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Abstract

In order to tackle many of humanity’s most pressing challenges, scientific discov-
ery needs to be substantially accelerated. The automation of experimental research
activities plays a big role in this, from ubiquitous software tools to “self-driving labo-
ratories”. Recently, the idea of an “AI scientist” that can make Nobel-worthy discov-
eries has been introduced in this context. We argue, that current platform-based ap-
proaches are insufficient and might even limit further development. Therefore, we in-
troduce the digital lab framework as a holistic approach to laboratory automation. Its
hierarchical and semantic structure allows for deep knowledge representation across
different domains and scales which is necessary to further interoperability by widen-
ing the search and optimisation space to include managerial tasks in research labs
as well as information on infrastructure and buildings. This way we can ensure cost
effectiveness, improve reproducibility, and bridge the “interim technology gap”. To
address common challenges related to interoperability and adaptability, this frame-
work is developed as part of “The World Avatar” ecosystem, based on interconnected
dynamic knowledge graphs. Viewing at the challenges at hand from a systems engi-
neering perspective, we aim to integrate all aspects of lab work and its automation,
contrasting the many isolated solutions available that – amongst others – increase the
risk of manufacturer lock-in. The goal-driven architecture enables subsequent de-
sign of experiments, and optimal resource distribution according to freely definable
research goals.
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Highlights
• A holistic lab framework pushes a paradigm shift to include all aspects of ex-

perimental research.

• Dynamic knowledge graph technology enables connected lab digital twins.

• A systems engineering approach allows for goal-driven self-driving labs.
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1 Introduction

The world is currently facing several high-level challenges such as sustainability, climate
change, and healthcare. Technological advancements have enabled the development of
technical solutions to help solve some of these. However, to fulfil critical goals – such
as achieving the United Nations’ sustainable development goals (SDGs), research and
development (R&D) need to be accelerated drastically. One of the biggest levers for such
an acceleration is the automation of research laboratories.

Laboratory automation involves the use of technology to perform experiments, analytical
procedures, and related activities without direct human intervention. Thereby, the effi-
ciency and productivity of laboratories can be significantly increased while less time and
resources are required to conduct experiments, enabling the collection of larger datasets.
Automation can furthermore minimise human error, which improves reproducibility and
precision. These advantages have made laboratory automation an increasingly popular
approach for many research organisations.

In order to analyse the current state of laboratory automation and related challenges from
a bird’s eye perspective, we adopt a systems engineering approach in this paper. The as-
sociated thinking and process [24] guides our work in general, but most importantly the
sequence within this introduction: first, we construct an ideal future scenario to derive
requirements and define goals in section 1.1 and compare it to current existing research
directions. Then a functional analysis of these requirements is conducted in section 1.2 by
taking on a systems view going beyond the underlying concepts of existing solutions. Fi-
nally, we can synthesise a general system design to accomplish these goals in section 1.3.

1.1 Constructing a scenario: Lab of the future

Imagine a world in which this urgency is taken with adequate seriousness in terms of
resource allocation and policymaking, such that the rate of scientific discovery has been
increased by orders of magnitude. How would such a world look like?

Human researchers would only need to formulate their research goals, and autonomous
software and hardware agents take care of the rest. These agents can define the concrete
steps required to achieve set high-level goals, design and execute experiments, analyse
and interpret results, manage related inventory and resources, and even suggest new hy-
potheses or goals for further investigation. Laboratory automation has been perfected,
resulting in highly efficient and productive research environments. Artificial intelligence
(AI) powered systems analyse challenges and goals to break them down into smaller sub-
goals which can then be investigated by experimental or theoretical research. For a labo-
ratory, this means that adequate experiments are automatically designed, executed, anal-
ysed, and used as a basis for the next experiment to maximise knowledge gain. Not only
that, all consumables necessary are ordered automatically according to an optimised ex-
perimental schedule which also takes equipment purchases and maintenance into account
as well as monitoring of the structural integrity of the building we are in.

It can be easily seen that this scenario is not limited to “total laboratory automation” [65,
94] in the narrow sense of interconnected machinery in an assembly line nor in the broader
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sense of integrated design, execution, and analysis of experiments – but includes all above
aspects related to a (chemical) research laboratory. As humans only define abstract goals,
this is going even beyond the RSC scenario of “push-button chemistry” [78]. The clos-
est formulated vision to date is that of an “AI scientist” capable of making Nobel-prize
worthy scientific discoveries [55]. This has been discussed in the context of the Nobel
Turing challenge, which has been proposed as a Grand Challenge for the Turing Insti-
tute [35] in addition to the three active ones under “Towards Turing 2.0” [1]. While this
challenge is focused on the software aspect of research automation, one can easily recog-
nise the need for such an AI scientist to be equipped with robotic capabilities for full
autonomy. Furthermore, it would need to be embedded in a very broad knowledge model,
encompassing everything from quantum mechanics over robotic precision models to en-
ergy and resource prices. Next to achieving research goals alone, aspects of sustainability
and efficiency also need to be addressed [86, 96]: What is the ideal sequence or timing of
experiments to minimise the environmental footprint? Can the setup be changed to reduce
power consumption or reactants be swapped to greener alternatives? And is there an opti-
mum cut-off point where diminishing returns in terms of knowledge gain are outweighed
by the impact of resources consumed by the experiments? A fully autonomous research
laboratory takes these questions into account when making decisions.

We therefore need to consider approaches that go beyond the traditional methods of labo-
ratory automation. While robotic liquid handlers and high-throughput screening platforms
are important components of laboratory automation, they only address a limited range of
tasks. We also need to automate supporting tasks such as inventory management, resource
allocation, and cost reduction. In doing so, we can reduce the time and effort required to
manage laboratory operations, enabling researchers to focus on their core scientific activi-
ties. Recently an expert panel at SLAS Europe 2023 [81] discussing the “lab of the future”
emphasised the necessity of workflow integration as the level of interoperability increases
between data, instruments and software and from scheduling to interconnected or even
distributed workflows. Going forward, the field needs to put more focus on software to
fit in the existing environment and track the provenance of decision-making during the
automated workflow [81].

1.2 System analysis: Aspects and requirements

At its core, laboratory operations always involve the interplay of three key aspects: the
experiment itself, the handler conducting and monitoring the experiment, and the labora-
tory infrastructure. These aspects overlap and interact with each other as shown in Fig. 1,
and each presents unique challenges for digitisation or automation.

