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Abstract

This paper presents a dynamic knowledge graph approach that offers a reusable,
interoperable, and extensible framework for modelling power systems. Domain on-
tologies have been developed to support a linked data representation of infrastructure
data, socio-demographic data, areal attributes like demand, and models describing
power systems. The knowledge graph links the data with a hierarchical representa-
tion of administrative regions, supporting geospatial queries to retrieve information
about the population within the vicinity of a power plant, the number of power plants,
total generation capacity, and demand within specific areas. Computational agents
were developed to operate on the knowledge graph. The agents performed tasks in-
cluding data uploading, updating, retrieval, processing, model construction and sce-
nario analysis. A derived information framework was used to track the provenance
of information calculated by agents involved in each scenario. The knowledge graph
was populated with data describing the UK power system. Two alternative models
of the transmission grid with different levels of structural resolution were instan-
tiated, providing the foundation for the power system simulation and optimisation
tasks performed by the agents. The application of the dynamic knowledge graph was
demonstrated via a case study that investigates clean energy transition trajectories
based on the deployment of Small Modular Reactors in the UK.

Highlights
• Dynamic knowledge graph approach for modelling power systems.

• Developed domain ontologies to instantiate data relevant to power systems.

• Designed computational agents for automated data processing and simulation.

• Case study investigates decarbonisation trajectories for UK power system.
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1 Introduction

Climate change has led to mounting global concerns. These include vulnerabilities in pub-
lic health [61], food safety [75, 96], water supply [47], the frequency of extreme weather
events [89] and other prospective hazards. The transition towards a low-carbon future is
strongly motivated by the recognition of greenhouse gas emissions as a significant driver
of climate change.

Energy-related carbon emissions are the dominant source of anthropogenic emissions. For
instance, in the USA and EU, these constitute roughly 80% of total emissions. While elec-
tricity accounts for only 20% of final energy consumption, the generation of electricity is
responsible for more than 40% of all energy-related emissions [98]. Global emissions re-
sulting from the combustion of fossil fuels for electricity (and heat) generation amounted
to roughly 14.5 GtCO2e in 2021, with the major contributions coming from coal (and
peat and oil shale), natural gas and oil respectively [48]. This motivates a pressing re-
quirement to outline a path to clean power systems. The UK government has declared its
commitment to achieving complete decarbonisation of all sectors of the national economy
by 2050 in order to meet its net zero emissions target [33]. Among these sectors, electric
power generation is responsible for approximately 16% of greenhouse gas emissions in
the UK, amounting to 53.7 MtCO2e in 2022 [73]. In order to reach this objective, the
recent “Energy White Paper” [88] and the “Ten-Point Plan for a Green Industrial Revo-
lution” [31] both outline a plan for the UK to advance the adoption of alternative energy
sources, for example wind and nuclear power, as a means of replacing fossil-fueled energy
generation. The analysis and study of power systems is a critical component of evaluating
potential transition pathways and the integration of renewable energy sources.

The comprehensive analysis of power systems requires diverse data encompassing differ-
ent social and technical domains. This could include details of power plant specifications,
statistics describing electricity generation and demand, sociodemographic and geospa-
cial information such as population density, geographic characteristics, and administrative
data. Moreover, the study of power networks may also necessitate establishing physical
and/or mathematical models to facilitate calculations, simulations, and optimisation pro-
cesses. Diverse categories of networks exist, including transmission grids (operating at
high voltage), distribution grids (functioning at middle/low voltage), microgrids, smart
grids, and others [53]. Among these, the transmission grid plays a pivotal role in renew-
able energy integration, such as variability management [80], grid expansion [5, 86], the
implementation of energy storage systems [83], as well as in inter-regional, inter-state,
and international long-distance power exchange [2, 43, 50]. Models that capture the fea-
tures of the transmission grid, including its nodal topological structure, specifications,
and constraints, offer an opportunity for in-depth analyses of many aspects of low-carbon
generation technology adoption and the implications for energy policy. For example, it
facilitates the examination of strategies for mitigating the disparity between power con-
sumption and generation, thereby contributing to the exploration of generation patterns
and the potential for balancing when integrating variable renewable energy [50].

The development of transmission grid models usually involves a collaborative effort, in-
tegrating collected data and information with the specialised knowledge of experts in the
field [34]. It is conceivable that conducting such a study requires significant manual ef-
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fort and decision-making, particularly in formulating rules to simplify real-world grids
to suit diverse research objectives and scopes. This opens the door to the possibility of
having multiple variants of a model to represent the same grid with different levels of
resolution and distinct model parameters. It is worth realising that managing these model
variants can be prone to errors in the absence of reliable provenance records and appro-
priate encapsulation measures [37]. The development of the models additionally involves
the processing of data from a multitude of sources, often presented in diverse formats.
This implies that data processing procedures are pervasive in the assembly of the models.

A number of challenges emerge: how to store, process and manage heterogeneous data
without introducing domain-specific barriers that inhibit interoperability? Moreover, how
to guarantee the self-consistency, traceability of multiple data streams and the absence
of human error throughout the research “journey” when exploring pathways for energy
system decarbonisation? This “journey” commences with data collection and represen-
tation to reflect the scope under consideration. Subsequently, rules and methodologies
are employed to construct a model, which is then furnished with input derived from data
to execute analysis tasks with different initial conditions and objectives. Ultimately, the
analysis results are post-processed and interpreted to yield insights and a deeper under-
standing of the cases under study.

These challenges have not been fully addressed. This hampers the efficiency of cross-
domain studies in energy systems and undermines data management. It introduces diffi-
culties when exploring diverse opportunities via the consideration of multiple scenarios
under different “what-if” conditions, each representing different low-carbon transition
routes. The World Avatar (TWA) [4], a dynamic knowledge graph (KG) implemented
using technology from the Semantic Web stack and integrated with computational agents
that perform a wide array of tasks provides a possible way forward.

The purpose of the paper is to develop an adaptable prototype of a dynamic knowledge
graph that can facilitate research within the broad context of power system analysis and
decarbonisation. The approach aims to promote data interoperability and overcome the
inherent cross-domain challenges described above. We use the UK power system as an
example to demonstrate the functionality and application of the prototype to investigate
potential trajectories for a clean energy transition while considering the transmission grid
characteristics. These capabilities broaden the application of TWA in the domain of power
systems by creating new and augmenting existing domain ontologies. By using the con-
cepts and properties specified in these ontologies, the power system components are rep-
resented ontologically via a “from reality to model” paradigm that provides a reusable,
interoperable and extensible method for conceptually representing power systems to fa-
cilitate the research within this field.

The remainder of this paper is organised as follows: Section 2 reviews the key informa-
tion about power system modelling, ontologies and the Semantic Web technologies and
includes a brief introduction of The World Avatar. Section 3 describes the methodolog-
ical developments in the form of the ontologies and computational agents for studying
power systems to investigate the potential decarbonisation trajectories. Section 4 is a case
study that demonstrates the application of the approach by examining the consequences
of different strategies for the deployment of Small Modular Reactors (SMRs). Finally,
Section 5 draws conclusions and discusses future research directions.
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2 Background

2.1 Power flow analysis of decarbonised energy systems

Power Flow (PF) analysis [62] and Optimal Power Flow (OPF) analysis [68] are funda-
mental tools in power system engineering. They play a critical role in applications such
as grid stability assessment, voltage regulation, network planning, and loss minimisation.
With the imperative shift toward power system decarbonisation, PF and OPF analyses are
important tools for evaluating the impact of the integration of renewable energy sources.

PF analyses have been improved and applied to tackle the challenges arising from stochas-
tic power injections due to the penetration of renewable energies, such as employing
graph neural network (GNN) models trained on historic data to predict power flow out-
comes [93], developing a residual-learning-inspired neural network (NN) framework to
alleviate the computational load in traditional probabilistic power flow analysis [26]. The
integration of charging stations into the grid is imperative to meet the needs of down-
stream clean electricity consumers, for example, to support the uptake of electric vehicles
(EVs). Assessing the impacts on grid operations, including considerations of voltage sta-
bility and load fluctuations, as well as evaluating optimal station siting and sizing, can be
effectively accomplished through stochastic PF analysis [49].

