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Abstract

In this paper, we introduce for the first time a natural language question-answering
(QA) system specifically designed for the field of combustion kinetics. This system
marks a significant step towards achieving the PrIMe vision as outlined by Frenklach
in 2007, offering a user-friendly interface that allows researchers and practitioners to
easily access and query information about chemical mechanisms. This QA system
is a key component of “The World Avatar" (TWA), a dynamic framework built upon
semantic web technologies. TWA is characterized by its layered structure, which
includes a knowledge graph, software agents, and real-world data integration. These
layers collectively create a comprehensive unified system for managing and ana-
lyzing complex chemical data from various domains. We detail the enhancements
made to TWA’s ontologies (OntoSpecies, OntoKin, and OntoCompChem) to meet
specific challenges in chemical kinetics and improve their representation accuracy.
By focusing on data provenance and interoperability, our approach ensures transpar-
ent and reliable data management that adheres to the FAIR principles, which is vital
for precise information retrieval and analysis. The role of software agents in popu-
lating these ontologies is highlighted, showcasing how they transform raw data into
meaningful structured knowledge and generate new insights within the TWA ecosys-
tem. Additionally, the semantic web technologies’ interoperability feature facilitates
data integration and exchange across different platforms and tools, making the data
machine-actionable. We then demonstrate the QA system’s capabilities in answering
questions related to four H2/O2 reaction mechanisms taken from the literature as a
proof of concept. Lastly, we discuss the future directions of the TWA framework,
which include not only future extensions of the QA system but also the integration
of external tool to automate tasks such as generation of kinetic mechanism, further
expanding TWA’s functionality and application in the field of chemical kinetics.

Highlights
• A natural language question-answering system has been specifically developed

for combustion kinetics.

• The system builds upon a dynamic knowledge graph based on semantic web
technologies offering a unified approach to handling complex chemical data.

• Our approach combines a user-friendly access with rigorous data management
that makes combustion kinetics data more accessible and machine actionable.
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1 Introduction

Combustion is an exothermic process that fundamentally powers our modern world, rang-
ing from internal combustion engines to industrial furnaces [18]. As we progress towards
the United Nations’ Sustainable Development Goals (SDGs), the precise prediction and
control of the behavior of reacting mixtures during combustion reactions become increas-
ingly important. The key to success is accurate kinetic modeling as it encapsulates our
understanding of the underlying chemical reactions and their rates.

Modeling combustion kinetics accurately is not an easy task due to the inherent complex-
ity and multifaceted nature of combustion processes. Even in the combustion of relatively
simple hydrocarbons [4], a vast number of chemical species and reactions emerge, result-
ing in highly non-linear behavior covering a broad range of time and length scales – from
nanoseconds to milliseconds and from molecular to macroscopic levels. The sensitivity
of reaction rates to temperature, described by Arrhenius equations, means that minimal
fluctuations in temperature can lead to significantly different outcomes. The real-world
interaction between turbulence and chemistry adds an extra layer of complexity, making
the task even more challenging.

Compounding these challenges is the variability in the reaction mechanisms developed by
different research groups. Depending on focus, methodologies, and available experimen-
tal data, diverse mechanisms can emerge for the same fuel [2]. While all aim to capture the
combustion phenomenon, inconsistencies may arise when comparing these mechanisms,
especially for reduced mechanisms extracted for practical applications [23].

This fragmented landscape necessitates a comprehensive system capable of efficiently
managing extensive experimental data and kinetic mechanisms. This is crucial for de-
tecting inconsistencies across mechanisms and predicting reaction rates for missing reac-
tions. In 2007, Frenklach [9] introduced the Process Informatics Model (PrIMe) initiative,
a data-centric approach to developing predictive models for complex chemical systems. It
envisions an intelligent question-answering (QA) system to assist researchers during this
process. One key feature of PrIMe lies in its method of organizing scientific data by merg-
ing diverse sources based on both data semantics and provenance. The initiative strives to
maintain a complete and up-to-date set of data in combustion chemistry for rapid mecha-
nism bench-marking and analysis. This data curation model holds great potential to foster
democratic decision-making and consensus-building within the combustion community.

A significant hurdle in realizing this vision is the isolated nature of existing data, mech-
anisms, and software tools [20]. This not only impedes interoperability between the out-
comes produced from different groups but also results in their unavailability once projects
conclude or servers are shut down (e.g., CMCS [25]). Therefore, we aim to address this
challenge by creating a collaborative framework following an open-access philosophy and
a distributed web architecture. This design allows researchers to contribute their data and
mechanisms to the ecosystem while maintaining full control and leveraging any preferred
data source.

In this paper, we introduce a natural language question-answering system specifically
designed for combustion kinetics that is aligned with and inspired by the PrIMe vision.
This system is build upon a dynamic knowledge graph based on semantic web technolo-
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gies as part of “The World Avatar”, which provide an open-access unified framework for
managing a wide array of complex chemical data from diverse chemical domains. Em-
phasizing data provenance and interoperability, our approach guarantees transparent and
reliable data management, crucial for accurate information retrieval and analysis. Simul-
taneously, the interoperability aspect of semantic web technologies allows integration and
exchange of data across diverse platforms and tools, adhering to the recommendations
from Cavallotti [7] to streamline the integration of automated software. This integration
that combines user-friendly access with rigorous data management, represents a signifi-
cant advancement in making combustion kinetics data not only more accessible but also
machine actionable. In the following sections, we will explore the design, capabilities,
and potential applications of this system in combustion research.

2 Background

2.1 Challenges

The field of combustion kinetics has witnessed significant progress, especially in devel-
oping complex models for the pyrolysis and oxidation of a broad spectrum of hydro-
carbons. Despite these advancements, the discipline confronts formidable challenges in
formulating predictive kinetic models that maintain accuracy across a wide range of con-
ditions [7, 12, 13]. particularly as the complexity of reactants escalates. These models
must not only accurately replicate extensive sets of experimental data but also incorporate
well-defined uncertainty bounds in their predictions [26]. This task is rendered arduous by
the overwhelming volume of data and the intricate nature of accurately modeling chemical
reactions within combustion processes.

A critical issue is the disorganized state of the collection, evaluation, and selection of
chemical reaction models, leading to conflicting information and a disjointed understand-
ing of kinetic models. This issue highlights the need for improved coherence and reli-
ability in kinetic modeling, particularly through provenance tracking to ensure consis-
tency, eliminate duplicates (e.g., permutations of the same reaction), and adhere to the
FAIR principles – Findable, Accessible, Interoperable, and Reusable [1]. This cannot be
achieved without undergoing a process of “transformation” of these disparate data sets
into functional models, a process complicated by escalating data volumes. This situation
underscores the importance of evolving databases from mere repositories into dynamic
tools for knowledge creation, addressing the metadata challenge concerning underlying
assumptions, parameter origins and uncertainties, reasons for inclusion/exclusion of reac-
tions [12].