The first aspect, the experiment itself, encompasses everything from the setup and prepa-
ration of samples to the measurement and analysis of results. The underlying knowledge
occupies a wide spectrum, ranging from quantum chemistry to practical intuitions tub-
ing. Even though there are many digital tools available now aiding chemists in these
complex tasks, much of this knowledge is currently considered “tacit” and certain pro-
cesses impossible to automate as they also require a high degree of intellectual flexibility.
For example, automating a high-throughput screening assay for drug discovery requires a
different approach than automating a complex synthesis reaction in organic chemistry.
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Figure 1: Our perspective on laboratory tasks and their automation potential.

The second aspect, the handler conducting and monitoring the experiment, refers to the
humans or robots responsible for carrying out the experimental protocols. With the ad-
vancement of robotics, the automation of handlers has become widely available to re-
searchers, which can help to reduce error rates, increase throughput, and improve con-
sistency. The challenge here is to ensure that the handlers are able to perform the tasks
efficiently and accurately and that they are able to adapt to changing experimental condi-
tions or unexpected results. Many allegedly automated experiments still require manual
intervention, such as adjusting reaction conditions or troubleshooting equipment, making
complete automation difficult to achieve.

The third aspect, laboratory infrastructure, includes everything from the physical layout
of the laboratory to the availability of equipment and resources. Automation of laboratory
infrastructure is crucial for achieving the seamless integration of all laboratory activities
while providing safe and secure laboratory environments with appropriate levels of access
control and monitoring. While great strides have been made in digitising building oper-
ations and design, these efforts are currently disconnected from laboratory automation
efforts, although the lab of the future needs this information [81]. The design of such a
lab could be very different compared to how they currently are if we consider the robots
to be part of the regular participants of the lab.

The systemic view shown in Fig. 1 has some similarities with the conceptual view of the
“sharework ontology for human robot collaboration” (SOHO) [104]. Particular areas of
overlap are the environment context in SOHO and the infrastructure aspect shown here,
as well as the behaviour context in SOHO and the handler aspect shown here. Yet, the
production context in SOHO only covers objectives and operations and is therefore much
more limited than the experiment aspect. Process knowledge is either not integrated or
considered part of the environmental context. Furthermore, SOHO is aimed at human-
robot collaboration in a more general and simplified context, i.e., on a purely mechanical
level for assembly, than needed for holistic and full automation of research laboratories.
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The systemic view can be potentially understood better by analogous application to au-
tomobiles – especially with regards to increasing digitisation and autonomy. Available
infrastructure are analogous roads, junctions, etc., as well as knowledge about expected
“traffic”. Stationary units are analogous to components of the car, most importantly sen-
sors and the data they collect. Mobile units are analogous to moving parts such as engines
and wheels, as well as controlling entities – be they human or software-based. The same
systemic view of experimentation in a laboratory can also be applied to computational
experiments but is not the main focus of this work.

1.3 Road to success: Design of solutions

When lab automation is discussed, it usually refers to robots carrying out experimental
work [17], even claims about total laboratory automation refer to this [94]. Over the last
years, interest in robotics has increased exponentially and overtaken interest in more gen-
eral automation in research laboratories – as for example indicated by usage frequency in
publication titles within biomedicine [44]. Recently, software models of experimental pa-
rameter spaces accompanying robotic handler setups have been developed under the term
“self-driving laboratory” (SDL) which has become very popular [2, 6, 69]. This term is
based on the same analogy to self-driving cars as established in section 1.2. Similar to
the vision of truly autonomous cars, SDLs of the future are expected to communicate and
coordinate with other SDLs to optimise surrounding traffic and also take care of mainte-
nance, manage resources, and adapt strategy based on underlying goals. To achieve this, a
holistic approach will be necessary as shown in Fig. 2: considering all three aspects of lab
activities enables automation not only of tasks typically associated with a lab technician
but also those of additional stakeholders such as lab managers and facility managers.

Figure 2: Self-driving labs only incorporate the “tip of the iceberg” of related knowledge.

In such a scenario, not only would the experiment itself need to be automated, but the AI
scientist would also need to have knowledge of the entire research environment, including
the laboratory infrastructure and the expertise of the handler conducting the experiments.
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By embracing a holistic approach to lab automation, we can not only accelerate scientific
discovery and innovation but also pave the way for the development of truly autonomous
research systems. It is apparent, that this requires a much deeper and broader understand-
ing of an experiment to be baked into such systems. This goes beyond the very explicit
data fed into AI models which constitutes only a small part of underlying knowledge nec-
essary to successfully design and conduct experiments in pursuit of a greater goal [60].
In this perspective, we propose a paradigm shift in the area of laboratory automation that
will enable us to move towards this future scenario. Traditional methods of laboratory au-
tomation are too narrow in scope and therefore propose a holistic approach to laboratory
automation that takes into account all three aspects of laboratory activities.

2 Background: Current state and existing solutions

Although laboratory automation has been a topic of interest for decades, the field remains
highly fragmented, with numerous independent solutions for specific aspects of research
activities. While there are a variety of tools and platforms available for note-taking, han-
dler monitoring, and laboratory infrastructure management, few of these solutions are
integrated with each other. This fragmentation has resulted in a scattered landscape where
laboratories must cobble together disparate systems, resulting in inefficiencies, errors, and
a lack of scalability. In this section, we will review current automation efforts and examine
the challenges associated with integrating these disparate solutions.

Figure 3: Current landscape of “island solutions” for lab-related automation challenges.
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2.1 Experiment automation and digitisation: An overview

The experiment aspect of lab work includes a variety of tasks such as analysis, design, and
chemistry documentation. As an example, analysis tasks may involve the measurement
and interpretation of spectra, while design tasks could involve the use of machine learn-
ing (ML) to generate optimised experimental designs. Several software solutions exist
for each of these tasks, such as laboratory information management systems (LIMS) for
tracking samples and electronic lab notebooks (ELNs) like LabArchives and SciNote are
available for chemistry documentation [59]. Meanwhile, the sheer amount of data gen-
erated by some instruments necessitates dedicated tools to control and manage, such as
scientific data management systems (SDMS) or chromatography data systems (CDS).

Each of these solutions has unique challenges that make holistic lab automation difficult:
For example, existing analysis tools may not be compatible with certain equipment or data
formats, while ML-based experiment design tools may require significant non-digitised
expertise to use effectively. LIMS are often more tailored towards industry environments
rather than academic research. The market overview shown in Fig. 4 also shows that some
of these platforms include controls of robotic capabilities which are mostly manufacturer-
specific though as discussed in section 2.2. ELNs – for which a similar overview is pro-
vided by Jablonka et al. [49] – may have limited functionality and may not integrate well
with other laboratory software tools. In order to understand new data autonomously, it
needs to be automatically converted to an interoperable format which is not the case for
most current ELNs [49].