Stochastic OPF analyses are widely applied in studying hybrid power systems with re-
newable energy sources [1, 3, 28, 59, 79, 81, 90]. These analyses specifically target
challenges associated with the inherent unpredictability and intermittency of renewable
energy sources, such as difficulties in maintaining voltage and frequency stability. OPF
analysis also finds application in studying integrated energy storage systems [25, 42, 95]
and optimising the control of energy storage devices in microgrids [56]. Maheshwari et al.
[58] offers an overview of the development of OPF in the context of its application with
renewable energy sources.

In addition to considering the integration of renewables, current research explores the in-
tegration of nuclear power into the power systems of Europe and North Africa [43], the
UK [22, 77], and the Association of South East Asian Nations (ASEAN) countries [66] to
achieve a zero-emission targets. These studies are data-driven, computer-aided, and grid-
model-based problems but rely on a relatively traditional and less automated approach.
Implementing a “data-tool” methodology, integrating data, models, algorithms, and com-
putational tools, can enhance and streamline the research process.

2.2 The Semantic Web, Linked Data, ontologies and knowledge graphs

The Semantic Web [19] is an extension of the current World Wide Web that incorpo-
rates machine-interpretable metadata to represent data and information in an interlinked
manner. In the context of the Semantic Web, the word semantic refers to the meaning
and interpretation of data, while web conveys the idea of a navigable space of intercon-
nected objects. Its ultimate goal is to empower computers for more effective manipulation
of information on behalf of humans, thereby encouraging the development of automated
applications based on internet technologies.
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Linked Data is a specific implementation and a set of best practices within the broader Se-
mantic Web. It is grounded in principles that involve the use of HTTP Uniform Resource
Identifiers (URIs) for resource identification, utilising Resource Description Framework
(RDF) for data presentation, and linking data to other data sources [18, 20]. RDF [51] is
a foundational data model for metadata, presenting data through SPO (subject, predicate,
and object) triples. It offers a range of syntax notations and data serialisation formats,
facilitating the representation of information on the web in the form of a directed graph.

Resources on the Semantic Web are defined as instances of ontological classes identi-
fied using Internationalised Resource Identifiers (IRIs) to ensure an unambiguous rep-
resentation. An ontology defines a common vocabulary to share information within a
domain of interest, comprising machine-interpretable definitions of concepts (also known
as classes), relationships among them (referred to as object properties and data proper-
ties), and restrictions on these relations [67]. An object property creates a connection
between instances of classes, while a data property associates an instance of a class with
a specific data element. Ontologies are commonly conveyed and published through ontol-
ogy languages, with the Web Ontology Language (OWL) [16] being a prevalent example.
OWL is a Description Logic-based semantic markup language for authoring and sharing
ontologies. It is developed as a vocabulary extension of RDF and originates from the
DAML+OIL Web Ontology Language [45], which is widely adopted for its capacity to
represent complex knowledge models and support reasoning and inference.

From the perspective of a Description Logic (DL) [11] formalism, ontologies can be alter-
natively expressed as a TBox (Terminological Component), complemented by the ABox
(Assertional Component). The TBox provides the class hierarchy and their associative
relations, while the ABox instantiates (“operationalises”) the TBox by populating it with
individual instances and their attributes. Within the context of DL-based ontologies, a
knowledge base (KB) is constituted by an ontology (TBox) and a set of individual in-
stances of classes (ABox). However, the distinction between where an ontology con-
cludes and a knowledge base commences may present a nuanced delineation in practical
applications [67]. A knowledge graph (KG), formed by ontologically described data, can
be thought of as a KB structured as a directed graph. The graph is a “node-edge” network,
where the nodes are concepts or their instances (data items) and the edges are links be-
tween related concepts or instances. KGs are usually constructed following the principles
of Linked Data, promoting machine readability, resolving inconsistencies, and enhancing
discoverability across data sources on the Semantic Web. These practices align with the
FAIR (findability, accessibility, interoperability, and reusability) data principles [29].

Knowledge graphs are stored and managed in graph databases, also known as triple stores
or RDF stores. Various software solutions are available to cater for diverse needs, includ-
ing Java-based RDF4J (formerly Sesame) [35], Jena TDB [7], and Lightweight Fuseki [6].
For reasoning-supported large-scale applications, GraphDB [71] and Virtuoso [72] (with
virtualisation support) are viable. Blazegraph [21] stands out for its high performance
in large-scale scenarios, and AllegroGraph [41] distinguishes itself through its unique
SPARQLMotion feature, which allows users to define complex data processing tasks.
Triple stores offer access endpoints, referred to as SPARQL endpoints and identified by
IRIs, facilitating the querying and updating of data using SPARQL [78]–a World Wide
Web Consortium (W3C)-recommended semantic query language.
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2.3 The World Avatar – a dynamic knowledge graph

The World Avatar (TWA) [4, 91] proposes the use of a dynamic knowledge graph – a
knowledge graph that is operated on and kept up-to-date by autonomous computational
agents – as a universal approach to implement connected digital twins. The vision is of
an open digital ecosystem that unlocks the power of data and knowledge to support better
decision-making within the context of complex systems of systems.

TWA includes the notion of a base world that describes the real world, and parallel worlds
that act as “exploratory containers” to explore hypothetical scenarios relative to the base
world [37]. The design intent is that the parallel worlds overlay the base world, where
unchanged entities remain connected to the base world and changes to entities exist only
in the parallel world, so do not interfere with the base world [4]. This is illustrated in
Fig. 1.

Figure 1: The “base world” and “parallel worlds” in The World Avatar. The power sys-
tem of the UK is exemplified. The base world describes the current fossil-fired
power system in the UK, while parallel worlds explore options for decarboni-
sation via the deployment of SMRs.

TWA is realised using technologies from the Semantic Web stack [97] and implemented
as a dynamic knowledge graph operated on by computational agents. This facilitates de-
centralised hosting and the sharing of data and agents through web-based HTTP services.
Ontologies are used to represent and link entities, creating a rich and seamlessly intercon-
nected data network. This interconnectedness transcends domain boundaries, fostering a
holistic semantic context and thus promoting interoperability. This facilitates a unified
and integrated data management environment, providing a uniform platform for hosting,
querying, traversing data, and retrieving related information. The use of ontologies, as
opposed to simple mechanical linking of data, ensures that the relationships carry logical
significance, enabling the use of reasoning to infer concealed information.
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These characteristics collectively enable TWA to address cross-domain applications. Thus
far, TWA has been applied across diverse domains including chemistry and laboratory
automation [12–14, 38–40, 52, 55], energy systems [8–10, 34, 70, 84, 85, 100], pro-
cess engineering and eco-industrial parks [36, 60, 101–103], and smart city and disaster
evaluation [23, 24, 44]. Reusable tools and frameworks have been developed to support
these applications. Of particular relevance to the current work is the derived information
framework for tracking data provenance and dependencies within a dynamic knowledge
graph [15]. Other examples include an agent discovery and composition service [104] and
a smart contract system [105] to facilitate the use of combinations of agents to achieve
more complex tasks. Zhou et al. [106–108] and more recently Tran et al. [92] and Pas-
cazio et al. [74] have and demonstrated the possibility of knowledge-based intelligent
query interfaces to access (chemical) data from dynamic knowledge graphs.

2.4 Domain ontologies for decarbonised power systems

A number of domain ontologies for power systems have been developed. Pradeep et al.
[76], introduced a high-level ontology for exchanging event information among inter-
connected power system operators. Santos et al. [82] proposed an ontology to facilitate
integration and communication among multi-agent systems involved in electricity market
simulations, while Huang and Zhou [46] presented a detailed ontology for the electrical
grid, focusing on the description of grid assets.

More recent contributions include DABGEO [27], a reusable global ontology offering
a common representation of energy domains, OntoPowSys [34], a domain ontology de-
signed for formally representing Energy Management Strategies (EMS) in a wide indus-
trial estate, and OntoEIP [103], an ontology addressing concepts relevant to eco-industrial
parks, including the energy network. Other notable contributions have been made by Ko-
valyov and Lukinova [54], who presented an ontology delineating major operational pro-
cesses in the distribution of heat and electric grids, Schweikert et al. [87], who crafted an
ontology tailored for photovoltaic systems in smart grids, and Monaco et al. [63], who
proposed an ontology targeting non-functional requirements in industrial energy manage-
ment systems (IEMS).