Additionally, the current landscape in chemical engineering, where many practitioners
lack expertise in computing rate coefficients from first principles or using modern ki-
netic modeling software and machine learning techniques, calls for a robust computational
framework that accurately determines thermochemical and transport parameters and rate
constants for a wide array of chemical species and reactions.
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2.2 Available solutions

In response to these challenges, various automated tools like RMG (Reaction Mechanism
Generator) [10] and Genesys [33] are being developed to generate kinetic mechanisms,
employing methods ranging from pre-defined reaction pathways to unbiased approaches.
These tools, starting with a core set of species, expand the mechanism until additional
species minimally impact reactivity. While these tools are advancing towards the goal
of fully predictive kinetic models, gaps remain, particularly in evaluating thermochem-
istry and rate constants, highlighting the need for enhanced automation in these areas. A
combination of theoretical and experimental methodologies can be used to enhance the
predictive capabilities of these mechanisms [21]. This approach, coupled with automated
procedures for the investigation of unknown reaction pathways, is critical for discovering
new reactive pathways and achieving a comprehensive understanding of combustion ki-
netics. Additionally, tools like RMG are occasionally failing to select the most relevant
species or reactions. This issue stems from RMG’s reliance on reaction templates, which
may not always cover all the necessary reactions critical to a particular system and to im-
prove the tool’s accuracy it is essential to expand the range of reaction templates within
RMG [10]. The need to overcome this issue with automatic tools is subject of ongoing
research.

Other essential tools that deal with different aspects of gas-phase kinetic modelling are
also available – e.g., Chemkin [16], Cantera [11], ReSpecTh [34], PrIMe [9]. The chal-
lenges in working with these are mostly related to interoperability and accessibility. More-
over, duplicate information in different formats or databases is hard to spot [14].

In order to increase ease of access, QA systems can significantly lower entry barriers.
The current wave of large language models illustrates this impressively in many areas.
However, general NLP tools that are available to the public are monoliths in nature and
lack explainability and domain knowledge (e.g., ChatGPT). Going forward, computa-
tional chemistry needs a “peer-to-data-driven operation with respect to molecular science
to act autonomously on arguments and questions raised in natural language by the opera-
tor” [32].

2.3 Semantic Web for representing chemical kinetics

The Semantic Web offers an innovative, graph-oriented approach for effectively repre-
senting the intricate domain of chemical kinetics. It structures chemical information into
a graph, aptly capturing the complex relationships and properties inherent in chemical
processes. This approach is particularly well-suited for chemical kinetics, where many
tools are graph-based [14, 30], as it naturally aligns with the graph-like nature of chemi-
cal interactions, depicted in Fig. 1.

In this framework, reaction mechanisms are portrayed as networks of interconnected re-
actions, with each reaction defined by its reactants and products, represented as individual
chemical species within the graph (Fig. 1). A major advantage of this approach is its ca-
pacity to manage “multiple properties” of species and reactions that may originate from
various data sources. The unique identification of each species and reaction in the graph
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permits precise linkage of species and reaction properties to their origin. This is crucial
for resolving ambiguities and ensuring data consistency. This structure is also partic-
ularly beneficial when designing a new chemical kinetics model because it permits the
selection of the most suitable thermodynamic models for species or kinetic models for
reactions, based on specific reaction conditions. It allows for accurate comparisons and
selection among various models, ensuring a more accurate and context-sensitive applica-
tion of these models, which is vital for understanding and predicting chemical reactions
accurately.

Moreover, the Semantic Web’s framework facilitates the alignment of common elemen-
tary reactions across different mechanisms, offering a unified view of kinetic data. This
system replaces traditional data formats, like Chemkin files, with a dynamic graph struc-
ture, where each data point becomes a node in the graph. This enhancement not only
simplifies navigation and updates within the vast array of chemical kinetics information
but also supports advanced querying capabilities. These features are essential for dis-
covering new patterns and relationships, thus pushing the analysis of chemical kinetics
towards a more integrated and insightful approach.

Figure 1: Illustration of the graph-like nature of the information in chemical kinetics.

3 The World Avatar infrastructure

The World Avatar (TWA) is a framework that adheres to the FAIR data principles [1]. It
is designed to store, process, and analyze chemical data and models. TWA distinguishes
itself with a structured, layered architecture, which includes ontologies for data organiza-
tion, software agents for data manipulation, and connections to empirical real-world data,
as depicted in Fig. 2.

At its core, TWA features a middle layer composed of a knowledge graph (KG) based
on semantic web technologies that provides a dynamic platform for organizing, querying,

6



and traversing the vast, complex chemical data. The data interaction and connection rep-
resented in the graph along with their provenance facilitate data discovery and retrieval
of interrelated information and ensure accuracy and traceability of diverse data types, en-
hancing the understanding of chemical processes. The schema of the KG is defined by
ontologies that are split into a Terminology component (TBox) for structural definitions
and an Assertion component (ABox) for real-world data instances.

The top layer is characterized by the deployment of advanced software agents. These
agents are capable of operating both locally and as web services to provide tailored solu-
tions for varied applications, enhancing TWA’s functionality for specific user needs.

The bottom layer establishes a connection with the real world, integrating empirical data
for validation, such as sensor measurements in a laboratory setting, and human-machine
interfaces like QA systems for chemistry. This ensures the applicability and reliability of
TWA-derived insights and models.

Data and software that form the TWA ecosystem are publicly available [5, 6], allowing
for community-driven improvements and adaptations.

The following subsections detail the specific components of TWA utilized in the context
of chemical kinetics, discussing modifications that have been implemented for this work.
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Figure 2: Illustration of the layered infrastructure of TWA.
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3.1 Knowledge Graphs

In the chemistry domain of TWA KG, several ontologies have been developed to store spe-
cific types of information, each addressing a distinct subdomain. This paper concentrates
on three subdomains within TWA, each playing a distinct role in enriching the chemical
knowledge base as illustrated in Fig. 3.

Figure 3: Simplified schema of TWA TBoxes in the chemistry domain, highlighting inter-
connectivity and integration of various subdomains shown in different colours.
Modifications from previous implementations are distinguished by filled color
boxes and bold text.

OntoSpecies, the core ontology in TWA’s chemistry domain (blue boxes in Fig. 3), fo-
cuses on species representation and their properties [29]. The majority of data in On-
toSpecies is experimental, sourced primarily from PubChem [27]. Despite the uniqueness
of certain properties like melting points, OntoSpecies acknowledges the variability that
arises when data is collected from diverse sources. As in the PrIMe vision, the data is
not organized by source but by merging different sources based on scientific meaning,
while meticulously tracking the provenance of each data point [29]. In this work, ad-
ditional properties (filled blue boxes in Fig. 3) that are crucial for chemical kinetics (
HeatCapacity, StandardEnthalpy, StandardEntropy) have been added to the
OntoSpecies TBox. These properties are defined as subclasses of ThermoProperty
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and follow the same schema as defined in our previous work [29].