Figure 4: Market overview for LIMS solutions and their capabilities.

The experiment aspect also entails all stationary units related to the experiment, including
equipment, sensors, and software solutions, as well as the underlying knowledge mod-
els that guide experimental design and analysis. Experimental setups need detailed re-
porting as they can influence measurement results significantly. Often, these results are
treated as part of known base reality (or “ground truth” [13]) but fail to account for un-
certainties and ambiguities introduced by specific setups and conditions [23]. For holistic
automation, this requires a formalised description of experimental design, methods, and
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technologies, as well as object models, background knowledge, and reasoning rules for
the interpretation of results [98]. Such a formalised description would also allow for a
reactionware-based approach to decouple experiment reporting from specific equipment
and even enable on-demand 3D-printing of components [18].

2.2 Role of handlers: Humans and robots in the lab

The handler aspect of lab work includes tasks related to the management, intervention, and
execution of experiments. Management tasks involve the scheduling and coordination of
experiments, while intervention tasks involve making adjustments or providing oversight
during experiments. Finally, execution tasks involve physically carrying out the experi-
ment steps. In a nutshell, this aspect entails all mobile units related to the experiment –
robotic and human.

The use of robotic handlers in research laboratories enables high-throughput experimen-
tation and has therefore seen a dramatic rise [2, 100] but manual intervention is still
necessary for many tasks due to persisting limitations [98]. Latest advancements in the
development of different robotic handling systems as well as AI now promise automa-
tion on an unprecedented scale [2]: novel ML algorithms can process large data quan-
tities quickly and derive optimal input parameters for the next experiment while high-
precision robotic systems efficiently perform diverse tasks – from mixing to controlling
flow reactors and carrying out spectral analyses. The culmination of this development is
currently self-driving laboratories, which perform closed-loop experimentation (see ap-
pendix B.1) to minimise a given objective function [95]. Successful applications have
been demonstrated for specific experimental campaigns particularly in the fields of mate-
rial science [13, 50, 64] and biotechnology [44, 72, 97].

These “closed loops” are quite narrowly defined though and rarely allow for dynamic
changes in setup or objective function. Substantial human input is still needed on all
levels – particularly around peripheral data and activities, for example maintenance and
resource allocation tasks. To reduce this necessity going forward, closer interactions are
required between so-called Laboratory Execution Systems (LES) managing robotic han-
dlers and those monitoring the state of devices and reactants, procedural prerequisites and
maintenance, as well as chemical or physical data. While LES are often connected with
LIMS or ELN to update track workflows, update inventory, and document results of re-
peating experiments, actual scientific knowledge needs to be consulted and applied by a
human researcher to draw conclusions and plan next steps beyond the current experimen-
tal campaign.

Furthermore, integration of different functionality and devices can be challenging as
drivers might not be readily available or require extensive programming experience. While
LES might exhibit predefined routines for standard tasks, they rarely incorporate mainte-
nence or cleaning routines which is left to the user. Lastly, the handler itself might intro-
duce uncertainties and errors into the system as well. These would need to be accounted
for by operational models in their digital representations or digital twins. Combining such
digital twins with autonomous experimentation platforms (AEP) is therefore discussed as
a major milestone going forward [108], see also section 2.4.
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2.3 Infrastructure management: Buildings, utilities, and inventory

The laboratory aspect entails all aspects of physical infrastructure, including utilities,
building layout, and inventory management, as well as the underlying knowledge models
necessary to automate these tasks. The Royal Society of Chemistry (RSC) recently stated
in a perspective on sustainable laboratories that a holistic view is needed to consider all
activities in a lab, its surrounding building or city, associated storage, and so on [86]. They
therefore argue for incorporating life-cycle analysis (LCA) into the design of experiments
(DoE). This requires more sophisticated tools to calculate expected footprint as well as
implications on cost, health, and safety.

Automation within the laboratory aspect requires the digitisation and integration of vari-
ous building-related information and laboratory-specific utilities. Various software solu-
tions exist for different tasks already exist: Building Information Modelling (BIM) can
be used to create a 3D digital twin of the laboratory that can help optimise lab layout,
including equipment placement and routing of utilities such as heating, ventilation and air
conditioning (HVAC), water, and electricity. Building management systems (BMS) can
be used to monitor and control the laboratory environment, ensuring that conditions are
optimal for experiments. Laboratory inventory systems (LIS) or “enterprise resource plan-
ning” (ERP) solutions can be used to manage inventory and track the usage of reagents and
other supplies. Geographic information system (GIS) also offer 3D representations. These
different solutions however are often siloed and not interoperable with each other [84].

Traditionally, the entire infrastructure aspect is neglected in laboratory automation ef-
forts. With rising energy costs and climate awareness, cost and energy efficiency as well
as sustainability become more and more important though. Even though lab activities
contribute too high consumption of electricity, cooling water, as well as other resources,
potential savings are hard to quantify as relevant systems are not part of the typical re-
searcher’s considerations. For this reason, different guidelines have been developed to
increase resource efficiency and reduce waste production, for example, the Laboratory
Efficiency Assessment Framework (LEAF) [86, 103]. Ever-increasing affordability of in-
terconnected sensors and microcontrollers under the umbrella term “internet of things”
(IoT) opens up additional possibilities to optimise operations in this regard, from access
monitoring to automated HVAC control. A few examples of integration with research labs
can be found under the phrase “smart lab” [21, 52] but these are still in their infancy.