3 Methodology

3.1 Conceptual representation of a power system

The conceptual architecture of the knowledge graph used to represent power systems is
illustrated in Fig. 2, utilising the UK as an illustrative example. The knowledge graph is
constructed sequentially. The first step is to represent the tangible elements and entities
from the physical world that are relevant to the power system. This includes informa-
tion regarding power plants and local electricity consumption, population statistics and
geospatial information specific to UK administrative areas [69].
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Figure 2: The conceptual architecture of the knowledge graph representing the UK power
system.

The knowledge graph representation includes simplified topological structures that model
the power transmission grid. This is illustrated in the central section of Fig. 2. This
abstraction bridges the gap between describing the physical reality of the transmission
to describing something that is suitable for use by power flow models. The simplified
topological representation of the grid includes conceptual elements such as electric buses
and branches, and the relationships between them. As different simplification strategies
may be applied, multiple variants of the transmission grid models can co-exist in the
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knowledge graph. Each of these topological models reflects distinct internal structures
characterising the transmission grid, tailored to fulfil different modelling needs.

Finally, the knowledge graph specifies which real-world generators and electricity demand
data are associated with which nodes in the topological transmission grid models. This
is illustrated in the top section of Fig. 2. This provides the information that is required
to develop a mathematical representation of the power system to serve various simula-
tion objectives. By constructing the knowledge graph in this manner, the description of
the power system uses a principled knowledge-based approach to traverse the continuum
from real-world representation to conceptual modelisation, reflecting various levels of
conceptualised world existence.

3.2 Ontology development

The first step in creating the knowledge graph is to define the required concepts and rela-
tionships. Fig. 3 provides an overview of the employed ontologies and the primary con-
cepts that each ontology offers. The domain ontologies, OntoPowSys [34], OntoEIP [102,
103] and OntoCAPE [64] are reused and expanded where needed. A new ontology – On-
toEnergySystem – is introduced to define the additional concepts and relationships that are
required to describe and model the full power system. Classes are defined using the Web
Ontology Language (OWL), and are linked to broader and more generic classes, known
as the “least common subsumers”, using the “subclassOf” relationship. This pattern fa-
cilitates the creation of hierarchical structures within the ontologies.

OntoEnergySystem

OntoPowSys

OntoCAPE

OntoEIP

Electricity consumption

Electric
power system

Geographical information

Topological model

Power system 
mathematical model

Components of the model 
(bus, generator and 

electrical line) 

Power plant 
and its detailed 

attributes

Provides some of 
the superclasses 
for the other three 

ontologies

System hierarchy 
and its aspects

Generator technology
Fuel type

Figure 3: The applied ontologies and the associated concepts in representing the power
system.
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3.2.1 OntoEnergySystem

OntoEnergySystem (Fig. 4) defines concepts related to physical assets within an energy
system, the energy system itself, its properties, corresponding topological models, and
associated geographical areas.

Concept Literal Object property Data property
rdfs:subClassOf
rdfs:subPropertyOf

:Asset

ontocape:System

:GeographicalArea

ontocape:Property

xsd:string

:hasCode

:hasRelevantPlace

:isObservedIn

ontocape:hasProperty

:EnergySystem

:ElectricPowerSystem

ontocape:isDirectSubsystemOf

ontocape:contains

ontoeip:PowerPlant

:hasWGS84LatitudeLongitude

geospatial:lat-lon

ontocape:contains

:EnergyConsumption:enablesEnergyConsumptionOf

:enablesElectricityConsumptionOf :TotalElectricityConsumption

:isObservedIn

:AdministrativeDivision

:SystemTopology

:PowerGridTopology

:isTopologyof

:hasLocalAuthorityCode

:isTopologyof

:includesConsumption

:Non-DomesticElectricityConsumption:DomesticElectricityConsumption

:includesConsumption

:IndustrialElectricityConsumption

:includesConsumption

:CommercialElectricityConsumption

:includesConsumption

ontocape:hasRealizationAspect

ontoeip:PowerGenerator

ontocape:realizes

ontoeip:PowerGeneration

ontoeip:PlantGenerationTechnology
ontoeip:usesGenerationTechnology

ontoeip:consumesPrimaryFuel ontoeip:Fueltype

ontoeip:DesignCapacity

ontocape:hasFunctionalAspect

ontocape:hasRequirementsAspect

ontocape:isAchievedThrough

ontocape:ScalarValue
ontocape:hasValue

OntoEnergySystem

Figure 4: OntoEnergySystem ontology. Concepts and properties defined in the OntoEn-
ergySystem appear without a prefix.

The key classes are described below.

• Asset class: Physical infrastructure or equipment for generating, transmitting and
distributing energy resources.

• GeographicalArea class: A demarcated area of the Earth. An AdministrativeDi-
vision is a type of GeographicalArea.

• EnergySystem class: A system that delivers energy services to consumers includ-
ing households, industries, and commercial facilities.

• EnergyConsumption class: The amount of energy consumed by end users in a
GeographicalArea.
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• ElectricPowerSystem class: An electrical system composed of Assets that
generate, transmit, and distribute electricity to meet the demands of the applica-
tions and end-users.

• TotalElectricityConsumption class: The amount of electricity consumed by
end users. This class is divided into the electricity utilised by residential consumers,
DomesticElectricityConsumption, and that consumed for non-residential pur-
poses, Non-DomesticElectricityConsumption, according to the categories
used for reporting in the UK [32]. The latter further includes usage for industrial
and commercial purposes.

• PowerPlant class: An industrial facility that converts energy from sources like
fossil fuels, renewables or nuclear reactions into electricity. A power plant typically
has a designated capacity and may include one or more generators using specific
power generation technologies. It is classified as an Asset, and characterised by
attributes like name, geolocation, owner and construction year.

By defining these concepts, otherwise isolated data associated with the entities illustrated
at the bottom of Fig. 2 can be represented and linked in a knowledge graph with embedded
semantics. As data interconnects and relationships are made explicit, a deeper context is
forged. This elevates the information beyond being a mere collection of individual data
points, and distinguishes knowledge graphs from other data formats. The augmented
information can be queried and explored to benefit applications reliant on these insights.

3.2.2 OntoPowSys

OntoPowSys [34] defines concepts that are leveraged to represent the topological and
mathematical models of the power system, as shown in the middle and upper sections
of Fig. 2. OntoPowSys was expanded to include concepts that allow entities from the real
world to be mapped to their abstract counterparts in the topological and mathematical
models. The extended version of OntoPowSys is shown in Fig. 5.

The key classes are described below.

• PowerGridTopology class: A topological model that provides information about
the connections between the bus nodes and different components of power trans-
mission systems.

• PowerSystemModel class: A description of an electric power transmission grid
system, formulated using a PowerGridTopology.

• OptimalPowerFlowModel class: A description of an electric power transmission
grid system designed for initialising optimal power flow analyses.

• PowerFlowModel class: A description of an electric power transmission grid sys-
tem designed for initialising power flow analyses.

• BusNode class: A physical point of connection between two electrical devices,
playing a crucial role in constructing the electrical network topology.
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• ElectricalLine class: Cables with specified voltage levels, whether above ground
or underground, through which electricity is transmitted to an area or building.

• ElectricalGeneratorModel, ElectricalBusModel and ElectricalBranch-
Model classes: Mathematical model components that represent PowerGenerator,
BusNode and ElectricalLine in the topological model.

Concept Literal Object property Data property
rdfs:subClassOf
rdfs:subPropertyOf

ontoes:powerGridTopology

ontocape:isComposedOfSubsystem

:BusNode

ontoes:hasWGS84LatitudeLongitude

geospatial:lat-lon

ontocape:isComposedOfSubsystem

:ElectricalLine

ontocape:leaves/enters

ontocape:Cylinder

ontocape:hasShapeRepresentation

ontocape:Height

ontocape:hasValue

ontocape:ScalarValue

ontocape:isComposedOfSubsystem

:OverheadLine

:hasVoltageLevel

xsd:string

:hasNumberOfParallelLine

xsd:integer

ontocape:isComposedOfSubsystem

:PowerGenerator ontocape:hasOutput

ontoeip:PowerGenerator

ontoes:isTopologicalRepresentedOf

:hasFixedMaintenanceCost

:FixMaintenanceCosts

:hasCost

:OperationalExpenditureCosts

:hasFuelCost
:FuelCosts

ontoeip:CO2EmissionFactor

ontoeip:hasEmissionFactor

:PowerSystemModel

:hasModelingPrinciplexsd:dateTimeStamp

:ElectricalBranchModel

ontocape:isExclusivelySubsystemOf

:ElectricalBusModel

ontocape:isModeledBy

:ElectricalGeneratorModel

:OptimalPowerFlowModel

:PowerFlowModel

                   ontocape:isModeledBy

ontocape:has_length

ontocape:isModeledBy

            ontocape:hasTimestamp

Power grid topology

Power grid mathematical model

Figure 5: Extended OntoPowSys ontology. Concepts and properties defined in the ex-
tended OntoPowSys ontology appear without a prefix. The prefix “ontoes” is
short for OntoEnergySystem.

