM2.5, PM10, O3, NO2 and Bezo(α)pyrene
remain unacceptably high.
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Table 6: Air pollutant concentration thresholds in µgm−3 for different reference (i.e., av-
eraging) periods stipulated by EEA [39] and WHO [111].

Annual limits Daily limits Hourly limits

Pollutant EEA WHO EEA WHO EEA WHO

NO2 40 10 2001 200

PM10 40 15 502 45

PM2.5 25 5

The objective of the emission estimation agent is to determine the extent to which heat
sourced from the waste incineration plant as well as heat generated by natural gas burning
in the district heating plant in Pirmasens affect the concentrations of major airborne pol-
lutants in the surroundings. EEA data for 2022 for the nearby city of Kaiserslautern [40]
indicates that the concentrations of PM2.5, PM10 as well as NO2 were above the WHO
limits given in Table 6 with the concentrations of all other pollutants meeting the stan-
dards. Hence, this work focuses on evaluating concentrations of the three pollutants. The
following paragraphs summarise the literature review on relevant emission factors, while
the medians stated in Table 7 and Table 8 are implemented by the emission estimation
agent.

Assumptions and limitations Based on limited data availability and ambiguous refer-
encing in the literature, emission values for NO2 and NOx have been used interchangeably
throughout this work. Furthermore, particulate matter emissions are not consistently re-
ported as separate values for PM2.5 and PM10 in the literature: if separate values for PM2.5

and PM10 are provided, those have been used; if only PM2.5 values are reported, corre-
sponding PM10 values are assumed equal, since PM2.5 is a subset of PM10; if only PM10

values are reported (e.g., reported collectively as "dust" or "fine dust"), corresponding
PM2.5 values have been derived using PM2.5 to PM10 ratios as reported by Krause and
Smith [64].

Waste incineration plant To estimate the emissions associated with heat sourcing from
the waste incineration plant, published operations data from the plant operator has been
used where available (e.g., capacity, electricity generation, heat generation, flue gas tem-
perature) [31]. Additionally, the literature has been screened for representative emission
factors of waste incineration plants in central Europe or even Germany [36, 58, 60, 77, 78].
Data from the plant operator states a heat generation capacity of 37,000 MWh and a elec-
tricty generation capacity of 67,000 MWh p.a, at a total annual waste capacity of 180,000
ton. Correspondingly, specific emissions for PM2.5, PM10 and NO2 have been calculated
per MWh of produced heat, and are summarised in Table 7. It should be noted that the
figures for NO2 assume the plant to employ at least basic Selective Catalytic Reduction

1Not to be exceeded on more than 18 hours per year
2Not to be exceeded on more than 35 days per year
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technology, which is in line with operator data.

District heating plant In order to estimate emissions associated with the operation of
the gas boilers and CHP gas turbine at the municipal heating plant, emission factors for
natural gas combustion have been collected from a range of sources, including scientific
publications and government agency reports [5, 26, 56, 61, 70, 79, 103, 107]. To ensure
consistency and accuracy, parameters related to natural gas, such as density and energy
content, have been harmonized with the actual fuel composition used at the plant, as deter-
mined through a gas analysis conducted and shared by the plant operator. Consequently,
specific emissions for PM2.5, PM10, and NO2 have been calculated per MWh of natu-
ral gas burned (i.e., with reference to the lower calorific value), and are summarised in
Table 8.
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A.4.3 City Energy Analyst agent

Figure 24: CEA agent activity diagram. Overview of internal CEA agent logic for all
three implemented routes: 1) run agent for new building analysis, 2) write/up-
date analysis results into KG, 3) retrieve instantiated analysis results.
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A.5 Derivation markup details

one of

either or

either or (depending on 
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Figure 25: Detailed illustration of actual derivation markup to chain agents.
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A.6 Description logic

A.6.1 Time series ontology

The latest version of the ontology is publicly available as OWL file on GitHub under:
https://github.com/cambridge-cares/TheWorldAvatar/blob/main/JPS_O
ntology/ontology/ontotimeseries/OntoTimeSeries.owl. A representation of
the ontology in Description Logic is provided below:

Classes:

ts:InstantaneousTimeSeries ⊑ ts:TimeSeries
ts:AverageTimeSeries ⊑ ts:TimeSeries
ts:CumulativeTimeSeries ⊑ ts:TimeSeries
ts:CumulativeTotalTimeSeries ⊑ ts:CumulativeTimeSeries
ts:StepwiseCumulativeTimeSeries ⊑ ts:CumulativeTimeSeries
ts:Frequency ⊑ time:Duration

Object properties:

∃ ts:hasTimeSeries.⊤ ⊑ ⊤
∃ ts:hasForecast.⊤ ⊑ ⊤
∃ ts:hasRDB.⊤ ⊑ ts:TimeSeries
∃ ts:hasTimeUnit.⊤ ⊑ ts:TimeSeries
∃ ts:hasAveragingPeriod.⊤ ⊑ ts:AverageTimeSeries
∃ ts:hasForecastingModel.⊤ ⊑ ts:Forecast
∃ ts:hasInputTimeInterval.⊤ ⊑ ts:Forecast
∃ ts:hasOutputTimeInterval.⊤ ⊑ ts:Forecast
∃ ts:hasCovariate.⊤ ⊑ ts:ForecastingModel
∃ ts:hasCheckpointURL.⊤ ⊑ ts:ForecastingModel
∃ ts:hasModelURL.⊤ ⊑ ts:ForecastingModel
∃ ts:hasTrainingTimeSeries.⊤ ⊑ ts:ForecastingModel
∃ ts:scaleData.⊤ ⊑ ts:ForecastingModel
∃ ts:resampleData.⊤ ⊑ ts:Frequency
∃ om:hasUnit.⊤ ⊑ ts:Forecast
⊤ ⊑ ∀ ts:hasTimeSeries.ts:TimeSeries
⊤ ⊑ ∀ ts:hasForecast.ts:Forecast
⊤ ⊑ ∀ ts:hasAveragingPeriod.time:Duration
⊤ ⊑ ∀ ts:hasTrainingTimeSeries.ts:TimeSeries
⊤ ⊑ ∀ ts:hasInputTimeInterval.time:Interval
⊤ ⊑ ∀ ts:hasOutputTimeInterval.time:Interval
⊤ ⊑ ∀ ts:hasForecastingModel.ts:ForecastingModel
⊤ ⊑ ∀ ts:hasCovariate.⊤
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Data properties:

⊤ ⊑ ∀ ts:hasCheckpointURL.xsd:string
⊤ ⊑ ∀ ts:hasModelURL.xsd:string
⊤ ⊑ ∀ ts:hasRDB.xsd:string
⊤ ⊑ ∀ ts:hasTimeUnit.xsd:string
⊤ ⊑ ∀ ts:resampleData.xsd:boolean
⊤ ⊑ ∀ ts:scaleData.xsd:boolean

A.6.2 District heating network ontology

The latest version of the ontology is publicly available as OWL file on GitHub under:
https://github.com/cambridge-cares/TheWorldAvatar/blob/main/JPS_O
ntology/ontology/ontoheatnetwork/ontoheatnetwork.owl. A representation
of the ontology in Description Logic is provided below:

Classes:

oh:HeatingNetwork ⊑ = 1 oh:hasMinFlowRate.om:VolumetricFlowRate
oh:Consumer ⊑ = 1 oh:hasHeatDemand.oh:HeatDemand
oh:HeatProvider ⊑ = 1 oh:hasDownstreamGridConnection.oh:GridConnection
oh:HeatProvider ⊑ = 1 oh:hasUpstreamGridConnection.oh:GridConnection
oh:MunicipalUtility ⊑ oh:HeatProvider
oh:IncinerationPlant ⊑ oh:HeatProvider
oh:HeatGenerator ⊑ = 1 oh:hasConsumedGasAmount.oh:ConsumedGasAmount
oh:HeatGenerator ⊑ = 1 oh:hasGeneratedHeatAmount.oh:GeneratedHeatAmount
oh:HeatGenerator ⊑ = 1 oh:hasOperatingTime.oh:DurationInTimeInterval
oh:HeatGenerator ⊑ = 1 oh:hasRatedThermalPower.om:Power
oh:HeatBoiler ⊑ oh:HeatGenerator
oh:GasTurbine ⊑ oh:HeatGenerator
oh:GasTurbine ⊑ = 1 oh:hasCoGenElectricityAmount.oh:CoGenElectricityAmount
oh:GasTurbine ⊑ = 1 oh:hasMinimumIdleTime.om:Duration
oh:GasTurbine ⊑ = 1 oh:hasMinimumThermalLoad.om:Power
oh:GasTurbine ⊑ = 1 oh:hasRatedElectricalPower.om:Power
oh:EnergyInTimeInterval ⊑ om:Energy
oh:HeatDemand ⊑ oh:EnergyInTimeInterval
oh:ProvidedHeatAmount ⊑ oh:EnergyInTimeInterval
oh:GeneratedHeatAmount ⊑ oh:EnergyInTimeInterval
oh:ConsumedGasAmount ⊑ oh:EnergyInTimeInterval
oh:CoGenElectricityAmount ⊑ oh:EnergyInTimeInterval
oh:CO2EmissionInTimeInterval ⊑ om:Quantity
oh:CoGenRevenueInTimeInterval ⊑ om:AmountOfMoney
oh:DurationInTimeInterval ⊑ om:Duration
oh:NaturalGas ⊑ OntoChemPlant:FuelType
oh:CO2Factor ⊑ om:Quantity
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oh:CalorificValue ⊑ om:Quantity
oh:HigherCalorificValue ⊑ oh:CalorificValue
oh:LowerCalorificValue ⊑ oh:CalorificValue
OntoChemPlant:FuelType ⊑ = 1 oh:hasCO2Factor.oh:CO2Factor
OntoChemPlant:FuelType ⊑ = 1 oh:hasUnitPrice.oh:FuelUnitCost
OntoChemPlant:FuelType ⊑ = 1 oh:hasHigherCalorificValue.oh:HigherCalorificValue
OntoChemPlant:FuelType ⊑ = 1 oh:hasLowerCalorificValue.oh:LowerCalorificValue
OntoCAPE_Phase_System:ThermodynamicStateProperty ⊑ OntoCAPE_System:Property
om:Density ⊑ OntoCAPE_Phase_System:ThermodynamicStateProperty
om:Pressure ⊑ OntoCAPE_Phase_System:ThermodynamicStateProperty
om:SpecificHeatCapacity ⊑ OntoCAPE_Phase_System:ThermodynamicStateProperty
om:Temperature ⊑ OntoCAPE_Phase_System:ThermodynamicStateProperty
FIBO_Contracts:Contract ⊑ = 1 oh:hasCurrentUnitPrice.oh:UnitPrice
FIBO_Contracts:Contract ⊑ = 1 oh:hasMaxAnnualPurchaseVolume.om:Energy
FIBO_Contracts:Contract ⊑ = 1 oh:hasMinAnnualPurchaseVolume.om:Energy
oh:Tier ⊑ = 1 oh:hasCumulativeEnergyCap.om:Energy
oh:Tier ⊑ = 1 oh:hasUnitPrice.oh:UnitPrice
oh:UnitRate ⊑ om:Quantity
oh:UnitPrice ⊑ oh:UnitRate
oh:CHPBonus ⊑ oh:UnitRate
oh:CO2CertificatePrice ⊑ oh:UnitRate
oh:ElectricitySpotPrice ⊑ oh:UnitRate
oh:FuelUnitCost ⊑ oh:UnitRate
oh:GasUnitCost ⊑ oh:FuelUnitCost
oh:GridCharges ⊑ oh:UnitRate
oh:HourlyLabourCost ⊑ oh:UnitRate
oh:HourlyWearCost ⊑ oh:UnitRate
oh:DemandDrivenWearCost ⊑ oh:UnitRate
om:Cost ≡ OntoCAPE_Economics:Costs
oh:CostInTimeInterval ⊑ om:Cost
oh:FixedCost ⊑ oh:CostInTimeInterval
oh:VariableCost ⊑ oh:CostInTimeInterval
oh:LabourCost ⊑ oh:FixedCost
oh:FixedWearCost ⊑ oh:FixedCost
oh:FuelCost ⊑ oh:VariableCost
oh:EmissionCost ⊑ oh:VariableCost
oh:VariableWearCost ⊑ oh:VariableCost
oh:SwitchingCost ⊑ oh:VariableCost
oh:ShutDownCost ⊑ oh:SwitchingCost
oh:StartUpCost ⊑ oh:SwitchingCost
oh:isPublicHoliday ⊑ oh:CalendarEffect
oh:isSchoolVacation ⊑ oh:CalendarEffect
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Object properties:

∃ OntoMeta:hasPart.⊤ ⊑ oh:HeatingNetwork
∃ oh:suppliesHeatTo.⊤ ⊑ oh:HeatingNetwork
∃ oh:hasMinFlowRate.⊤ ⊑ oh:HeatingNetwork
∃ oh:hasHeatDemand.⊤ ⊑ oh:Consumer
∃ oh:providesHeatTo.⊤ ⊑ oh:HeatProvider
∃ oh:hasUpstreamGridConnection.⊤ ⊑ oh:HeatProvider
∃ oh:hasDownstreamGridConnection.⊤ ⊑ oh:HeatProvider
∃ oh:hasObservableProperty.⊤ ⊑ oh:GridConnection
∃ OntoCAPE_System:isOwnerOf.⊤ ⊑ oh:MunicipalUtility
∃ oh:hasPurchaseAgreement.⊤ ⊑ oh:MunicipalUtility
∃ oh:operates.⊤ ⊑ oh:MunicipalUtility
∃ OntoCAPE_Economics:hasCost.⊤ ⊑ (oh:HeatGenerator ⊔ oh:MunicipalUtility)
∃ OntoChemPlant:hasFuelType.⊤ ⊑ oh:HeatGenerator
∃ oh:hasRatedThermalPower.⊤ ⊑ oh:HeatGenerator
∃ oh:applicableOPEXComponent.⊤ ⊑ oh:HeatGenerator
∃ oh:hasGeneratedHeatAmount.⊤ ⊑ oh:HeatGenerator
∃ oh:hasConsumedGasAmount.⊤ ⊑ oh:HeatGenerator
∃ oh:hasOperatingTime.⊤ ⊑ oh:HeatGenerator
∃ OntoChemPlant:hasIndividualCO2Emission.⊤ ⊑ oh:HeatGenerator
∃ oh:hasOperatingAvailability.⊤ ⊑ (oh:HeatGenerator ⊔ oh:IncinerationPlant)
∃ oh:hasMinimumThermalLoad.⊤ ⊑ oh:GasTurbine
∃ oh:hasMinimumIdleTime.⊤ ⊑ oh:GasTurbine
∃ oh:hasRatedElectricalPower.⊤ ⊑ oh:GasTurbine
∃ oh:hasCoGenElectricityAmount.⊤ ⊑ oh:GasTurbine
∃ OntoCAPE_Economics:hasRevenue.⊤ ⊑ oh:GasTurbine
∃ oh:hasCO2Factor.⊤ ⊑ OntoChemPlant:FuelType
∃ oh:hasHigherCalorificValue.⊤ ⊑ OntoChemPlant:FuelType
∃ oh:hasLowerCalorificValue.⊤ ⊑ OntoChemPlant:FuelType
∃ oh:hasUnitPrice.⊤ ⊑ OntoChemPlant:FuelType
∃ oh:hasMaxHourlySupply.⊤ ⊑ oh:IncinerationPlant
∃ oh:hasMinHourlySupply.⊤ ⊑ oh:IncinerationPlant
∃ oh:hasProvidedHeatAmount.⊤ ⊑ oh:IncinerationPlant
∃ oh:isFulfilledBy.⊤ ⊑ FIBO_Contracts:Contract
∃ oh:hasMaxAnnualPurchaseVolume.⊤ ⊑ FIBO_Contracts:Contract
∃ oh:hasMinAnnualPurchaseVolume.⊤ ⊑ FIBO_Contracts:Contract
∃ oh:hasCurrentUnitPrice.⊤ ⊑ FIBO_Contracts:Contract
∃ oh:hasTieredUnitPrice.⊤ ⊑ FIBO_Contracts:Contract
∃ oh:hasTier.⊤ ⊑ oh:TieredUnitPrice
∃ oh:hasCumulativeEnergyCap.⊤ ⊑ oh:Tier
∃ oh:hasUnitPrice.⊤ ⊑ oh:Tier
∃ oh:applicableLocation.⊤ ⊑ oh:CalendarEffect
⊤ ⊑ ∀ oh:operates.oh:HeatingNetwork
⊤ ⊑ ∀ oh:providesHeatTo.oh:HeatingNetwork
⊤ ⊑ ∀ oh:hasMinFlowRate.om:VolumetricFlowRate
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⊤ ⊑ ∀ oh:suppliesHeatTo.oh:Consumer
⊤ ⊑ ∀ oh:hasHeatDemand.oh:HeatDemand
⊤ ⊑ ∀ OntoCAPE_System:isOwnerOf.(OntoPowSys:ThermalEnergyStorage ⊔