OntoKin is an ontology that represents information about reaction mechanisms, elemen-
tary reactions, and kinetic models as presented in the literature, with each entry enriched
with provenance details (red boxes in Fig. 3). Compared to its previous implementa-
tion [8], it uniquely identifies reactions across different mechanisms based on reactants,
products, and possible third bodies. Although a reaction is uniquely identified, it may be
associated with different kinetic models used in different reaction mechanisms. This ap-
proach extends to species within OntoKin, where different thermochemical and transport
models may be applied across various reaction mechanisms. To take this into account,
few modifications have been made to OntoKin TBox (filled red boxes in Fig. 3). The
ReactionMechanism is directly connected to the ChemicalReaction by the pred-
icate hasReaction. The ChemicalReaction has a KineticModel that is con-
nected to the ReactionMechanism that uses it by the predicate definedIn. These
connections help to avoid duplicate information and follow the idea presented in Fig. 1, so
that the same KineticModel can be defined in more than one ReactionMechanism.
Equivalently, a Species that takes part in a ChemicalReaction can have more than
one ThermoModel and TransportModel that are linked to the ReactionMechanism
where they are used in.

OntoCompChem is dedicated to information related to quantum mechanical (QM) cal-
culations [8]. This is particularly crucial for deriving some properties of species, such
as heat capacity, especially when experimental data are not available. OntoCompChem
bridges the gap between theoretical predictions and empirical data, thereby enhancing the
framework’s overall accuracy and reliability. The idea of storing calculations and con-
necting them to the interested species saves time for researchers when the calculation is
already available in the ontology. Compared to its previous implementation, species are
uniquely identified and connected with their OntoSpecies instance as well as their atoms
to avoid any ambiguity.

Lastly, in this work, the addition of unit and provenance subdomains, built upon standard
vocabularies and expanded with new units as required, represents an essential step towards
standardizing data representation across TWA (orange and green boxes respectively in
Fig. 3). Thus, TWA ensures that all data, regardless of its subdomain, adheres to a consis-
tent unit system. This is not only crucial for accurate data representation but also for the
interoperability of data between different systems and applications. The standardization
of provenance also enhances data interoperability. By embedding this concept directly
into the KG, TWA enables the efficient tracking and verification of information sources
across its subdomains. This represents a great step forward compared to the widespread
use of comment lines in Cantera and Chemkin input files which represented the best prac-
tice at the time (see the Appendix).

Together, these ontologies create a synergistic and multifaceted structure within TWA
that not only facilitates a comprehensive representation of chemical information but also
underscores the depth and complexity inherent in the field of chemical kinetics and com-
putational chemistry. More details on the ontologies’ TBoxes can be found at https:
//theworldavatar.io/chemistry/documentation.

9

https://theworldavatar.io/chemistry/documentation
https://theworldavatar.io/chemistry/documentation


3.2 Agents

Software agents within TWA infrastructure fall into two primary categories: those that
facilitate the collection, organization, and curation of data, and those that enable the pro-
cessing and analysis of data.

For the OntoSpecies domain, a specialized agent is tasked with data acquisition from
various scientific databases. It retrieves identifiers, experimental properties, and spec-
tral information from PubChem and utilizes ChEBI for chemical classification and usage
data [29]. In this work, the population agent has been expanded to extract thermochem-
ical experimental data from the NIST Chemistry WebBook [28]. This comprehensive
approach ensures that the OntoSpecies domain is populated with extensive chemical data.

The OntoKin domain employs a population agent that processes data from Chemkin files.
The agent firstly translates each chemical species listed in the Chemkin file into an InChI
string and links that species with the species IRI as in OntoSpecies, ensuring consistency
and integrity of data across domains. The agent then links every reaction in the mechanism
to its unique IRI. Finally, with the help of RMG API, it parses the data reported in the
Chemkin file and instantiate it in the graph using a SPARQL update. Currently, the data
collated by this agent includes four H2/O2 mechanisms taken from literature [4, 19, 22,
24].

The OntoCompChem domain employs a population agent that processes data from Gaus-
sian log files and instantiates the relevant information in the KG.

The second type of agents are used for data augmentation, enhancing the system’s capa-
bilities for analysis and prediction. To cite some, if a vibrational analysis of the species
exists in the KG, an agent can calculate thermal properties (enthalpy, heat capacity and
entropy) from the calculation outputs [8]. We also demonstrated that agents can do sensi-
tivity analysis and calibration, as demonstrated for combustion experiments [2].

In future expansions, we plan to integrate external tools such as RMG for predicting re-
active chemistry or others like Cantera, Chemkin, and kinetics, especially as they evolve
and new tools emerge [15]. It is important to stress the flexibility of our approach, that
structuring data with clear definitions of concepts, units, and provenance, enables easy
conversion of knowledge into formats compatible with various tools, that can be then
easily integrated in our framework.

3.3 Natural Language Processing

The integration of advanced Natural Language Processing (NLP) techniques for a question-
answering (QA) system developed for chemistry within TWA, Marie, marks a significant
stride in the realm of chemical kinetics modeling.

The NLP framework in TWA is underpinned by an end-to-end translation approach, lever-
aging the power of pre-trained text-to-text language models. The system is designed to
seamlessly translate questions posed in natural language into SPARQL queries, enabling
users to interact with the KG in an intuitive manner. This approach is a departure from
traditional methods which relied heavily on hand-crafted templates and were limited in
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their scalability and flexibility [31].

In its previous implementation, Marie was limited to the OntoSpecies domain [31]. In
this paper, we expanded its functionality to work with additional ontologies like OntoKin
and OntoCompChem, achieved by performing multi-task prompted training on both the
translation and domain classification tasks. This expansion facilitates a broader range of
applications in chemistry-related research and industrial scenarios, making the system an
even more versatile tool for data retrieval and analysis.

4 Results and discussion

In the realm of practical application, TWA’s advanced querying capabilities, coupled with
its comprehensive representation of chemical information, empowers researchers to nav-
igate and resolve the complexities of chemical kinetics modeling. The integration of the
QA system, Marie, into TWA infrastructure represents a significant stride towards achiev-
ing the vision Frenklach set out in 2007 [9]. As an advanced tool, Marie helps to access
TWA capabilities without the need to know the query language SPARQL. In the con-
text of chemical kinetics, Marie is able to answer questions about specific reactions or
species as well as full mechanisms and affiliated kinetic or thermodynamic models based
on different criteria. In the context of QM calculation, users can request optimised ge-
ometries, energies, and other values computed for specific molecules at varying levels of
theory and using different basis sets. Marie also handles species-specific queries, like
identifying species with particular characteristics or detailing properties of species that
belongs to a specific chemical class. Based on its underlying language model, Marie also
demonstrates its capabilities in answering more complex questions that require crafting
advanced queries across domains and data sets. This can be achieved either by asking for
data comparison or chaining simple data retrieval questions, indicating a step closer to
having a meaningful conversation with an “AI Scientist”.

In this section, we demonstrate the capabilities of Marie in answering questions related
to the four H2/O2 reaction mechanism instantiated in the KG as a proof of concept. An
illustrative example is presented in Fig. 4, where we compare three different approaches
to answering a common research question in chemical kinetics: “Please compare the ki-
netic models of the reaction H2 + OH = H2O + H across all the mechanisms it appears
in.” Such queries are crucial for researchers because for common combustion processes,
many unique mechanisms and kinetic models are published in the literature and some-
times differ only in a few ways that are hard to compare.