By using OntoPowSys, the provenance of the information used by the models (i.e., which
data contribute to which models) is explicitly integrated into the data structure. Using
this information, the results of scenario analyses can be traced back to their respective
real-world entities for subsequent processing and interpretation.

3.3 Agent development

Agents were developed to perform specific tasks on the knowledge graph. Fig. 6 shows the
workflow of the key agents in this study, highlighting that the population of the knowledge
graph describing the power system is a sequential process, where the information assem-
bled in previous steps is carried forward for use in subsequent steps. The figure indicates
the specific agent(s) responsible for each segment of the knowledge graph, identified by
corresponding zones with labels. The activities of each agent are described below.
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Figure 6: Sequence diagram showing the agents involved in the creation of the knowledge
graph describing the power system.

3.3.1 Initialiser agents

The PowerSystemInitialiser, PowerPlantInitialiser and ElectricityDemandInitialiser agents
read data from DUKES [30], sub-national gas consumption data [32] and the UK high-
resolution population density data [94] to construct a knowledge graph describing power
plants and electricity consumption. The data are represented using the OntoEnergySys-
tem, OntoEIP, and OntoCAPE ontologies. No queries are made to the knowledge graph
by these agents at this stage, rather the role of the agents is to ingest new data.

3.3.2 Power grid topology model constructor

The PowerGridTopologyConstructor agent uses terms from OntoEnergySystem and the
extended OntoPowSys ontology to represent grid topology models in the knowledge graph.
Unlike the initialiser agents, this process entails querying the knowledge graph, as the
topology construction relies on information about the power system.
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Fig. 7 shows an activity diagram for the PowerGridTopologyConstructor. The initial in-
formation required by the agent is shown in the Config box. The agent proceeds to in-
stantiate the topology components, bus nodes and branches. The primary attributes of bus
nodes include their geolocation, while branches are characterised by their interconnec-
tions with buses and respective voltage levels.

After the components of the topology model are instantiated, the agent enters a loop in
which each real-world power plant (except those in Northern Ireland, which operate on
a separate power grid) is represented as a generator that is assigned to a bus node in the
topology model. This is depicted in the Loop box. Two methods are provided in this
agent for bus allocation: SameRegionMethod and ClosetBusMethod. The former is
designed for simple topology models where each region has at most only one bus. The
latter method is more capable and is designed to handle any topology model. In this study,
two topology models were instantiated: one with 10 buses and 14 branches [8] generated
by SameRegionMethod, and another with 29 buses and 99 branches [17] created using
ClosetBusMethod. The structure and specifications of both bus models are detailed in
the Appendix.

The activity of the PowerGridTopologyConstructor agent concludes after full configura-
tion of a topology model including all bus, branch, and generator components.

3.3.3 Power grid mathematical model constructor

The PowerGridMathematicalModelConstructor agent uses terms from the extended On-
toEnergySystem ontology to represent the information needed by power flow and opti-
mal power flow analyses. Figure 8 shows an activity diagram. The agent queries the
knowledge graph to retrieve a topology model. This provides the starting point for the
subsequent steps. The agent can optionally receive input to specify additional generators,
such as newly introduced renewables, or indicate the removal of any generators during
mathematical model construction. This boosts the adaptability of model construction for
application in diverse scenario analyses.

The agent enters a first loop in which a load is assigned to each bus. This data is used
by PF and OPF analyses to determine the power injection required to balance the de-
mand load. Two methods to do this are provided: AllocateRegionalLoadMethod
and AllocateClosetAreaLoadMethod. The former is designed for use with data that
specifies demand by region. The latter is designed for data with any level of granularity.
After the loop, the agent processes the branch data to instantiate resistance, reactance, and
susceptance data. PF and OPF analyses use these data to calculate branch (grid) losses.

The agent now enters a second loop in which it initialises the information about each
generator. This includes an initial guess of the generator output. In the case of OPF
analysis, where the objective function typically involves economic and environmental
considerations, it is necessary to include a cost factor (describing the cost of generating
electricity) and an emission factor (describing the cost imposed on emissions from the
generator) in terms of a carbon tax and CO2 emission intensity factor.

The data instantiated by the PowerGridMathematicalModelConstructor agent is used in
simulation tasks by an PFandOPFAnalysis agent.
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Figure 7: Activities conducted by the PowerGridTopologyConstructor agent. “TWA end-
point” refers to the triple store maintaining the TWA knowledge while “ONS
endpoint” denotes the ONS Linked dataset [69].
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Figure 8: Activities conducted by the PowerGridMathematicalModelConstructor agent.
The shaded box “ONS and TWA” refers to both TWA and ONS endpoints that
are used simultaneously in the federated SPARQL query.
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3.3.4 Simulation agent: Power Flow and Optimal Power Flow analysis

The PFandOPFAnalysis agent acts as a wrapper for the Python package PYPOWER [57].
Figure 9 shows an activity diagram. The agent supports both PF and OPF analysis. The
output of PF analysis includes the voltage of each bus, along with their respective active
and reactive powers, and information about branch (grid) losses. The output of OPF
analysis also includes the output of each generator, along with the objective function
value, typically representing the total operation cost. The corresponding CO2 emissions
are subsequently calculated using the generator output and its carbon emission intensity
factor. These outputs are written back to the knowledge graph.

Power Flow and Optim al Power Flow Analysis Agent Knowledge graph

Receive simulation 
request

[Output the model type, OPF or PF; the model input for buses, branches and generators]

Reformat the model input 
to list which can be fed 

into the algorithm
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PF

Conduct PF 
simulation 

Conduct OPF 
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[update the model output]
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or not?
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Record and 
markup the 

model output 
data

Abolish the 
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and log the 
diverge message
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TWA endpoint

Figure 9: Activities executed by the PFandOPFAnalysis agent.
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4 Case study

This case study was performed using the proposed knowledge graph method to explore the
outcome (generation mix, regional load shifting, etc.) of replacing fossil-fired generators
with SMRs to move towards a zero-carbon emission target in the UK. A carbon tax (emis-
sion penalty) was applied in this analysis as the economic driving force to motivate the
replacement. The study considers three scenarios representing varying levels of wind and
solar availability, WMSM (medium), WHSH (high), and WLSL (low). The medium, high
and low levels are based on weekly average, weekly maximum, and weekly minimum
values (2022) for wind and solar power generation in the UK. See Figure 10.

The study considers the placement of SMRs with specifications based on a Rolls-Royce
prototype, with a design capacity of 470 MW and a reported Levelised Cost of Electricity
(LCOE) ranging from 40 to 60 £/MWh [99]. The simulations in this study use an LCOE
based on the upper bound of 60 £/MWh with a “balanced strategy” for SMR placement.
The balanced strategy equally prioritises minimising risks and transmission distance (as
a proxy for transmission losses) [100]. Each site permits a maximum of 4 SMRs. The
29-bus model [17] was used to conduct the analyses in the case study. This constrains the
analyses to solutions that are feasible with the current grid.

Figure 10: Daily production of wind and solar energy in 2022 of GB [65].