These facets are usually considered separate from actual research but the general envi-
ronment of an experiment has a significant impact on measurements. Only with rigor-
ous reporting of these conditions (e.g., temperature and humidity instead of “standard
conditions”), can systems be empowered to re-evaluate their own results regarding un-
certainties, potential impurities, etc. [23]. Especially in systems striving for autonomy,
“quantification of signal vs. background noise [is] necessary to improve signal decom-
position and phase mapping” as Montoya et al. [74] aptly put it in a recent article. It is
particularly important to collect uncertainties of key parameters that influence subsequent
decision-making [107]. Robots also need to have knowledge of the environment to reason
about, act in, and modify it [104]. This includes actions by other robots and human opera-
tors as mentioned in section 2.2. In this, considering spatial layout and related constraints
is critical [44], e.g., via 3D models.
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2.4 Standardisation and integration: Data, digital twins, workflows

The need to standardise reporting is obvious in all aspects. In the current landscape of data
representation in this space, many concepts are available to describe underlying chemistry,
but few for methods and procedures, and none include laboratory infrastructure. For the
experiment aspect, deep chemical domain knowledge and data standardisation are cru-
cial. As shown in Fig. 5, significant progress has been made in this area, yet there are still
challenges that need to be addressed. One of the main challenges is the difficulty of in-
corporating human expertise and knowledge into the automation process, as much of this
knowledge is considered tacit and not easily captured in data. Moreover, there is a need
for better tools and methods to handle the complexity of chemical synthesis and experi-
mentation, including the ability to manage and track large amounts of data and metadata.
Lastly, the integration of digital twins of experimental equipment with representations
of experimental sequences is necessary to ensure comparability and reproducibility. Of-
ten, information given in a publication is not sufficient to confidently reproduce results
though [32, 49]. Even though some progress has been made on the standardisation of
synthesis step sequences (e.g., XDL [101] or SiLA [10]), a deeper integration with sci-
entific knowledge and additional concepts will be necessary to unambiguously describe
reaction conditions and optimise experimental setups based on arbitrary objectives.

Figure 5: Landscape of data representation in this space provided by Bai et al. [6]

There is a need for structured data which has been expressed throughout the literature,
including very recently [23, 72]. One potential solution is to adopt ontologies, which has
been discussed in this context – mostly for ensuring experimental reproducability [98].
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For reporting measurement data, the use of structured AFO ontologies has become stan-
dard. Going one step further, “extracting data from experimental workflows and inte-
grating them into a graph database [can ensure] easier access and long-term manage-
ment” [74]. This can be achieved with semantic representations which are most advanced
in the dissemination of data which can then be potentially used for planning new exper-
iments as well [28], e.g., for chemical species. It is still challenging to make different
data types accessible, especially as information might be conflicting or based on different
assumptions [55, 80]. A reliable and simple system for reporting measurements including
metadata is therefore key [28, 80]. The full power of semantic web technologies will only
be achieved when the corresponding tools work well across all stages of the experiment,
particularly in the laboratory itself [28].

Semantic representations of not only experimental procedure or measurement data are
most advanced in the field of biotechnology, see for example EXPO ontology [97] for a
very wide range of experiment-related concepts. This also overlaps with the representa-
tion of handlers which can be machines or humans. One application is the creation of
digital twins, which can simulate the behaviour of a physical system and provide a plat-
form for testing different control strategies and scenarios. In the context of SDLs, such
models are usually achieved by ML techniques such as neural nets, leading to essentially
behavioural black boxes. While these black boxes can capture the behaviour of a sys-
tem within the range of conditions it was trained in and even surrogate models can be
derived, there are always underlying assumptions [13] which are often times not captured
adequately.

It seems imperative to combine these ML models with actual knowledge about the sys-
tems in order to turn them into grey or even white boxes. The challenge lies in achiev-
ing flexible “human-machine interactions” [108] and interventions. Again, the field of
biotechnology leads the charge here with the integration of CORA standard into robotics
and automation tasks [104]. There are also efforts to represent a wide range of concepts
within the infrastructure aspect, coming from the field of building automation: The Brick
scheme integrates building information and management capabilities [9]. These different
efforts across the aspects discussed are summarised in Tab. 1. It shows particularly the
lack of holistic solutions across aspects as well as automated goal-setting mechanisms,
which will be discussed in more detail in section 3.6.

Table 1: Selection of popular software applications, standardisation efforts, digital twin
solutions, methods of workflow integration, and goal setting. These are sorted
based on the main aspect of a research laboratory they are targeting.

Experiment Handler Infrastructure

Software LIMS, ELN, CDS, SDMS LES BIM, GIS, ERP, LIS
Standardisation AFO, XDL, . . . Brick scheme

Digital twin black box (SDL-ML) manufacturer specific BIM
[first principle based] handbooks / documents drawings/documents

Workflow SiLA platform based
Goal setting AHP, DISK manual manual
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3 Analysis: Limitations of existing solutions

In the previous section, we have presented the current state of lab automation, highlight-
ing the existing software solutions and approaches for the three crucial aspects of exper-
iments, handlers, and laboratories. However, the current landscape is still fragmented,
with limited integration between the different software solutions and challenges related
to the automation of complex laboratory workflows. In this section, we will delve deeper
into the challenges of current lab automation solutions, focusing on six key areas: inter-
operability, adaptability, knowledge depth, reasoning, goal derivation, and bridging the
“interim technology gap”. We will explore each of these challenges in turn and identify
potential avenues for overcoming them in the quest for holistic lab automation.

Some of the immediate obstacles were mentioned in section 2 and marked in red in Fig. 3
as follows:

1. Interoperability of hardware, esp. robots

2. Automated execution via ELN-LIMS systems

3. Workflows and provenance tracking

4. Inclusion of infrastructure aspect

Meanwhile, Kitano identified three more abstract challenges in developing a technology
platform for an AI scientist [55]: automation, precision and efficiency. While this is a
sound analysis, it remains somewhat abstract as these challenges are intertwined and have
multiple underlying causes – some of which are related to the idea of a platform per
se. Looking at the bigger picture and the long-term vision, we identified 7 overarching
challenges explained in this section: interoperability, adaptability, knowledge depth, or-
chestration, reasoning, goal derivation, and bridging the “interim technology gap”. These
partially correspond to the main factors in the automation of chemistry optimisation as re-
ported by Cronin group [41] but are less specific to optimisation tasks or even chemistry.

3.1 Interoperability: Issues with system integration

Interoperability is a significant challenge in lab automation as it requires seamless inte-
gration of equipment, models, and workflows. When mentioning interoperability in this
context, classically it refers to challenges associated with equipment of different manu-
facturers or product lines, interfaces between ELN and LIMS systems or similar software,
and data exchange between formats or even research groups. Tackling a different facet
in the context of interoperability, the development of SDLs is partially motivated to over-
come the siloed nature of conventional research areas, e.g., chemistry and material sci-
ence [2]. While these challenges are important and considerable progress has been made
in solving them, it is still limited to a select number of software and hardware units that
are mostly part of the “experiment” aspect in Fig. 6. To achieve full and comprehensive
automation of research labs, all aspects need to be connected, broadening the space of
possible tasks to automate.
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Figure 6: Illustration of interoperability challenge.