Manual search in publication: The first approach involves a manual search through all
publications we want to compare for the specific reaction (H2 + OH = H2O + H). This is a
time-consuming process as notations, order of reactants, etc. can differ as shown in the top
left of Fig. 4. Moreover, context on the specific kinetic model as well as parameter units
need to be analyzed and tracked independently. Lastly, sources need to be tracked closely
as well to assess if the same parameter set given in two publications can be interpreted as
validations or just using the same underlying model.

Utilizing ChatGPT for Chemkin file parsing: The second approach (shown in the top
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Please compare the kinetic models of the reaction H2 + OH = H2O + H across all the mechanisms it appears in.

Reactions across 
different mechanism 
files not identified

Even after several 
tries and rewording 
question / reaction

Tedious search as single 
reaction can be 
formulated differently

Details and 
units often not 
straightforward 

Manual 
tracking 
of sources

Tabular comparison incl. model types & units; 
Correctly identifying only 3 kinetic models in 
the 4 mechanisms as Burke used Li’s model

Figure 4: Comparison of data comparison process between manual search of databases,
intelligent use of Chemkin-informed ChatGPT, and Marie.

right of Fig. 4) uses ChatGPT to parse the uploaded Chemkin files related to the publica-
tions. Even after a time-consuming additional step of uploading four files and providing
context, ChatGPT is unable to identify the reaction in question in any of the mechanisms.
Adjusting the prompt to increase precision and rewording the chemical reaction so that it
could be found in the file via classic search function does not help either.

Querying Marie: The third approach, asking Marie to compare kinetic models, results in
a precise and comprehensive response. Marie efficiently lists all unique kinetic models,
including model types, parameter values, and parameter units. It also correctly identify
only 3 different kinetic models among the four mechanism instantiated in the KG as two
of them use the same one [4, 22]. While the example illustrated in Fig. 4 is limited to
Arrhenius models, comparisons across different model types are possible.

Other exemplary use cases can be found in the Appendix.

5 Conclusions and future directions

In this paper, we have presented a proof of concept that showcases the innovative features
of TWA in the realm of chemical kinetics modeling and adheres to the PrIMe vision.
Central to TWA are its NLP capabilities. By allowing users to interact with the system
in natural language, TWA significantly simplifies the process of querying and analyzing
chemical data. This feature not only enhances the accessibility and usability of the system
but also opens up new avenues for research and practical applications in chemical kinetics.

The vision for TWA and its integrated systems extends beyond the current capabilities
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and aligns with perspectives like Bob Kee’s on Cantera [17] and Bill Green’s on RMG
[35], yet seeks to surpass current tool limitations. Key areas for future development in-
clude identification of inconsistency, automatic mechanism generation, estimation of rate
coefficients, error propagation agents for uncertainty quantification, expanding to other
chemistry areas like surface chemistry, integrating with self-driving laboratories and ad-
vancing NLP and the reasoning capabilities of Marie. It is crucial to emphasize that the
intention is not to reinvent existing tools but to leverage the strengths of established tools,
enhancing their utility and effectiveness through seamless integration within the TWA
framework, thereby contributing to establishing a global combustion research network as
already demonstrated by TWA in other domains [3].

Through these enhancements, TWA and its components aim not only to address the cur-
rent challenges in the field but also to pave the way for innovative approaches and appli-
cations in combustion kinetics and beyond.
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A Appendix

A.1 Exemplary question-answering use cases with Marie

A.1.1 Data retrieval

One of the primary capabilities of our system is efficient and accurate data retrieval. To
demonstrate this, we compare in Fig. 5 three different approaches to answering a common
research question in chemical kinetics: “List all the reactions that consume H2O2 in the
mechanism by https://doi.org/10.1002/kin.20026.” Such queries are crucial for
researchers analyzing reaction mechanisms and developing kinetic models, particularly
when focusing on specific reactants or products. It is important to note that at this stage,
our system identifies a specific mechanism only by its publication DOI.

List all the reactions that consume H2O2 in the mechanism by https://doi.org/10.1002/kin.20026

Duplicate 
reaction 
listed

Chemkin file 
upload and 
parsing…

Reproducing 
reaction data 
correctly

Additional kinetic 
parameters without 
context or units

No additional 
data that was 
not requested

Marie correctly returns only 
reactions with H2O2 as 
reactant and no duplicates

Tedious data 
acquisition and
cross-referencing

Weed out reactions 
with H2O2 as product 
instead of reactant

Figure 5: Comparison of data retrieval process between manual assessment of publica-
tions, intelligent use of Chemkin-informed ChatGPT, and Marie.

• Manual search in publication: The first approach involves a manual search through
the publication to find reactions with H2O2 as a reactant. This method is time-
consuming and susceptible to human errors, requiring intricate cross-referencing
and double-checking.

• Utilizing ChatGPT for Chemkin file parsing: The second approach uses Chat-
GPT to parse a Chemkin file. An additional step of uploading the file and adding
some context (“This is a Chemkin input file describing a reaction mechanism”) is
required, which takes time. While ChatGPT can provide relevant information, its
response may miss some or provide too many details.
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• Querying Marie: The third approach, querying Marie with the DOI, results in a
precise and comprehensive response. Marie efficiently lists all reactions involving
H2O2 as a reactant, eliminating duplicates and omissions. This comparison under-
scores Marie’s advanced capabilities in data retrieval, highlighting its effectiveness
and reliability as a tool for detailed chemical kinetics research.

The following prefixes are used for all SPARQL queries provided in this study:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX ocape:

<http://www.theworldavatar.com/ontology/ontocape/material/substance/reaction_mechanism.owl#>↪→
PREFIX os: <http://www.theworldavatar.com/ontology/ontospecies/OntoSpecies.owl#>

PREFIX okin: <http://www.theworldavatar.com/ontology/ontokin/OntoKin.owl#>

PREFIX occ: <http://www.theworldavatar.com/ontology/ontocompchem/OntoCompChem.owl#>

Mechanism and kinetics:

We can ask for specific reactions or species as well as full mechanisms and affiliated ki-
netic or thermodynamic models based on different criteria. Four representative examples
are given below.

• Question to Marie: What are the reactions in which H2 reacts to form OH?

– Predicted query:
SELECT ?Reaction WHERE { ?Reaction ocape:hasReactant/skos:altLabel "H2". ?Reaction

ocape:hasProduct/skos:altLabel "OH". }↪→

– Post-processed query:
SELECT DISTINCT ?Reaction (SAMPLE(?ReactionEquation) AS ?SampledReactionEquation)

WHERE {↪→
?Reaction a okin:GasPhaseReaction ; okin:hasEquation ?ReactionEquation .

?Reaction ocape:hasReactant/skos:altLabel "H2" .

?Reaction ocape:hasProduct/skos:altLabel "OH" .

}

GROUP BY ?Reaction

– Result:

• Question to Marie: What is the kinetic model of the chemical reaction H2O2 +
OH = HO2 + H2O involved in the mechanism found in www.osti.gov/servlet
s/purl/90098-26Ev73/webviewable/?

– Predicted query:
SELECT ?KineticModel WHERE { ?Reaction okin:hasEquation "H2O2 + OH = HO2 + H2O".