4.1 Site selection agent

The SMR site selection was performed by a SMRSiteSelector agent. Figure 11 shows
an activity diagram. Potential sites are determined based on the sites of existing and
decommissioned power plants of the type specified in the agent Config. In this study, we
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specifically consider fossil-fired and traditional nuclear power plant sites as candidates for
deploying SMRs. The choice of whether to place, and how many SMRs to place on each
site considers two objectives: safety and distance from centres of demand (as a proxy for
transmission losses). The data to evaluate the objectives are obtained through geospatial
queries of the knowledge graph. There is a trade-off between the objectives because while
placing SMRs at a distance from populated areas increases safety, it will also increase
transmission distance (and therefore transmission losses) as most of the populated areas
overlap with the high-demand areas. The agent uses a genetic optimisation algorithm to
find the corresponding Pareto Front, which is subsequently sampled to assess solutions
with different relative weighting of the objectives. Each sampled result comprises a set
of chosen sites and the number of SMRs on each site. Full details of the site selection
algorithm are given by Xie et al. [100].

SM R Site Selector Knowledge graph

Recieved site selection 
request

[Output the locations of the condidate sites]

A two-objective genetic 
algorithm is applied to 

selecte the sites from the 
candidates list and 

determine the number of 
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[Output the list of selected SMR sites]

TWA endpoint

Config: number of 
SMRs and their unit 
capacity, protential 
site type, weight list

TWA endpoint

Sample the results on the Pareto 
Front based on the specified 
weight, reflecting the balance 
between the two objectives

[Output a set of results on the Pareto Front]

[query location of the power plants 
specified as condidates sites]

[query the population within 
the affecting area of each site; 
query the demand areas]

Figure 11: Activities executed by the SMRSiteSelector agent.

Figure 12 shows the major data flows between the knowledge graph and the interactions
of the agents employed in the case study. The derived information framework [15] was
used to record the provenance of the information added to the knowledge graph by the
agents. The execution of each agent is accompanied by the instantiation of a “derivation”
and associated markup. Taking the SMRSiteSelector agent as an example, the outputs
(information about SMR sites) are marked as belongsTo the derivation, which itself is-
DerivedFrom a list of inputs. The execution of the PowerGridModelConstructor is ac-
companied by the instantiation of a new derivation that isDerivedFrom the information
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about the selected sites and topological data about the grid and calculates information that
belongsTo the PowerGridModelConstructor derivation. The execution of the OPFAnaly-
sisAgent is accompanied by the instantiation of a new derivation that isDerivedFrom the
information that belongsTo the PowerGridModelConstructor agent, and calculates data
including generator outputs, branch losses, total operational cost, and emission cost due
to carbon tax that belongsTo the OPFAnalysisAgent derivation.
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Figure 12: The inputs, outputs, and interactions of the agents involved in the SMR re-
placement case study.

4.2 Medium renewable availability scenario

Figure 13 summarises the main outcomes of the WMSM scenario as the carbon tax es-
calates from 0 to more than 100 £/tCO2. “Base case” refers to the case without SMR
adoption, with all other conditions remaining consistent with the scenario.

No SMRs are adopted at low levels of carbon tax (top row) due to the lack of economic
viability, and the outputs from the base case and SMR adoption case are equivalent. Scot-
land and northern England predominantly source their electricity from clean energy, en-
compassing wind and conventional nuclear power. Scotland is a major power producer,
contributing nearly 5 GW, and supplies power to England through the transmission grid
(not shown). In the central regions of England, specifically Yorkshire & Humber and
East Midlands, there is a substantial dependence on coal-fired generation. Despite the
availability of capacity for natural gas generation, the use of coal remains economical at
this level of carbon tax. While the West Midlands is characterised by a high proportion
of solar generation, the total capacity is low. Among the regions generating more than
4 GW, only Scotland qualifies as “clean”. In contrast, the South East, East Midlands, and
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Figure 13: WMSM scenario. Regional energy mix (left) and total power output (right).
Scotland (SCOT), Wales (WALES), South West (SW), South East (SE), London
(LDN), East England (EE), West Midlands (WM), East Midlands (EM), York-
shire & Humber (YH), North West (NW) and North East (NE).

East England, despite a combined share of nuclear, wind and solar energy, are significant
emitters due to a reliance on fossil fuel.

At a carbon tax of 50 £/tCO2 (middle row), both the base case and SMR adoption case
show the phasing out of coal-based power generation. In the base case, the use of coal is
entirely replaced by natural gas, with natural gas now the dominant energy source across
the majority of regions. The cleanest regions, Scotland and the North East, show minimal
change because the economics of clean energy is unaffected by the carbon tax. The most
noticeable change is observed in the East Midlands, where the output decreases from
4.5 GW to around 3 GW with the shift from coal to natural gas. In the SMR adoption
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case, the use of coal is displaced by the SMRs, with 19 SMRs providing 8.9 GW of power
across Wales (8 units), South West (3 units), East Midlands (4 units), and South East (4
units). Scotland and the North East again show minimal change, with Scotland remaining
as the largest power producer. Relative to the base case, the SMRs reduce the dependence
on natural gas in southern regions, although natural gas remains cost-competitive so is
not totally displaced. The SMRs double the power output from Wales relative to the base
case, suggesting the potential for notable variations in bus voltage levels, branch losses
and power flow direction.

At a carbon tax exceeding 100 £/tCO2 (bottom row), the base case remains the same
as at 50 £/tCO2 because it has already attained optimal performance with no cleaner (i.e.,
cheaper) alternatives available. In the SMR adoption case, the stringent emission penalties
favour the use of SMRs over natural gas. An additional 14 SMR units have been integrated
to replace the remaining natural gas generation, bringing the total to 33 units supplying
15.5 GW. This fulfils over half of demand, with the remainder provided by wind, solar and
conventional nuclear generators operating at their maximum capacity under the prevailing
WMSM availability. The North West (4 units) and East England (8 units) emerge as the
new host locations, with both seeing an increase in their regional output. Aside from
Wales, the South East shows a major change with output dropping to nearly half that of the
corresponding base case due to the shift away from natural gas. Interestingly, the balanced
placement strategy results in a significant proportion of the SMR adoption occurring in
southern regions that traditionally rely on fossil fuels. This implies that choosing on-site
replacement at fossil-fired sites may be a prudent strategy consistent with balancing risk
and transmission losses.

4.3 High renewable availability scenario

Figure 14 shows the main outcomes of the WHSH scenario. This reflects a hypothetical
scenario to investigate the adoption of SMRs as an auxiliary technology in support of a
policy that prioritises renewable energy, resulting in a significant increase in capacity.

No SMRs are adopted at low levels of carbon tax (top row) as per the WMSM scenario. The
dependence on natural gas and coal (less visible on Fig. 14) is alleviated with the increased
availability of wind and solar power. The wind power is such that output from Scotland
now exceeds 7 GW, significantly surpassing other regions and intensifying dependence
on Scotland. Solar capacity, concentrated in southern regions, is less than a fifth of total
wind capacity and is insufficient to counterbalance this dependence. This results in greater
losses because of increased long-distance power transmission (not shown). At a carbon
tax of 50 £/tCO2 (middle row), the use of coal is entirely replaced by natural gas in both
the base case and SMR adoption case. In the SMR adoption case, 5 SMRs providing
2.4 GW of power are deployed, but the dominant status of Scotland persists, reflected
in a relatively insignificant change in the output of the other regions. At a carbon tax
exceeding 100 £/tCO2 (bottom row), all fossil-fired power generation has been replaced
by SMRs, with a total of 12 SMRs contributing 5.6 GW in Wales, the East Midlands
and East England. The East Midlands is now the second-largest energy provider after
Scotland.
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The results of this scenario reflect that a predominant reliance on wind power has the ten-
dency to concentrate power generation in specific locales, displacing power generation in
proximity to areas of demand. This could pose a substantial challenge for high-demand
areas, including industrial zones in the middle of England around Liverpool, Manchester,
Leeds, as well as London and regions like the South West that traditionally rely on local
coal and natural gas plants, which now find themselves reliant on long-distance transmis-
sion of power. This would be particularly the case if the UK proceeds with its planned
expansion of onshore wind capacity on Scotland [31]. In comparison, balanced siting
strategy for SMRs can alleviate this, unlike solar and wind, which heavily depend on
climatic and geographical conditions.

Figure 14: WHSH scenario. Regional energy mix (left) and total power output (right).
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4.4 Low renewable availability scenario

Figure 15 shows the main outcomes of the WLSL scenario. This reflects a hypothetical
scenario in which SMRs are chosen as the primary energy source and the reliance on wind
and solar energy is reduced.

Figure 15: WLSL scenario. Regional energy mix (left) and total power output (right).