Full interoperability throughout the system therefore enables automation of peripheral
tasks such as resource and space allocation, energy consumption and footprint evaluation,
as well as enforcement of safety protocols. This way, not just researchers, but also lab
managers, technicians, or facility managers can be potentially assisted or even emulated
by a sufficiently advanced AI scientist. This is particularly relevant for tasks that require
sufficient knowledge of all system aspects: re-ordering consumables, auditing of assets
and inventory, scheduling of predictive maintenance and appointments, managing train-
ing schedules and requirements, budgeting for consumables and utilities, and booking of
equipment and workspaces.

Overall, the challenge of interoperability is mostly related to cost-benefit or resource allo-
cation tasks. ELN integration can also play a significant role in automating lab processes.
While Jablonka et al. [49] identified several key requirements to make data machine-
actionable – such as interoperability and an open source infrastructure to avoid “lock-in”
effects – they see ELN as the central hub for all chemical research and envision a “plat-
form” solution. Such an approach can result in scalability issues and interoperability
problems between such platforms [6] – again posing the danger of some sort of lock-in
effect. The same dilemma arises for lab equipment which often comes with easy-to-use,
but incompatible tools: while the risk of a lock-in is identified as an issue next to the in-
herent inflexibility of a single platform [41], platform-based approaches are still the most
common due to incentives [19, 70, 71, 100].

3.2 Adaptability: Difficulties in scaling and modifying systems

Dynamic systems that evolve over time are important for lab automation and digital twins
because research experiments and infrastructure are inherently dynamic and subject to
change. In order to create an efficient and effective automated lab, it is necessary to have
systems that can adapt to changes in experimental design, environmental conditions, and
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equipment availability. Additionally, as new research questions arise, it may be necessary
to modify existing experiments or set up new ones, which requires a flexible and adaptable
system [67]. Adaptability has therefore been pointed out as a key challenge before [74].

Figure 7: Illustration of adaptability challenge.

The problem with many existing lab automation solutions is that they are static and do not
allow for easy modification or expansion. For example, software that is designed to auto-
mate a specific set of experiments may not be able to accommodate changes to the exper-
imental design or new equipment that is brought into the lab – which touches on the chal-
lenge of interoperability discussed in section 3.1. This can lead to inefficiencies and the
need for manual intervention, which defeats the purpose of automation. The biggest prob-
lem therefore remains adapting generic strategies and reusable software components [74].
A traditional database management system (DBMS) to maintain data integrity takes a lot
of effort to contain, is therefore only suitable for large and well-established projects, and
falls flat when fundamental changes are introduced [28]. As labs become more intercon-
nected and data-driven, it becomes necessary to have systems that can adapt to changes in
the data environment and accommodate new types of data, for example by using semantic
web technologies to represent relationships between concepts [28].

In order to address these challenges, lab automation solutions need to be designed with
flexibility and adaptability in mind. This means creating systems that can learn from data
and adjust to changes in the experimental environment, as well as incorporating modular
design principles to allow for easy expansion and modification. This would not only
allow for the smooth and continuous acquisition of live data but also increase workflow
integrability. Additionally, incorporating digital twin technology can help to create a more
realistic simulation of the lab environment and allow for testing of new experimental
designs or automation processes [63, 108].
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3.3 Knowledge depth: Constraints of existing databases

Deep knowledge models are essential for holistic lab automation because they enable the
connection of information between different domains and across multiple scales. This is
particularly important for achieving interoperability, which was discussed in section 3.1.
To achieve lab automation in a holistic sense, it is necessary to integrate information
from various sources such as laboratory equipment, research data, and building systems.
However, these sources often use different languages and data formats, making it difficult
to integrate them into a unified system. Moreover, deep knowledge models are required
to represent past and future states of the lab environment. This is important for enabling
adaptability, which was discussed in section 3.2.

A deep knowledge model of a lab system should provide a representation of the current
state of the system as well as all the possible future states based on different scenarios.
Formalised knowledge representations are crucial to develop the required model of under-
standing as it is responsible for mapping data from input to output of the system – namely
from the newly captured data to an updated model in autonomous experimentation [100].
This would enable the system to be adaptable and respond to changing circumstances,
such as equipment failures or changes in research goals. For this reason, virtual labora-
tories are being developed to simulate and predict the physical world as “digital twins”
of real-world laboratories. This does not only help to coordinate instrument sharing and
maintenance but also predict faults and procurement needs [63]. More widespread adap-
tation of such operational models has been seen in industry contexts, where the focus lies
more on quality control and LIMS integration [66].

Figure 8: Illustration of knowledge depth challenge.

Another crucial aspect related to the challenge of knowledge depth in lab automation is
the reporting of data provenance and device information – including metadata such as file
formats, conditions, and computations [49]. Ensuring reproducibility and enabling precise
post-processing of data requires the creation of actual digital twins of experiments. Such
digital twins require deep knowledge of all system aspects as shown in Fig. 8, including
metadata. For example, potential sources of error and uncertainty are introduced within
all aspects: ambient conditions provided by the laboratory (e.g., dust levels), materials
used within the experiment (e.g., vendors or purities), and error rates of specific han-
dlers (e.g., robot precision). Moreover, the sequence of workflows needs to be captured
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unambiguously [49]. The XDL format for example tackles this problem by providing
equipment-independent reaction descriptions [41]. Yet, reporting of results still needs to
contain details such as vendors of materials, type of glassware, reactor models, analytical
assumptions, and much more to provide a perspective on reproducibility and expected
uncertainties. This is particularly important for failed experiments, which usually remain
unreported, but can enhance predictive models considerably [12, 85].

To address data provenance, the “event-sourced architecture for materials provenance”
(ESAMP) has been introduced. However, the scope of ESAMP is currently limited, and
determining which events to capture remains a challenge [74]. Additionally, capturing
large amounts of data poses another issue, particularly in terms of data volume and storage
requirements. As labs generate vast quantities of data, efficiently managing and storing
this data becomes crucial for effective lab automation and analysis. Finding scalable and
robust solutions for data storage is essential to support the growing demands of data-driven
research [48, 83] and enable integration and retrieval of experiment-related information.