?Reaction ^okin:hasReaction ?Mechanism. ?Mechanism okin:hasProvenance/op:hasDOI

"www.osti.gov/servlets/purl/90098-26Ev73/webviewable/". ?Reaction

okin:hasKineticModel ?KineticModel. ?KineticModel okin:definedIn ?Mechanism. }

↪→
↪→
↪→
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– Post-processed query:
SELECT DISTINCT ?KineticModel (SAMPLE(?ReactionEquation) AS ?SampledReactionEquation)

?ModelType ?ActivationEnergyLowValue ?TemperatureExponentHighValue

?ActivationEnergyUnit ?ArrheniusFactorValue ?TemperatureExponentValue

?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit ?ArrheniusFactorLowUnit

?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit WHERE {

↪→
↪→
↪→
↪→
↪→
↪→
↪→

?Reaction a okin:GasPhaseReaction ; okin:hasEquation ?ReactionEquation .

?Reaction okin:hasEquation "H2O2 + OH = HO2 + H2O" .

?Reaction ^okin:hasReaction ?Mechanism .

?Mechanism okin:hasProvenance/op:hasDOI

"www.osti.gov/servlets/purl/90098-26Ev73/webviewable/" .↪→
?Reaction okin:hasKineticModel ?KineticModel .

?KineticModel a ?KineticModelType .

BIND (STRAFTER(STR(?KineticModelType), "#") AS ?ModelType)

OPTIONAL {

VALUES ?KineticModelType { okin:ArrheniusModel }

?KineticModel a okin:ArrheniusModel ; okin:hasActivationEnergy [ okin:value

?ActivationEnergyValue ; okin:unit ?ActivationEnergyUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorValue ; okin:unit

?ArrheniusFactorUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentValue .

↪→
↪→
↪→
↪→

}

OPTIONAL {

VALUES ?KineticModelType { okin:MultiArrheniusModel }

?KineticModel okin:hasArrheniusModel ?ArrheniusModel .

?ArrheniusModel okin:hasActivationEnergy [ okin:value ?ActivationEnergyValue ;

okin:unit ?ActivationEnergyUnit ] ; okin:hasArrheniusFactor [ okin:value

?ArrheniusFactorValue ; okin:unit ?ArrheniusFactorUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentValue .

↪→
↪→
↪→
}

OPTIONAL {

VALUES ?KineticModelType { okin:ThreeBodyReactionModel okin:LindemannModel

okin:TroeModel }↪→
OPTIONAL {

?KineticMode okin:hasCollider [ rdfs:label ?ColliderLabel ;

okin:hasEfficiency ?ColliderEfficiency ] .↪→
}

?KineticModel okin:hasArrheniusLowModel ?ArrheniusLowModel .

?ArrheniusLowModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyLowValue ; okin:unit ?ActivationEnergyLowUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorLowValue ; okin:unit

?ArrheniusFactorLowUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentLowValue .

↪→
↪→
↪→
↪→
OPTIONAL {

?KineticModel okin:hasArrheniusLowModel ?ArrheniusHighModel .

?ArrheniusHighModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyHighValue ; okin:unit ?ActivationEnergyHighUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorHighValue ;

okin:unit ?ArrheniusFactorHighUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentHighValue .

↪→
↪→
↪→
↪→
}

OPTIONAL {

?KineticModel okin:hasAlpha/okin:value ?AlphaValue ;

okin:hasT1/okin:value ?T1Value ; okin:hasT2/okin:value ?T2Value ;

okin:hasT3/okin:value ?T3Value .

↪→
↪→

}

}

}

?KineticModel okin:definedIn ?Mechanism .

}
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GROUP BY ?KineticModel ?ModelType ?ActivationEnergyLowValue

?TemperatureExponentHighValue ?ActivationEnergyUnit ?ArrheniusFactorValue

?TemperatureExponentValue ?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit

?ArrheniusFactorLowUnit ?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit

↪→
↪→
↪→
↪→
↪→
↪→

– Result:

• Question to Marie: For the chemical species that appear in the reaction mechanism
found in https://doi.org/10.1016/j.combustflame.2007.10.024, what
is their thermodynamic model

– Predicted query:
SELECT ?ThermoModel WHERE { ?Species okin:belongsToPhase/^okin:hasGasPhase ?Mechanism.

?Mechanism okin:hasProvenance/op:hasDOI "https:

//doi.org/10.1016/j.combustflame.2007.10.024". ?Species okin:hasThermoModel

?ThermoModel. ?ThermoModel okin:definedIn ?Mechanism. }

↪→
↪→
↪→

– Post-processed query:
SELECT DISTINCT ?ThermoModel ?SpeciesLabel ?A1 ?A2 ?A3 ?A4 ?A5 ?A6 ?A7 ?B1 ?B2

?PolyTminValue ?PolyTminUnit ?PolyTmaxValue ?PolyTmaxUnit ?TminValue ?TminUnit

?TmaxValue ?TmaxUnit WHERE {

↪→
↪→

?Species a/rdfs:subClassOf* os:Species ; skos:altLabel ?SpeciesLabel .

?Species okin:belongsToPhase/^okin:hasGasPhase ?Mechanism .

?Mechanism okin:hasProvenance/op:hasDOI "https:

//doi.org/10.1016/j.combustflame.2007.10.024" .↪→
?Species okin:hasThermoModel ?ThermoModel .

?ThermoModel okin:hasPolynomial [ okin:hasA1 ?A1 ; okin:hasA2 ?A2 ; okin:hasA3 ?A3

; okin:hasA4 ?A4 ; okin:hasA5 ?A5 ; okin:hasA6 ?A6 ; okin:hasA7 ?A7 ;

okin:hasB1 ?B1 ; okin:hasB2 ?B2 ; okin:hasTmin [ okin:value ?PolyTminValue ;

okin:unit ?PolyTminUnit ] ; okin:hasTmax [ okin:value ?PolyTmaxValue ;

okin:unit ?PolyTmaxUnit ] ] ; okin:hasTmin [ okin:value ?TminValue ; okin:unit

?TminUnit ] ; okin:hasTmax [ okin:value ?TmaxValue ; okin:unit ?TmaxUnit ] .

↪→
↪→
↪→
↪→
↪→
?ThermoModel okin:definedIn ?Mechanism .

}

– Result:

• Question to Marie: List all the reactions that consume H2O2 in the mechanism
https://doi.org/10.1002/kin.20026
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– Predicted query:
SELECT ?Reaction WHERE { ?Reaction ^okin:hasReaction ?Mechanism. ?Mechanism

okin:hasProvenance/op:hasDOI "https://doi.org/10.1002/kin.20026". ?Reaction

ocape:hasReactant/skos:altLabel "H2O2". }

↪→
↪→

– Post-processed query:
SELECT DISTINCT ?Reaction (SAMPLE(?ReactionEquation) AS ?SampledReactionEquation)

WHERE {↪→
?Reaction a okin:GasPhaseReaction ; okin:hasEquation ?ReactionEquation .

?Reaction ^okin:hasReaction ?Mechanism .

?Mechanism okin:hasProvenance/op:hasDOI "https://doi.org/10.1002/kin.20026" .