Fossil fuels are extensively used at low levels of carbon tax (top row), with the East Mid-
lands and South East as the largest power generators, commensurate with their substantial
fossil fuel capacities. In contrast to the other scenarios, the reduction in the availability
of wind power is such that Scotland is no longer the largest power generator. The adop-
tion of SMRs displaces first coal and then natural gas as the carbon tax increases. At a
carbon tax exceeding 100 £/tCO2 (bottom row), all fossil-fired power generation has been
replaced by SMRs, with a total of 49 SMRs that provide 23 GW of power. The most pro-
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nounced variation in regional output between the base case and SMR adoption case is in
the South East and East Midlands. Only 3 SMRs with a capacity totalling approximately
1.4 GW are adopted in the South East, leading to a significant reduction in power output
compared to the substantial natural gas capacity power generation in the base case. In
contrast, 18 SMRs with a capacity exceeding 8 GW are placed in the East Midlands due
to its location, not too far from areas of high demand and yet a reasonable distance from
densely populated areas. Under this scenario, the East Midlands is the largest regional
power generator, contributing to mitigating transmission losses by alleviating the burden
of long-distance power transmission.

In summary, SMRs offer a flexible siting advantage when compared to wind and solar
power. This facilitates adjustments aligned with the geospatial distribution of popula-
tion and demand, providing a more manageable approach to addressing power supply for
newly developed populated areas experiencing increases in demand. Relying on SMRs as
the primary clean energy source offers a route to attaining a zero-emission target, while
concurrently ensuring a stable and reliable power supply.

5 Conclusions

This paper demonstrates the use of a dynamic knowledge graph for power system analysis,
with a focus on addressing the challenges relating to data integration and interoperability.
The dynamic knowledge graph is implemented using ontologies to represent the data and
computational agents to automate the processing of it.

A new OntoEnergySystem ontology has been created and the existing OntoEIP and On-
toPowSys ontologies extended to allow the representation of a wider range of concepts
relating to power systems. The ontologies allow the representation and linkage of the
information that is required to model power systems, ranging from the representation
of real-world entities to abstract mathematical models that describe the behaviour of the
transmission system. This provides a reusable framework that can be applied to describe
arbitrary power systems distributed across different geospatial locations with different
scopes and inner structures.

A set of computational agents have been created to interact with the knowledge graph, pro-
viding a mechanism for dynamic behaviour in which information is propagated through
the knowledge graph so that it remains self-consistent in the sense that quantities remain
up to date with respect to their dependencies. The agents are responsible for input/output
tasks including populating the knowledge graph by instantiating and initialising entities,
querying data and propagating changes. Other agents perform data processing tasks in-
cluding calling out to computational models that executed simulation and optimisation
tasks. A derived information framework [15] is used to mark up the inputs and outputs to
and from the agents in order to trace the provenance of dependent information.

The use of the ontologies and computational agents was exemplified through their ap-
plication to a case study of the UK power system. The power plants were represented
in the knowledge graph and linked to data describing their geographic location and as-
sociated land authority codes. These geospatial attributes allow the description of the
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power plants to be connected to a description of the hierarchically structured administra-
tive areas in the UK, wherein the areas maintain transitive inclusion relationships. The
electricity demand was represented ontologically as an observed feature associated with
the administrative areas, thereby establishing a connection with the power plants. Data
describing the population density data, with a 1 km resolution, was also instantiated. By
leveraging the geographic information associated with the administrative areas and em-
ploying geospatial queries, it was possible to retrieve information about the population
in each area, including areas in the vicinity of power plants and areas distinguished by
high electricity consumption, in addition to information such as the number of the power
plants, the total generation capacity and the total demand within a specific area. Two
topological models of the transmission grid, specifically a 10-bus model and a 29-bus
model, were instantiated within the knowledge graph. These topologies were designed
with distinct assumptions to simplify the grid, each offering a different resolution in rep-
resenting the interconnections within the grid. The topological models formed the basis
of the simulation and optimisation tasks performed by the computational agents acting on
the knowledge graph.

The case study demonstrates the capability of the proposed dynamic knowledge graph to
support the analysis of scenarios relating to the optimised placement of SMRs to achieve
a low-emission power system in the UK. The results of the analysis show the energy mix
in each region of the UK across a range of SMR deployment policies. They also shed
light on how optimal SMR placement is coupled with the diverse geographic distribution
and availability of wind and solar energy.

This study expands the application of dynamic knowledge graphs within the field of power
systems. In future work, the domain ontologies could be expanded to include the concepts
required to describe additional types of grids, including distribution grids and smart grids.
The approach could be further applied to evaluate decarbonisation solutions for power
systems in different geographical regions. The conceptual framework introduced in this
work and the approach to enabling the propagation of information through the knowl-
edge graph also have the potential to be adopted and integrated into the parallel world
framework [37], enhancing the ability to support scenario analysis and the application of
dynamic knowledge graph to practical problems.
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A Appendix

A.1 10-bus model specification

Fig. A.1 shows the locations of the generators, buses and branches in the 10-bus model [8]
representing the UK high-voltage power transmission system. The model includes 10
buses, 14 branches, and 1129 generators. The type, location, and capacity of the genera-
tors can be found in DUKES data [30] published by the UK government. The generators
were connected to the bus which is located in the same region as the generators. The
detailed buses and branches are shown in Tables A.1–A.3.

Figure A.1: 10-bus model of the UK high-voltage power transmission system. Left: Buses
and connecting branches. Right: Generators, colour-coded by bus.

The Power Flow (PF) and Optimal Power Flow (OPF) analysis was solved using the py-
power Python package [57] with the base power specified as 100 MVA. Full descriptions
of the parameters in Tables A.2 and A.3 are given in the MATPOWER user manual [109].
Brief descriptions are given below for completeness.

Bus specification

• Type specifies the type of bus. 1: PQ bus, 2: PV bus and 3: slack bus.

• Pd and Qd are real and reactive power demand.
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• Gs and Bs are the shunt conductance and susceptance.

• VM and Va are the voltage magnitude and angle.

• BasekV is the base voltage.

• Vmax and Vmin are the maximum and minimum voltage magnitudes.

• Area specifies which parts of the OPF should be solved simultaneously. The default
setting is used such that the whole problem is solved simultaneously.

• Zone refers to a range of operating conditions or system states where the objective
is to minimize power losses. The default setting is used.

Branch specification

• Resistance, Reactance and total line charging Susceptance of each branch.

• Rate A, Rate B and Rate C denote the long-term, short-term and emergency rating
of each branch, respectively.

• Ratio is a transformer TAP ratio. A value of 0 or 1 indicate that a branch is a pure
transmission line.

• Angle specifies the transformer phase shift angle.

• Status identifies the initial branch status with a value of 1 for in-service and 0 for
out-of-service.

• Angmin and Angmin represent the minimum and maximum angle difference al-
lowed for the branch.
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Table A.1: Bus specification for the 10-bus model (part 1).

Bus Name Latitude Longitude

1 Glasgow 55.8642343 -4.2519078
2 Manchester 53.4807532 -2.2427672
3 Leeds 53.8007312 -1.5492442
4 Birmingham 52.4862263 -1.8905143
5 Leicester 52.6365868 -1.1395656
6 Norwich 52.6308914 1.2972594
7 Cardiff 51.4815857 -3.1791789
8 Bristol 51.4545085 -2.5879675
9 London 51.5073321 -0.1278966
10 Brighton&Hove 50.8223711 -0.1373639
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Table A.2: Bus specification for the 10-bus model (part 2).

Bus Type Pd Gd Gs Bs Vm Va basekV Vmax Vmin Area Zone
(-) (MW) (MVAr) (MW) (MVAr) (p.u.) (°) (kV) (p.u.) (p.u.) (-) (-)

1 1 1696.43 0 0 0 1 0 400 1.05 0.95 1 1
2 1 3493.02 0 0 0 1 0 400 1.05 0.95 1 1
3 1 3876.75 0 0 0 1 0 400 1.05 0.95 1 1
4 1 2730.95 0 0 0 1 0 400 1.05 0.95 1 1
5 1 2354.48 0 0 0 1 0 400 1.05 0.95 1 1
6 1 2997.80 0 0 0 1 0 400 1.05 0.95 1 1
7 1 1696.43 0 0 0 1 0 400 1.05 0.95 1 1
8 1 2690.71 0 0 0 1 0 400 1.05 0.95 1 1
9 1 1696.43 0 0 0 1 0 400 1.05 0.95 1 1
10 3 4305.75 0 0 0 1 0 400 1.05 0.95 1 1
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Table A.3: Branch specification for the 10-bus model.