Developing AI scientists or autonomous research systems more generally is heavily
referenced in recent publications, see section 1.1. The relevant terms are applied to two
different kinds of systems [74]:

1. Robot-assisted / autonomous experimentation (also “Robot scientist” [98, 99])

2. High-throughput computations / materials screening [38]

Apart from the fact that data-driven approaches are applied to both, these system types
are currently separated. Even though data science, computation, and high-throughput ex-
perimentation are often named as key examples of autonomous experimentation [100],
it is hard to couple them intrinsically (on a systems level and not via external human
logic imposed) because they exist within vastly different domains and scales. Nonethe-
less, such coupling would be required to achieve fully integrated autonomous research
capabilities [22].

Either way, deep knowledge models are crucial. Deep knowledge models allow us to
represent knowledge in a structured way, which enables reasoning and adaptation to new
situations. In the field of AI, there is a debate about how to represent knowledge, either as
a structured model using semantics or just by feeding enough data to a black box and call-
ing the emerging structure (e.g., weights of neural networks) knowledge. While the latter
approach seems to be winning currently, it lacks scientific knowledge and could therefore
predict unphysical results – especially beyond the parameter range of training data, see
section 2.4. Beyond this, it has three main problems with far-reaching implications.

The first problem is that representing knowledge instead of just data is necessary for
reasoning, which is crucial for creating an AI scientist that can learn from data, adapt
to new situations, and make decisions. Structured models enable us to encode knowledge
about the relationships between different concepts, which makes it possible to perform
logical deductions and draw conclusions. This is important in scientific research, where
reasoning is often used to make hypotheses or predictions based on existing knowledge
(see section 3.5).
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The second problem is that alignment (or goal derivation, discussed in section 3.6) is dif-
ficult to achieve with a black box. If the knowledge is encoded implicitly in a model’s
weights, it can be difficult to understand how the model is making decisions or to correct
any unconscious biases introduced via the training data [12, 23, 73]. This makes it chal-
lenging to ensure that the model is aligned with human values and goals, which is critical
in applications where the AI system interacts with humans.

The third problem is that it is unclear if a more general intelligence can emerge from
just feeding data to a black box. While these models have achieved impressive results in
specific domains, such as playing games or recognising images, they have no represen-
tation of the real world or any abstract concepts. This raises the question of whether we
can bridge the interim technology gap between current AI capabilities and the long-term
vision of holistic lab automation as discussed in detail in section 3.7.

3.4 Orchestration of research campaigns

Current SDLs are somewhat isolated and usually not integrated within a larger system.
This means that they will run continuously until some predefined criterion is met (objec-
tive function) or human intervention is required (materials run out, devices break, etc.).
In order to fully automate research laboratories – leveraging increasing autonomy of AI
systems – and improve efficiency or sustainability aspects, many experiments within a
research laboratory need to be orchestrated: from initial planning to scheduling and ex-
ecution, management and control of experiments should be based on knowledge about
the environment they are in. This not only includes information about shifting research
targets, resource limitations, and costs but also the other experiments as well.

As renting or sharing equipment and lab spaces is becoming increasingly important [78],
availability of such information to all stakeholders within an organisation can help to
reduce downtime and costs. Technological platforms to arrange instrument sharing are
therefore being adapted by major organisations [4]. Challenges remain though as databases
need to be actively maintained and availability is often not easily predictable [63].

Going further, multiple experiments within the same project or campaign can be orches-
trated to work together. This works even across different laboratories. The digital lab
framework (DLF) introduced in this paper (see section 5) has been successfully applied
to two SDLs in Singapore and Cambridge respectively [6], demonstrating not only re-
mote operation capabilities [2] but forming an effective network of SDLs as envisioned
throughout the literature [72, 95]. This is illustrated in Fig. 9 where three formerly inde-
pendent systems are orchestrated – one of which is shown with multiple handlers within
a single experiment and one with multiple experiments within a laboratory.

In the context of the car analogy introduced in section 1.3, this means a smart and inter-
connected system controlling a majority of vehicles on the road would be able to influence
traffic itself. In the context of experimental research, we can go beyond the autonomy of
single experiments or tasks to orchestrate whole laboratories and everything going on in
them. This would allow us to maximise synergies and optimise intricate objective func-
tions derived from overarching goals (see section 3.6). Ultimately, full interconnected-
ness will enable the separation of researchers and projects from physical setups, creating
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Figure 9: Illustration of orchestration challenge.

“meta laboratories” distributed across physical and virtual locations [82]. First steps in
this direction have been taken by Roch et al. [90] with the development of “ChemOS” to
orchestrate multiple (platform-bound) SDLs.

3.5 Reasoning to close the loop

Another major challenge lies in developing capabilities for reasoning in lab automation.
These capabilities are required to infer hypothesised facts from known facts by either
deduction, induction, or abduction [99]. This is required to “close the loop” [55] of a
fully automated scientific discovery process as shown in Fig. 10, overcoming the human-
dependent approach of manual experimentation which is a major driver behind the de-
velopment of SDLs [2]. These closed cycles or loops are expressed in slightly different
ways throughout the literature (see appendix B) but usually boil down to designing an
experiment, carrying it out (e.g., make a material), testing the results, and analysing the
data [6].

The common denominator of these closed-loop experimentation frameworks is the capa-
bility to represent hypotheses and then reason on data or models to adapt experiments
and hypotheses iteratively, usually using AI-based system [33]. The reasoning involved
is thereby usually limited to rudimentary abduction to generate a new hypothesis and de-
duction to select an appropriate experiment, which can be formalised and automated [54].
If put under scrutiny, many of the available successful systems do not generate and test
hypotheses completely autonomously though [19].
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Figure 10: Illustration of reasoning challenge.

In current SDLs, this “reasoning” process is usually based on the black box system model
generated by some ML algorithm. This is not sufficient to reason on higher levels as re-
quired for goal derivation (see section 3.6) as flexibility decreases with the level of auton-
omy. Therefore, Martin et al. [72] recently suggested to unite classical symbolic reasoning
systems with deep learning approaches. Especially in extrapolation tasks, physics-based
models outperform statistical black boxes consistently [100]. This again requires accurate
and interconnected digital twins with deep knowledge models (see section 3.3).

Reasoning is also important for troubleshooting and awareness of possible impurities or
the absence of additives and their implications. For this it would need to access potential
influencing factors from all system aspects (see section 3.1). As an example, if an experi-
ment is carried out under an inert atmosphere, a reasoning agent is able to determine if the
use of a glovebox vs. a Schlenk line could influence the quality of expected results [23].