oh:HeatGenerator)
⊤ ⊑ ∀ OntoMeta:hasPart.oh:GridConnection
⊤ ⊑ ∀ oh:hasUpstreamGridConnection.oh:GridConnection
⊤ ⊑ ∀ oh:hasDownstreamGridConnection.oh:GridConnection
⊤ ⊑ ∀ oh:hasObservableProperty.OntoCAPE_Phase_System:

ThermodynamicStateProperty
⊤ ⊑ ∀ oh:hasPurchaseAgreement.FIBO_Contracts:Contract
⊤ ⊑ ∀ oh:hasMaxAnnualPurchaseVolume.om:Energy
⊤ ⊑ ∀ oh:hasMinAnnualPurchaseVolume.om:Energy
⊤ ⊑ ∀ oh:isFulfilledBy.oh:HeatProvider
⊤ ⊑ ∀ oh:hasMaxHourlySupply.om:Power
⊤ ⊑ ∀ oh:hasMinHourlySupply.om:Power
⊤ ⊑ ∀ oh:hasTieredUnitPrice.oh:TieredUnitPrice
⊤ ⊑ ∀ oh:hasCurrentUnitPrice.oh:UnitPrice
⊤ ⊑ ∀ oh:hasTier.oh:Tier
⊤ ⊑ ∀ oh:hasUnitPrice.oh:UnitPrice
⊤ ⊑ ∀ oh:hasCumulativeEnergyCap.om:Energy
⊤ ⊑ ∀ oh:hasRatedThermalPower.om:Power
⊤ ⊑ ∀ oh:hasRatedElectricalPower.om:Power
⊤ ⊑ ∀ oh:hasMinimumThermalLoad.om:Power
⊤ ⊑ ∀ oh:hasMinimumIdleTime.om:Duration
⊤ ⊑ ∀ oh:hasGeneratedHeatAmount.oh:GeneratedHeatAmount
⊤ ⊑ ∀ oh:hasConsumedGasAmount.oh:ConsumedGasAmount
⊤ ⊑ ∀ oh:hasCoGenElectricityAmount.oh:CoGenElectricityAmount
⊤ ⊑ ∀ oh:hasProvidedHeatAmount.oh:ProvidedHeatAmount
⊤ ⊑ ∀ oh:hasOperatingAvailability.oh:Availability
⊤ ⊑ ∀ oh:hasOperatingTime.oh:DurationInTimeInterval
⊤ ⊑ ∀ OntoCAPE_Economics:hasCost.om:Cost
⊤ ⊑ ∀ OntoCAPE_Economics:hasRevenue.oh:CoGenRevenueInTimeInterval
⊤ ⊑ ∀ oh:applicableOPEXComponent.oh:UnitRate
⊤ ⊑ ∀ oh:hasUnitPrice.oh:FuelUnitCost
⊤ ⊑ ∀ OntoChemPlant:hasFuelType.OntoChemPlant:FuelType
⊤ ⊑ ∀ oh:hasCO2Factor.oh:CO2Factor
⊤ ⊑ ∀ oh:hasHigherCalorificValue.oh:HigherCalorificValue
⊤ ⊑ ∀ oh:hasLowerCalorificValue.oh:LowerCalorificValue
⊤ ⊑ ∀ OntoChemPlant:hasIndividualCO2Emission.oh:CO2EmissionInTimeInterval
⊤ ⊑ ∀ oh:applicableLocation.http://purl.org/dc/terms/Location