From/To R B X RateA RateB RateC Ratio Angle Status Angmin Angmax
bus (p.u.) (p.u.) (p.u.) (MVA) (MVA) (MVA) (-) (°) (-) (°) (°)

10 8 0.0020 3.43 0.01888 8400 0 0 0 0 1 -360 360
10 9 0.0006 1.89 0.005836 11201 0 0 1 2 1 -360 360
9 6 0.0017 2.94 0.01618 8401 0 0 0 0 1 -360 360
9 5 0.0015 2.66 0.01464 8401 0 0 1 2 1 -360 360
6 5 0.0026 2.04 0.0252 5601 0 0 0 0 1 -360 360
8 4 0.0020 1.54 0.01904 5601 0 0 0 0 1 -360 360
5 4 0.0007 2.05 0.007295 8211 0 0 0 0 1 -360 360
4 2 0.0012 2.10 0.01155 8401 0 0 0 0 1 -360 360
5 3 0.001 3.28 0.01013 11201 0 0 0 0 1 -360 360
2 3 0.0007 3.73 0.00713 10822 0 0 0 0 1 -360 360
8 7 0.0009 1.32 0.01011 5411 0 0 0 0 1 -360 360
4 7 0.0022 1.76 0.02181 5601 0 0 0 0 1 -360 360
2 1 0.0093 1.83 0.09035 2800 0 0 0 0 1 -360 360
3 1 0.0046 3.56 0.04403 5601 0 0 0 0 1 -360 360

33



A.2 29-bus model specification

Details of the 29-bus model are included in the Supplementary Material to Xie et al. [100].
The specification of the model is repeated below for completeness.

Fig. A.2 demonstrates the locations of the generators, buses and branches in the 29-bus
model of the UK high-voltage power transmission system. The model includes 29 buses,
99 branches, and 1129 generators (the type, location, and capacity of the generators are
the same as those of the 10-bus model). The generators were clustered to the nearest
bus based on the shortest Euclidian distance in this model. The buses and branches were
specified as per Belivanis [17] as summarised in Tables A.4–A.6.

Figure A.2: 29-bus model of the UK high-voltage power transmission system. Left: Buses
and connecting branches. Right: Generators, colour-coded by bus.
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Table A.4: Bus specification for the 29-bus model (part 1).

Bus Name Latitude Longitude

1 Beauly 57.4698798 -4.4906735
2 Peterhead 57.4745293 -1.7998211
3 Errochty 56.7070037 -4.0107947
4 Denny/Bonnybridge 56.0386335 -3.8890767
5 Neilston 55.8095298 -4.4768292
6 Strathaven 55.7509421 -4.0805189
7 Torness 55.966361 -2.4082467
8 Eccles 55.6684972 -2.3299805
9 Harker 54.9419311 -2.9618091
10 Stella West 54.9744212 -1.7329921
11 Penwortham 53.7443568 -2.7549931
12 Deeside 53.2292472 -3.0317476
13 Daines 53.4269672 -2.3787821
14 Th. Marsh/Stocksbridge 53.4877894 -1.6016288
15 Thornton/Drax/Eggborough 53.9002325 -0.8235841
16 Keadby 53.5973069 -0.755805
17 Ratcliffe 52.862919 -1.257635
18 Feckenham 52.2512438 -1.9735155
19 Walpole 52.7269277 0.1981251
20 Bramford 52.0716528 1.0631638
21 Pelham 51.9351319 0.1167908
22 Sundon/East Claydon 51.9270632 -0.9099366
23 Melksham 51.3749726 -2.1441581
24 Bramley 51.3358918 -1.0775578
25 London 51.5077431 -0.1271547
26 Kemsley 51.3684603 0.7414151
27 Sellindge 51.1050295 0.9761146
28 Lovedean 50.9163709 -1.0383188
29 South West Penisula 50.7674626 -3.4061633
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Table A.5: Bus specification for the 29-bus model (part 2).

Bus Type Pd Gd Gs Bs Vm Va basekV Vmax Vmin Area Zone
(-) (MW) (MVAr) (MW) (MVAr) (p.u.) (°) (kV) (p.u.) (p.u.) (-) (-)

1 2 253.77 0 0 0 1 0 275 1.1 0.9 1 1
2 2 307.22 0 0 0 1 0 275 1.1 0.9 1 1
3 2 143.73 0 0 0 1 0 132 1.1 0.9 1 1
4 2 511.18 0 0 0 1 0 275 1.1 0.9 1 1
5 2 714.06 0 0 0 1 0 400 1.1 0.9 1 1
6 2 330.88 0 0 0 1 0 400 1.1 0.9 1 1
7 2 338.81 0 0 0 1 0 400 1.1 0.9 1 1
8 1 229.72 0 0 0 1 0 400 1.1 0.9 1 1
9 1 258.63 0 0 0 1 0 400 1.1 0.9 1 1
10 2 1137.06 0 0 0 1 0 400 1.1 0.9 1 1
11 2 940.91 0 0 0 1 0 400 1.1 0.9 1 1
12 2 1176.79 0 0 0 1 0 400 1.1 0.9 1 1
13 1 1973.83 0 0 0 1 0 400 1.1 0.9 1 1
14 1 1756.77 0 0 0 1 0 400 1.1 0.9 1 1
15 2 373.9 0 0 0 1 0 400 1.1 0.9 1 1
16 2 917.01 0 0 0 1 0 400 1.1 0.9 1 1
17 2 1641.36 0 0 0 1 0 400 1.1 0.9 1 1
18 2 2471.87 0 0 0 1 0 400 1.1 0.9 1 1
19 2 789.18 0 0 0 1 0 400 1.1 0.9 1 1
20 2 707.34 0 0 0 1 0 400 1.1 0.9 1 1
21 2 617.87 0 0 0 1 0 400 1.1 0.9 1 1
22 2 1159.02 0 0 0 1 0 400 1.1 0.9 1 1
23 2 1693.36 0 0 0 1 0 400 1.1 0.9 1 1
24 1 1062.12 0 0 0 1 0 400 1.1 0.9 1 1
25 2 5364.87 0 0 0 1 0 400 1.1 0.9 1 1
26 2 852.58 0 0 0 1 0 400 1.1 0.9 1 1
27 3 495.96 0 0 0 1 0 400 1.1 0.9 1 1
28 2 1300.1 0 0 0 1 0 400 1.1 0.9 1 1
29 2 1739.41 0 0 0 1 0 400 1.1 0.9 1 1
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Table A.6: Branch specification for the 29-bus model.

From/To R B X RateA RateB RateC Ratio Angle Status Angmin Angmax
bus (p.u.) (p.u.) (p.u.) (MVA) (MVA) (MVA) (-) (°) (-) (°) (°)

1 2 0.0122 0.02 0.0856 525 525 525 0 0 1 -360 360
1 3 0.007 0.15 0.052 132 132 132 1 2 1 -360 360
1 2 0.0122 0.02 0.2844 525 525 525 0 0 1 -360 360
1 3 0.007 0.15 0.052 132 132 132 1 2 1 -360 360
2 4 0.0004 0.065 0.4454 760 760 760 0 0 1 -360 360
2 4 0.0004 0.065 0.5545 760 760 760 0 0 1 -360 360
4 7 0.00211 0.0135 0.1174 1090 1090 1090 0 0 1 -360 360
4 6 0.0013 0.023 0.1496 1500 1500 1500 0 0 1 -360 360
4 6 0.0013 0.023 0.1758 1120 1120 1120 0 0 1 -360 360
4 5 0.001 0.024 0.125 1000 1000 1000 0 0 1 -360 360
4 5 0.001 0.024 0.125 1000 1000 1000 0 0 1 -360 360
4 7 0.0021 0.0135 0.1538 1090 1090 1090 0 0 1 -360 360
5 6 0.00085 0.01051 0.38254 1390 1390 1390 0 0 1 -360 360
5 6 0.00151 0.01613 0.59296 1390 1390 1390 0 0 1 -360 360
6 9 0.00078 0.00852 0.0737 2100 2100 2100 0 0 1 -360 360
6 9 0.00078 0.00852 0.4635 2100 2100 2100 0 0 1 -360 360
7 8 0.0004 0.0001 0.728 2180 2180 2180 0 0 1 -360 360
7 8 0.0004 0.0001 1.2872 2500 2500 2500 0 0 1 -360 360
7 6 0.003 0.2 0.2939 950 950 950 0 0 1 -360 360
7 6 0.003 0.2 0.2939 950 950 950 0 0 1 -360 360
8 10 0.00083 0.0175 0.6624 3070 3070 3070 0 0 1 -360 360
8 10 0.00083 0.0175 0.6624 3070 3070 3070 0 0 1 -360 360
9 11 0.00164 0.0163 0.4868 1390 1390 1390 0 0 1 -360 360
9 11 0.00164 0.0163 0.4868 1390 1390 1390 0 0 1 -360 360
9 10 0.00352 0.02453 0.1898 855 855 855 0 0 1 -360 360
9 10 0.00492 0.0343 0.2502 775 775 775 0 0 1 -360 360