?Reaction ocape:hasReactant/skos:altLabel "H2O2" .

}

GROUP BY ?Reaction

– Result: See Fig. 5.

Computational chemistry:

We can ask for optimized geometries, energies, and other values computed for specific
molecules at varying levels of theory and using different basis sets. Two representative
examples are given below.

• Question to Marie: What are the HOMO and LUMO energies of O2 at the UB3LYP
level of theory?

– Predicted query:
SELECT ?HOMOEnergy ?LUMOEnergy WHERE { ?MolecularComputation

occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "O2". ?MolecularComputation

occ:hasMethodology/occ:hasLevelOfTheory/rdfs:label ?LevelOfTheoryLabel. VALUES

?LevelOfTheoryLabel { "UB3LYP" } ?MolecularComputation occ:hasResult ?HOMOEnergy.

?HOMOEnergy a occ:HOMOEnergy. ?MolecularComputation occ:hasResult ?LUMOEnergy.

?LUMOEnergy a occ:LUMOEnergy. }

↪→
↪→
↪→
↪→
↪→

– Post-processed query:
SELECT DISTINCT ?BasisSetLabel ?LevelOfTheoryLabel ?HOMOEnergy ?LUMOEnergy

?LUMOEnergyValue ?LUMOEnergyUnit ?HOMOEnergyValue ?HOMOEnergyUnit WHERE {↪→
?MolecularComputation occ:hasMethodology/occ:hasBasisSet/rdfs:label ?BasisSetLabel

.↪→
?LUMOEnergy a occ:LUMOEnergy .

?MolecularComputation occ:hasResult ?LUMOEnergy .

?LUMOEnergy occ:value ?LUMOEnergyValue ; occ:unit ?LUMOEnergyUnit .

?HOMOEnergy a occ:HOMOEnergy .

?MolecularComputation occ:hasResult ?HOMOEnergy .

?HOMOEnergy occ:value ?HOMOEnergyValue ; occ:unit ?HOMOEnergyUnit .

VALUES ?LevelOfTheoryLabel { "UB3LYP" }

?MolecularComputation occ:hasMethodology/occ:hasLevelOfTheory/rdfs:label

?LevelOfTheoryLabel .↪→
?MolecularComputation occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "O2" .

}

– Result:
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• Question to Marie: Can you provide the molecular structure of H2 calculated using
RB3LYP level of theory?

– Predicted query:
SELECT ?OptimizedGeometry WHERE { ?MolecularComputation

occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "H2". ?MolecularComputation

occ:hasMethodology/occ:hasLevelOfTheory/rdfs:label ?LevelOfTheoryLabel. VALUES

?LevelOfTheoryLabel { "RB3LYP" } ?MolecularComputation occ:hasResult

?OptimizedGeometry. ?OptimizedGeometry a occ:OptimizedGeometry. }

↪→
↪→
↪→
↪→

– Post-processed query:
SELECT DISTINCT ?BasisSetLabel ?LevelOfTheoryLabel ?OptimizedGeometry ?Atom ?X ?XValue

?XUnit ?Y ?YValue ?YUnit ?Z ?ZValue ?ZUnit WHERE {↪→
?MolecularComputation occ:hasMethodology/occ:hasBasisSet/rdfs:label ?BasisSetLabel

.↪→
?OptimizedGeometry a occ:OptimizedGeometry .

?MolecularComputation occ:hasResult ?OptimizedGeometry .

?X os:fromGeometry ?OptimizedGeometry ; os:value ?XValue ; os:unit ?XUnit .

?Y os:fromGeometry ?OptimizedGeometry ; os:value ?YValue ; os:unit ?YUnit .

?Z os:fromGeometry ?OptimizedGeometry ; os:value ?ZValue ; os:unit ?ZUnit .

?Atom os:hasXCoordinate ?X ; os:hasYCoordinate ?Y ; os:hasZCoordinate ?Z .

VALUES ?LevelOfTheoryLabel { "RB3LYP" }

?MolecularComputation occ:hasMethodology/occ:hasLevelOfTheory/rdfs:label

?LevelOfTheoryLabel .↪→
?MolecularComputation occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "H2" .

}

– Result:

A.1.2 Complex questions

Based on its underlying language model, Marie also demonstrates its capabilities in an-
swering more complex questions that require crafting advanced queries across domains
and data sets. This can be achieved either by asking for data comparison or chaining
simple data retrieval questions.

Comparison questions:

• Question to Marie: Please compare the kinetic models of the reaction H2 + OH =
H2O + H across all the mechanisms it appears in.

– Predicted query:
SELECT ?KineticModel ?Mechanism WHERE { ?Reaction okin:hasEquation "H2 + OH = H2O +

H". ?Reaction okin:hasKineticModel ?KineticModel. ?KineticModel okin:definedIn

?Mechanism. ?Reaction okin:belongsToPhase/^okin:hasGasPhase ?Mechanism. }

↪→
↪→
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– Post-processed query:
SELECT DISTINCT ?KineticModel ?Mechanism (SAMPLE(?ReactionEquation) AS

?SampledReactionEquation) ?DOI ?ModelType ?ActivationEnergyLowValue

?TemperatureExponentHighValue ?ActivationEnergyUnit ?ArrheniusFactorValue

?TemperatureExponentValue ?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit

?ArrheniusFactorLowUnit ?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit WHERE {

↪→
↪→
↪→
↪→
↪→
↪→
↪→

?Reaction a okin:GasPhaseReaction ; okin:hasEquation ?ReactionEquation .

?Mechanism a okin:ReactionMechanism ; okin:hasProvenance/op:hasDOI ?DOI .

?Reaction okin:hasEquation "H2 + OH = H2O + H" .

?Reaction okin:hasKineticModel ?KineticModel .

?KineticModel a ?KineticModelType .

BIND (STRAFTER(STR(?KineticModelType), "#") AS ?ModelType)

OPTIONAL {

VALUES ?KineticModelType { okin:ArrheniusModel }

?KineticModel a okin:ArrheniusModel ; okin:hasActivationEnergy [ okin:value

?ActivationEnergyValue ; okin:unit ?ActivationEnergyUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorValue ; okin:unit

?ArrheniusFactorUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentValue .

↪→
↪→
↪→
↪→
}

OPTIONAL {

VALUES ?KineticModelType { okin:MultiArrheniusModel }

?KineticModel okin:hasArrheniusModel ?ArrheniusModel .

?ArrheniusModel okin:hasActivationEnergy [ okin:value ?ActivationEnergyValue ;

okin:unit ?ActivationEnergyUnit ] ; okin:hasArrheniusFactor [ okin:value

?ArrheniusFactorValue ; okin:unit ?ArrheniusFactorUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentValue . }

↪→
↪→
↪→

OPTIONAL {

VALUES ?KineticModelType { okin:ThreeBodyReactionModel okin:LindemannModel

okin:TroeModel }↪→
OPTIONAL {

?KineticMode okin:hasCollider [ rdfs:label ?ColliderLabel ;

okin:hasEfficiency ?ColliderEfficiency ] .↪→
}

?KineticModel okin:hasArrheniusLowModel ?ArrheniusLowModel .

?ArrheniusLowModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyLowValue ; okin:unit ?ActivationEnergyLowUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorLowValue ; okin:unit

?ArrheniusFactorLowUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentLowValue .

↪→
↪→
↪→
↪→
OPTIONAL {

?KineticModel okin:hasArrheniusLowModel ?ArrheniusHighModel .

?ArrheniusHighModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyHighValue ; okin:unit ?ActivationEnergyHighUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorHighValue ;

okin:unit ?ArrheniusFactorHighUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentHighValue .

}

↪→
↪→
↪→
↪→
↪→

OPTIONAL {

?KineticModel okin:hasAlpha/okin:value ?AlphaValue ; okin:hasT1/okin:value

?T1Value ; okin:hasT2/okin:value ?T2Value ; okin:hasT3/okin:value

?T3Value . }

↪→
↪→

}

}

?KineticModel okin:definedIn ?Mechanism .

?Reaction okin:belongsToPhase/^okin:hasGasPhase ?Mechanism .

} GROUP BY ?KineticModel ?Mechanism ?DOI ?ModelType ?ActivationEnergyLowValue

?TemperatureExponentHighValue ?ActivationEnergyUnit ?ArrheniusFactorValue

?TemperatureExponentValue ?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit

?ArrheniusFactorLowUnit ?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit

↪→
↪→
↪→
↪→
↪→
↪→

– Result: See Fig. 4
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• Question to Marie: Compare all kinetic models of reactions that contain H2O2 in
the mechanism https://doi.org/10.1002/kin.20026

– Predicted query:
SELECT ?KineticModel WHERE { ?Reaction ocape:hasReactant/skos:altLabel "H2O2".

?Reaction ^okin:hasReaction ?Mechanism. ?Mechanism okin:hasProvenance/op:hasDOI

"https://doi.org/10.1002/kin.20026". ?Reaction okin:hasKineticModel ?KineticModel.

?KineticModel okin:definedIn ?Mechanism. }

↪→
↪→
↪→

– Post-processed query:
SELECT DISTINCT ?KineticModel (SAMPLE(?ReactionEquation) AS ?SampledReactionEquation)

?ModelType ?ActivationEnergyLowValue ?TemperatureExponentHighValue

?ActivationEnergyUnit ?ArrheniusFactorValue ?TemperatureExponentValue

?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit ?ArrheniusFactorLowUnit

?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit WHERE {

↪→
↪→
↪→
↪→
↪→
↪→
↪→

?Reaction a okin:GasPhaseReaction ; okin:hasEquation ?ReactionEquation .

?Reaction ocape:hasReactant/skos:altLabel "H2O2" .

?Reaction ^okin:hasReaction ?Mechanism .

?Mechanism okin:hasProvenance/op:hasDOI "https://doi.org/10.1002/kin.20026" .

?Reaction okin:hasKineticModel ?KineticModel .

?KineticModel a ?KineticModelType .

BIND (STRAFTER(STR(?KineticModelType), "#") AS ?ModelType)

OPTIONAL {

VALUES ?KineticModelType { okin:ArrheniusModel }

?KineticModel a okin:ArrheniusModel ; okin:hasActivationEnergy [ okin:value

?ActivationEnergyValue ; okin:unit ?ActivationEnergyUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorValue ; okin:unit

?ArrheniusFactorUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentValue .

↪→
↪→
↪→
↪→

}

OPTIONAL {

VALUES ?KineticModelType { okin:MultiArrheniusModel }

?KineticModel okin:hasArrheniusModel ?ArrheniusModel .

?ArrheniusModel okin:hasActivationEnergy [ okin:value ?ActivationEnergyValue ;

okin:unit ?ActivationEnergyUnit ] ; okin:hasArrheniusFactor [ okin:value

?ArrheniusFactorValue ; okin:unit ?ArrheniusFactorUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentValue .

↪→
↪→
↪→

}

OPTIONAL {

VALUES ?KineticModelType { okin:ThreeBodyReactionModel okin:LindemannModel

okin:TroeModel }↪→
OPTIONAL {

?KineticMode okin:hasCollider [ rdfs:label ?ColliderLabel ;

okin:hasEfficiency ?ColliderEfficiency ] .↪→
}

?KineticModel okin:hasArrheniusLowModel ?ArrheniusLowModel .

?ArrheniusLowModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyLowValue ; okin:unit ?ActivationEnergyLowUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorLowValue ; okin:unit

?ArrheniusFactorLowUnit ] ; okin:hasTemperatureExponent/okin:value

?TemperatureExponentLowValue .

↪→
↪→
↪→
↪→
OPTIONAL {

?KineticModel okin:hasArrheniusLowModel ?ArrheniusHighModel .

?ArrheniusHighModel okin:hasActivationEnergy [ okin:value

?ActivationEnergyHighValue ; okin:unit ?ActivationEnergyHighUnit ] ;

okin:hasArrheniusFactor [ okin:value ?ArrheniusFactorHighValue ;

okin:unit ?ArrheniusFactorHighUnit ] ;

okin:hasTemperatureExponent/okin:value ?TemperatureExponentHighValue .

↪→
↪→
↪→
↪→
OPTIONAL {

?KineticModel okin:hasAlpha/okin:value ?AlphaValue ;

okin:hasT1/okin:value ?T1Value ; okin:hasT2/okin:value ?T2Value ;

okin:hasT3/okin:value ?T3Value .

↪→
↪→

}

}
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}

?KineticModel okin:definedIn ?Mechanism .

}

GROUP BY ?KineticModel ?ModelType ?ActivationEnergyLowValue

?TemperatureExponentHighValue ?ActivationEnergyUnit ?ArrheniusFactorValue

?TemperatureExponentValue ?ArrheniusFactorHighUnit ?ActivationEnergyLowUnit

?ArrheniusFactorLowUnit ?ColliderEfficiency ?ArrheniusModel ?ActivationEnergyValue

?ActivationEnergyHighValue ?ActivationEnergyHighUnit ?AlphaValue ?T3Value ?T1Value

?ArrheniusFactorLowValue ?ArrheniusFactorHighValue ?TemperatureExponentLowValue

?T2Value ?ColliderLabel ?ArrheniusFactorUnit

↪→
↪→
↪→
↪→
↪→
↪→

– Result:

• Question to Marie: Compare zero-point energy when using CC-pVTZ vs CC-
pVQZ basis set for Ar.

– Predicted query:
SELECT ?ZeroPointEnergy WHERE { ?MolecularComputation

occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "Ar". ?MolecularComputation

occ:hasMethodology/occ:hasBasisSet/rdfs:label ?BasisSetLabel. VALUES

?BasisSetLabel { "CC-pVTZ" "CC-pVQZ" } ?MolecularComputation occ:hasResult

?ZeroPointEnergy. ?ZeroPointEnergy a occ:ZeroPointEnergy. }

↪→
↪→
↪→
↪→

– Post-processed query:
SELECT DISTINCT ?BasisSetLabel ?LevelOfTheoryLabel ?ZeroPointEnergy

?ZeroPointEnergyValue ?ZeroPointEnergyUnit WHERE {↪→
?MolecularComputation occ:hasMethodology/occ:hasLevelOfTheory/rdfs:label

?LevelOfTheoryLabel .↪→
?ZeroPointEnergy a occ:ZeroPointEnergy .