The level of autonomy needs some quantification to compare the capabilities of these
different systems. Oftentimes, an acceleration factor is given to indicate the relative
time save in comparison to manual experimentation or automated experimentation without
DoE [69, 100]. While this indicator proves practical in the field, it is very specific to the
experimental campaign and prone to certain biases which makes it not the most suitable
metric for judging technologies more abstractly.

The pyramid shown on the left side of Fig. 11 is often used to illustrate the hierarchy of
information processing within the “data, information, knowledge, and wisdom” (DIKW)
model, depicting these conceptsas built atop each other. Most of the available lab au-
tomation solutions operate on the lower levels of the pyramid, such as data collection
and storage, data mining, and optimisation. However, to enable scientific discovery and
innovation, lab automation systems must go beyond simply reproducing experiments or
finding an optimum within a reaction parameter space.
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Figure 11: Reasoning capabilities vs. Integratedness of digital and robotic systems and
how these correspond to Levels of Autonomy as introduced by Beal and
Rogers [11]. The left side depicts a schematic DIKW pyramid with verbs ac-
cording to the level of processing above horizontal lines and adapted Bloom’s
taxonomy below.

In order to capture the different dimensions of tools’ quality, we adapted the pyramid
levels to represent potential capabilities, ranging from simple reproduction tasks to ex-
ploitation and exploration of experimental parameter spaces to true innovation. These
correspond very directly to Bloom’s taxonomy of learning objectives which has been used
to classify AI systems in the lab context before [23]. The y-axis of Fig. 11 merges these
concepts into a qualitative measure of reasoning capabilities. This also corresponds with
the versatility of respective systems analogous to human mental flexibility.

The x-axis represents a continuous scale ranging from partially automated to fully au-
tonomous systems. This is supposed to account for the blurry boundary between “auto-
mated” and “autonomous” often made throughout the literature [13]. The 10-point scale
resembles the “levels of automation” used by Parasuraman et al. [79], yet is supposed to
follow a different logic: whereas their model implicitly assumes full capabilities through-
out the upper half of the scale which are only limited by permission rights to decide
and execute, we rather refer to the level of integratedness within a cyber-physical sys-
tem. Levels 1 through 7 also correspond loosely to Frohm’s “Levels of Automation in
Manufacturing” [29] which has been adapted by Holland and Davies [44] to describe the
automation level of specific equipment. Going from level 6 to 7, individual machines
might now be fully automated but need to be integrated. This is where AE closes the loop
and overcomes the “analysis bottleneck” [100].
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Fig. 11 attempts to compare the current general approaches to lab automation in terms of
the versatility and flexibility they allow for by representing and processing information
at a high level at different levels of automation/autonomy. If we consider the 5 levels
of autonomy that recently found some adoption in synthetic biology workflows [11, 72],
we find that they can be more confidently placed within a multidimensional matrix than
along a single axis. As shown in the figure, we see a trend of narrower reasoning ca-
pabilities with increasing integration of automated systems into a workflow for the first
few levels. Level 3 represents systems with closed-loop experimentation, basically cap-
turing most current SDLs (for which, again, autonomy is ill-defined: while some claim
“full autonomy” [50], others are more careful [95]). With level 4, for the first time on
this scale autonomy not only increases within a narrowly defined scope, but reasoning on
more abstract concepts is required. Based on the exact definition, this still applies to some
existing systems [72]. While level 4 broke the observed trend, level 5 seems to represent
an even bigger jump if we consider the “machine investigator” [11] as an AI scientist with
capabilities as envisioned in section 1.1.

A truly automated lab would therefore be found in the top right corner at LoA 5. This
corresponds with the “Nobel Turing Challenge” target zone sketched out by Kitano [55]
even though we assume a larger gap between current solutions and the target zone. This
can be partially attributed to the different axes used in their figure which introduces a di-
mension representing task complexity. A similar dimension is used by Parasuraman et al.
[79], comparing the level of automation vs. functions derived from human perception.
With respect to Fig. 11 these are both considered as part of “degree of integration” in a
qualitative sense. We concede that a more-dimensional figure would be more accurate but
for simplicity’s sake is not given here. All conclusions and observations still stand.

The fact that highly integrated and automated systems are very specific, usually quite
isolated, and therefore not flexible, makes it very hard to get to there from here (see sec-
tion 3.7). This specificity is necessary to boil down complex “thinking” which needs to
be done by an AI scientist to single and specific optimisation tasks, which we do not
consider to be reasoning in the broader sense. As Kitano suggests, one of the distin-
guishing features of an AI scientist in comparison to conventional lab automation is its
ability to learn, reason and generate hypotheses – this requires not only a high level of
autonomous decision-making but also interactions with humans and other parts of the
system [55], which refers back to section 3.1. The “increasing scope of applicability”
cannot be considered orthogonally as Beal and Rogers [11] suggest because within the
current framework, there seems to be a trade-off between breadth and depth.

3.6 Deriving goals and objectives

It can be challenging to determine which experiments to perform to achieve a specific goal
or address a particular problem. To derive more specific goals from more general ones,
humans typically perform this task, but there is potential to automate it. As the scope
of problems and goals becomes more general, the complexity of the derivation process
increases, making it more challenging to automate. For example, the derivation process
can start with a high-level, abstract world problem, such as the SDGs, and gradually move
towards more specific goals and experiments. The process of goal derivation is crucial to
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enable scientific research to progress, but there is a need to develop automated approaches
to address the increasing complexity of this process as we move towards more general and
abstract goals. An important part of this process is the derivation of metrics to measure
the impact on a specific goal. As an example, there exist 231 unique indicators of SDGs
with strong interconnectivity and synergies as well as principles of green chemistry [107].

To tackle a specific goal in the space of sustainability, a single increasingly concise ob-
jective would need to be derived in an iterative process, informing experimental design
as shown in Fig. 12. Currently, AE will not include this step of iterative goal derivation
in their closed-loop cycle as tangible objectives are clearly defined in an “initialisation”
stage [100]. This implies that the described process of goal derivation is carried out by a
human operator.

Figure 12: Illustration of goal derivation challenge.

To allow for such automated goal derivation, systems would need to accommodate a
wider range of definable objective functions for their experiments. This includes data
on resource consumption and wider impacts on other systems, which relates back to the
challenges of interoperability (see section 3.1) and knowledge depth (see section 3.3).
Further derivation then includes planning experiments in a more concrete way for which
some methods are available: For example, the Analytic Hierarchy Process (AHP) [77]
is a decision-making tool that helps individuals or teams make complex decisions by
breaking them down into smaller, more manageable steps. In order to close the loop (see
section 3.5), experimental results need to be translated into an updated knowledge model
based on which new experiments can be proposed. A similar mechanism is part of the
“automated discovery of scientific knowledge” (DISK) framework [34], which focuses
on automatically discovering scientific knowledge from large amounts of scientific litera-
ture and using that knowledge to propose hypotheses and generate experiments.