10 15 0.00053 0.00835 5.373 4840 4840 4840 0 0 1 -360 360
10 15 0.00052 0.0063 1.0636 4020 4020 4020 0 0 1 -360 360
11 15 0.0007 0.042 0.3907 2520 2520 2520 0 0 1 -360 360
11 15 0.00099 0.042 0.5738 2520 2520 2520 0 0 1 -360 360
11 13 0.0004 0.0052 0.2498 2170 2170 2170 0 0 1 -360 360
11 13 0.0004 0.0052 0.2664 2210 2210 2210 0 0 1 -360 360
11 12 0.0001 0.0085 0.0798 3320 3320 3320 0 0 1 -360 360
11 12 0.0001 0.0085 0.0798 3320 3320 3320 0 0 1 -360 360
12 13 0.00096 0.01078 0.385 3100 3100 3100 0 0 1 -360 360
12 18 0.00074 0.009 0.2911 2400 2400 2400 1 2 1 -360 360
12 18 0.00097 0.009 0.3835 2400 2400 2400 0 0 1 -360 360
12 13 0.00096 0.01078 0.385 3100 3100 3100 1 2 1 -360 360
13 18 0.00049 0.007 0.1943 2400 2400 2400 0 0 1 -360 360
13 18 0.00084 0.007 0.7759 2400 2400 2400 0 0 1 -360 360
13 15 0.00137 0.023 0.6643 1240 1240 1240 0 0 1 -360 360
13 15 0.00164 0.023 0.1104 955 955 955 0 0 1 -360 360
13 14 0.00107 0.01163 1.1745 1040 1040 1040 0 0 1 -360 360
13 14 0.00082 0.01201 1.2125 1040 1040 1040 0 0 1 -360 360
14 16 0.0005 0.016 0.2795 2580 2580 2580 0 0 1 -360 360
14 16 0.005 0.018 0.1466 625 625 625 0 0 1 -360 360
15 16 0.00033 0.0052 0.3534 2770 2770 2770 0 0 1 -360 360
15 16 0.00016 0.00172 0.3992 5540 5540 5540 0 0 1 -360 360
15 14 0.00019 0.00222 0.7592 5000 5000 5000 0 0 1 -360 360
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From/To R B X RateA RateB RateC Ratio Angle Status Angmin Angmax
bus (p.u.) (p.u.) (p.u.) (MVA) (MVA) (MVA) (-) (°) (-) (°) (°)

15 14 0.00018 0.00222 0.5573 5000 5000 5000 0 0 1 -360 360
16 19 0.00056 0.0141 0.4496 2780 2780 2780 0 0 1 -360 360
16 19 0.00056 0.0141 0.4496 3820 3820 3820 0 0 1 -360 360
17 16 0.001 0.01072 0.2651 2150 2150 2150 0 0 1 -360 360
17 16 0.001 0.01072 0.4573 1890 1890 1890 0 0 1 -360 360
17 22 0.00068 0.0097 0.4566 2100 2100 2100 0 0 1 -360 360
17 22 0.00069 0.0097 0.4574 2100 2100 2100 0 0 1 -360 360
18 17 0.00042 0.0018 0.2349 3100 3100 3100 0 0 1 -360 360
18 17 0.00042 0.0018 0.2349 3460 3460 3460 0 0 1 -360 360
18 23 0.00138 0.0096 0.4829 1970 1970 1970 0 0 1 -360 360
18 23 0.00117 0.0096 0.4122 1970 1970 1970 0 0 1 -360 360
20 26 0.00035 0.0023 0.2249 2780 2780 2780 0 0 1 -360 360
20 26 0.00035 0.0023 0.2249 2780 2780 2780 0 0 1 -360 360
20 19 0.00178 0.0213 0.6682 1590 1590 1590 0 0 1 -360 360
20 19 0.00132 0.0143 0.3656 1590 1590 1590 0 0 1 -360 360
21 16 0.00145 0.01824 0.9169 2780 2780 2780 0 0 1 -360 360
21 16 0.00145 0.01824 0.9169 2780 2780 2780 0 0 1 -360 360
21 25 0.00025 0.01 0.1586 2780 2780 2780 0 0 1 -360 360
21 25 0.00025 0.01 0.1586 2780 2780 2780 0 0 1 -360 360
21 20 0.0012 0.0048 0.4446 2780 2780 2780 0 0 1 -360 360
21 20 0.0012 0.0048 0.7 2780 2780 2780 0 0 1 -360 360
21 19 0.00037 0.0059 0.294 3030 3030 3030 0 0 1 -360 360
21 19 0.00037 0.0059 0.2955 2780 2780 2780 0 0 1 -360 360
22 16 0.00178 0.0172 0.8403 2010 2010 2010 0 0 1 -360 360
22 16 0.00178 0.0172 0.627 2010 2010 2010 0 0 1 -360 360
22 25 0.00037 0.0041 0.4098 3275 3275 3275 0 0 1 -360 360
22 25 0.00034 0.0041 0.429 3275 3275 3275 0 0 1 -360 360
22 21 0.00019 0.00111 0.1232 2780 2780 2780 0 0 1 -360 360
22 21 0.00048 0.0061 0.3041 2780 2780 2780 0 0 1 -360 360
23 29 0.00151 0.0182 0.53 2010 2010 2010 0 0 1 -360 360
23 24 0.00086 0.0008 0.9622 2780 2780 2780 0 0 1 -360 360
23 24 0.00023 0.0007 2.8447 4400 4400 4400 0 0 1 -360 360
23 22 0.00055 0.003 0.3468 2780 2780 2780 0 0 1 -360 360
23 22 0.00039 0.003 0.2466 2770 2770 2770 0 0 1 -360 360
23 29 0.00151 0.0182 0.53 2010 2010 2010 0 0 1 -360 360
24 28 0.00068 0.007 0.2388 2210 2210 2210 0 0 1 -360 360
24 25 0.00104 0.0091 0.2918 1390 1390 1390 0 0 1 -360 360
24 25 0.00104 0.0091 0.2918 1390 1390 1390 0 0 1 -360 360
24 28 0.00068 0.007 0.2388 2210 2210 2210 0 0 1 -360 360
25 26 0.0002 0.0057 0.532 6960 6960 6960 0 0 1 -360 360
25 26 0.0002 0.0057 0.532 5540 5540 5540 0 0 1 -360 360
27 26 0.0002 0.00503 0.1797 3100 3100 3100 0 0 1 -360 360
27 26 0.0002 0.00503 0.1797 3100 3100 3100 0 0 1 -360 360
28 27 0.00038 0.00711 0.2998 3070 3070 3070 0 0 1 -360 360
28 27 0.00038 0.00711 0.2998 3070 3070 3070 0 0 1 -360 360
29 28 0.00051 0.00796 0.34 2780 2780 2780 0 0 1 -360 360
29 28 0.00051 0.00796 0.34 2780 2780 2780 0 0 1 -360 360
3 4 0.003 0.041 0.0044 648 648 648 0 0 1 -360 360
3 4 0.003 0.041 0.044 648 648 648 0 0 1 -360 360
3 2 0.03004 0.077 0.0124 652 652 652 0 0 1 -360 360
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