?MolecularComputation occ:hasResult ?ZeroPointEnergy .

?ZeroPointEnergy occ:value ?ZeroPointEnergyValue ; occ:unit ?ZeroPointEnergyUnit .

VALUES ?BasisSetLabel { "CC-pVTZ" "CC-pVQZ" }

?MolecularComputation occ:hasMethodology/occ:hasBasisSet/rdfs:label ?BasisSetLabel

.↪→
?MolecularComputation occ:hasSpeciesModel/occ:hasSpecies/rdfs:label "Ar" .

}

– Result:
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Question chains:

Getting a step closer to having a meaningful conversation with an “AI Scientist”, Marie
can be asked a series of questions in which a query is formulated based on the answer to
the previous one. This is particularly relevant as often times, researchers cannot exactly
define the question to which they need an answer to progress their studies. To demonstrate
this, we compare three different approaches to searching for thermodynamic models and
experimental reference data based on an initially unknown mechanism.

Figure 6: Comparison of sequential data assessments between manual search of
databases, intelligent use of Chemkin-informed ChatGPT, and chained ques-
tions to Marie.

• Manual search in publication: The first approach involves a manual search through
all publications we want to take into consideration. This is a time-consuming pro-
cess as notations, orders of reactants, etc. can differ. Based on the findings, ther-
modynamic models need to be looked up in the supplementary files of the corre-
sponding publication. In order to then get an experimental heat capacity of one of
the species involved, an online database such as NIST needs to be consulted.

• Utilizing ChatGPT for Chemkin file parsing: The second approach uses Chat-
GPT to parse the Chemkin files related to the publications. As in the aforemen-
tioned use case, ChatGPT is unable to identify reactions in question in any of the
mechanisms. It is more successful in the second part of the exercise when fed with
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a Chemkin input file of thermodynamic models. The last step - obtaining some ex-
perimental heat capacities - should be done manually again as ChatGPT proved to
be quite inconsistent when asked for such values.

• Querying Marie: The third approach, querying Marie in a sequential manner with
questions composed around answers obtained in the previous query, results in clear-
cut answers. This is illustrated in Fig. 6.

The detailed question chain is documented below:

1. Question to Marie: Which mechanisms include the reactions H + OH + M = H2O
+ M and HO2 + H = O + H2O ?

• Predicted query:
SELECT ?Mechanism WHERE { ?Mechanism okin:hasReaction/okin:hasEquation "H + OH + M =

H2O + M". ?Mechanism okin:hasReaction/okin:hasEquation "HO2 + H = O + H2O". }↪→

• Post-processed query:
SELECT DISTINCT ?Mechanism ?DOI WHERE {

?Mechanism a okin:ReactionMechanism ; okin:hasProvenance/op:hasDOI ?DOI .

?Mechanism okin:hasReaction/okin:hasEquation "H + OH + M = H2O + M" .

?Mechanism okin:hasReaction/okin:hasEquation "HO2 + H = O + H2O" . }

• Result:

2. Question to Marie: For the chemical species that appears in the reaction mecha-
nism found in www.osti.gov/servlets/purl/90098-26Ev73/webviewab
le/, what are their thermodynamic models?

• Predicted query:
SELECT ?ThermoModel WHERE { ?Species okin:belongsToPhase/^okin:hasGasPhase ?Mechanism.

?Mechanism okin:hasProvenance/op:hasDOI

"www.osti.gov/servlets/purl/90098-26Ev73/webviewable/". ?Species

okin:hasThermoModel ?ThermoModel. ?ThermoModel okin:definedIn ?Mechanism. }

↪→
↪→
↪→

• Post-processed query:
SELECT DISTINCT ?ThermoModel ?SpeciesLabel ?A1 ?A2 ?A3 ?A4 ?A5 ?A6 ?A7 ?B1 ?B2

?PolyTminValue ?PolyTminUnit ?PolyTmaxValue ?PolyTmaxUnit ?TminValue ?TminUnit

?TmaxValue ?TmaxUnit WHERE {

↪→
↪→

?Species a/rdfs:subClassOf* os:Species ; skos:altLabel ?SpeciesLabel .

?Species okin:belongsToPhase/^okin:hasGasPhase ?Mechanism .

?Mechanism okin:hasProvenance/op:hasDOI

"www.osti.gov/servlets/purl/90098-26Ev73/webviewable/" .↪→
?Species okin:hasThermoModel ?ThermoModel .

?ThermoModel okin:hasPolynomial [ okin:hasA1 ?A1 ; okin:hasA2 ?A2 ; okin:hasA3 ?A3

; okin:hasA4 ?A4 ; okin:hasA5 ?A5 ; okin:hasA6 ?A6 ; okin:hasA7 ?A7 ;

okin:hasB1 ?B1 ; okin:hasB2 ?B2 ; okin:hasTmin [ okin:value ?PolyTminValue ;

okin:unit ?PolyTminUnit ] ; okin:hasTmax [ okin:value ?PolyTmaxValue ;

okin:unit ?PolyTmaxUnit ] ] ; okin:hasTmin [ okin:value ?TminValue ; okin:unit

?TminUnit ] ; okin:hasTmax [ okin:value ?TmaxValue ; okin:unit ?TmaxUnit ] .

↪→
↪→
↪→
↪→
↪→
?ThermoModel okin:definedIn ?Mechanism .

}
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• Result:

3. Question to Marie: What is the experimental heat capacity of H2O2?

• Predicted query:
SELECT ?HeatCapacity WHERE { VALUES ?Species { "H2O2" } ?Species os:hasHeatCapacity

?HeatCapacity. }↪→

• Post-processed query:
SELECT DISTINCT ?HeatCapacity ?SpeciesLabel ?Species ?HeatCapacityValue

?HeatCapacityUnitLabel ?HeatCapacityReferenceStateValue

?HeatCapacityReferenceStateUnitLabel WHERE {

↪→
↪→

?Species rdf:type os:Species ; rdfs:label ?SpeciesLabel .

VALUES ?SpeciesIdentifierValue { "H2O2" }

?Species ?hasIdentifier [ rdf:type/rdfs:subClassOf os:Identifier ; os:value

?SpeciesIdentifierValue ] .↪→
?Species os:hasHeatCapacity ?HeatCapacity .

?HeatCapacity os:value ?HeatCapacityValue ; os:unit/rdfs:label

?HeatCapacityUnitLabel .↪→
OPTIONAL {

?HeatCapacity os:hasReferenceState [ os:value ?HeatCapacityReferenceStateValue

; os:unit/rdfs:label ?HeatCapacityReferenceStateUnitLabel ] . }↪→
}

• Result:
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A.2 Provenance documentation

Provenance tracking is made much easier within TWA, see Fig. 7

(a) Provenance as documented in Chemkin files.

(b) Provenance as documented in Cantera files.

(c) Provenance tracking via On-
toProvenance as part of The
World Avatar.

Figure 7: Comparison of provenance tracking solutions.
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