A.6.3 Emission dispersion ontology

The latest version of the ontology is publicly available as OWL file on GitHub under:
https://github.com/cambridge-cares/TheWorldAvatar/blob/main/JPS_O
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ntology/ontology/ontodispersion/OntoDispersion.owl. A representation of
the ontology in Description Logic is provided below:

Classes:

disp:CO ⊑ disp:PollutantID
disp:CO2 ⊑ disp:PollutantID
disp:NO2 ⊑ disp:PollutantID
disp:NOx ⊑ disp:PollutantID
disp:PM10 ⊑ disp:PollutantID
disp:PM2.5 ⊑ disp:PollutantID
disp:SO2 ⊑ disp:PollutantID
disp:uHC ⊑ disp:PollutantID
disp:SimulationTime ⊑ time:Instant
disp:nx ⊑ om:Quantity
disp:ny ⊑ om:Quantity
disp:z ⊑ om:Height
disp:Scope ⊑ geo:Feature
disp:StaticPointSource ⊑ disp:PointSource
disp:DynamicPointSource ⊑ disp:PointSource

Object properties:

∃ om:hasQuantity.⊤ ⊑ disp:Emission
∃ disp:hasPollutantID.⊤ ⊑ disp:Emission
∃ disp:emits.⊤ ⊑ disp:PointSource
∃ disp:hasOntoCityGMLCityObject.⊤ ⊑ disp:StaticPointSource
∃ disp:hasPollutantID.⊤ ⊑ disp:DispersionOutput
∃ disp:hasHeight.⊤ ⊑ disp:DispersionOutput
∃ disp:hasDispersionMatrix.⊤ ⊑ disp:DispersionOutput
∃ disp:hasDispersionRaster.⊤ ⊑ disp:DispersionOutput
∃ disp:hasDispersionColourBar.⊤ ⊑ disp:DispersionOutput
∃ disp:hasValue.⊤ ⊑ disp:DispersionPolygon
∃ disp:hasName.⊤ ⊑ disp:OntoCityGMLNamespace
⊤ ⊑ ∀ disp:hasOntoCityGMLCityObject.⊤
⊤ ⊑ ∀ disp:emits.disp:Emission
⊤ ⊑ ∀ disp:hasPollutantID.disp:PollutantID
⊤ ⊑ ∀ om:hasQuantity.om:Density
⊤ ⊑ ∀ om:hasQuantity.om:MassFlow
⊤ ⊑ ∀ om:hasQuantity.om:Temperature
⊤ ⊑ ∀ disp:hasHeight.disp:z
⊤ ⊑ ∀ disp:hasDispersionMatrix.disp:DispersionMatrix
⊤ ⊑ ∀ disp:hasDispersionRaster.disp:DispersionRaster
⊤ ⊑ ∀ disp:hasDispersionColourBar.disp:DispersionColourBar
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Data properties:

⊤ ⊑ ∀ disp:hasName.xsd:string
⊤ ⊑ ∀ disp:hasValue.xsd:string
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