Design of experiments is a crucial part of the scientific method, and it is becoming
increasingly important in the age of automation and machine learning. Setting new goals
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is equivalent to DoE at lower levels, which involves choosing a set of input parameters
to explore and exploit the parameter space to achieve the best possible output [106]. The
choice of input parameters is usually based on a higher-level goal, which needs to be
adjusted after the goal is met. As the complexity of the experiment increases, there are
several challenges (listed as “DoE agents” in ) that need to be addressed, see Fig. 13.

Figure 13: Goal derivation (GD), Design of Experiment (DoE) and Knowledge Discov-
ery (KD) process cycles in scientific research from abstract goals to specific
experimental outcomes.

Agents shown in Fig. 13 are rated by their level of required goal derivation. The pro-
cess of knowledge discovery discussed above is technically not goal derivation but still
related to the reasoning process where encoded domain and process knowledge need to be
utilised [33] for calculating meaningful results based on measurement data and research
goals. Then follows the derivation of new goals based on the updated knowledge model.

Firstly, there is a need to choose new input parameters based on outputs of the parameter
space as shown in our previous work [6]. Depending on the algorithm used, the next
experiment will aim to incrementally improve the previous one or look for a different
optimum elsewhere – known as the exploration-exploitation dilemma [100]. It requires an
understanding of the existing data and the ability to optimise the experimental parameters
for the desired outcome. This most common form of automated experimental design is
referred to as DoE1 agent here, which can be used to optimise for a closed-loop objective
defined by a human operator [2].

Secondly, changes in experimental setup may need to be made based on the output, to
better achieve the desired problem solution or hypothesis falsification, or to circumvent
problems that emerged. Constructing an experiment involves making choices about hard-
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ware, assembly, and instruction set based on the problem to solve (i.e., the data to gather
or the hypothesis to falsify). These choices can have a significant impact on the outcome
of the experiment, and so they must be carefully considered. Such a DoE2 agent has been
integrated with some lab automation projects, including our latest work [8].

Now, after finishing one experiment (based on some criteria defined as part of the instruc-
tion set), the problem might not be fully solved which requires the researcher to construct
a new experiment which aims at gathering data or falsifying the hypothesis. Specific
choices on hardware, assembly, and instruction set need to be made. To the best of our
knowledge, no autonomous system we would describe as a DoE3 agent has been reported.

Finally, the specific problem is solved which concludes this experimental campaign. There
is now a need to formulate new hypotheses based on the knowledge gained. This is a crit-
ical step in the scientific method and requires a deep understanding of the underlying
principles, data, and more abstract goals. In terms of Fig. 13, a DoE4 agent would also be
a “real” goal derivation agent that provides a space of possible concrete research problems
and hypotheses based on a higher-level goal. At the current state, this is the frontier of au-
tomated DoE as only first steps have been made recently [8]. Creating general agents de-
riving sub-goals from higher-order goals up to the highest level requires further advances
in the areas of reasoning (see section 3.5) and “natural language processing” (NLP).

The alignment of goals that the system understands with the goals that we humans
communicate becomes increasingly relevant when our input is moving up the hierarchy
depicted in Fig. 13. It is crucial to ensure the system operates in accordance with the
goals and values of its human designers. The higher-order goals that guide the system’s
operation can be defined by humans, but the process of breaking them down into specific
tasks can be done autonomously by the system’s agents. While the first one or two levels
discussed above can be done without the implementation of actual knowledge by hard-
coding iterations and decision trees by domain experts, the more abstract goals require
very deep and interconnected knowledge models as well as robust goal derivation agents
that are grounded in human-level or above reasoning and logic. With such a system in
place, the need for domain experts to hard-code iterations and decision trees can be min-
imised, as the autonomous agents can use the knowledge model and goal derivation agents
to carry out tasks and adjust experimental parameters based on the desired outcome.

However, it is important to note that the involvement of domain experts may still be neces-
sary in certain cases, such as when there is a need for specialised knowledge or when the
system encounters unexpected challenges that require human intervention. Ultimately, the
key is to strike a balance between human oversight and autonomous operation to ensure
that the system remains aligned with its intended goals and values. This problem is known
as “AI Goal Alignment” and is usually part of the discussion around the threats of AGI
and corresponding legal measures [47]. Usually, this is not a grave concern in the space of
laboratory automation as we do not aim to create artificial general intelligence (AGI) and
cause “the singularity” [37]. It is still important to monitor alignment very closely for two
reasons: Firstly, economic concerns push us to make sure goals are aligned in a way that
derived objective functions do not optimise in the wrong way. Secondly, as these systems
still include robotics, ensuring human safety is critical. Some argue that robotic systems
need to close perception-action loops to achieve AGI [20].
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More abstract goal definitions mean that many existing human-machine interfaces (HMIs)
will become unnecessary as they control the machine’s immediate tasks which can now be
derived by the machine itself. At the same time, the machine is no longer constrained by
the model the user has about the machine’s behaviour (user model) but by the model it has
of itself (self model) which can be more restricted if no detailed digital twin is available
(see section 3.3). This self model can be extended though and as there is no interface to
consider, the space of possible actions can grow proportionally as shown in Fig. 14.

(a) Elements of human-machine interaction as il-
lustrated by Degani et al. [25].

(b) Adapted Venn diagram of relevant elements
for machine-derived tasks.

Figure 14: Comparison of possible machine’s behaviour with and without traditional
HMI. The green regions correspond with possible correct interactions.

3.7 Bridging the interim technology gap

Even though AI research could look very different from human research (no labs, no
papers, etc.), we first need to find a way to integrate AI (or even just digital) systems
with current systems. This is analogous to autonomous driving which would be easier
with only self-driving cars on the road but this option is unfeasible, so human-driven
cars need to be considered and integrated into model and decision-making. As Holland
and Davies [44] argue, not all processes have interim labour-saving technologies between
manual execution and fully autonomous systems. Meanwhile, many researchers in the
field envision a “tipping point” [100] at which globally integrated systems emerge from
continued development and deployment of localised SDLs leads.

As illustrated in Fig. 11, the AI scientist is not a logical continuation of current SDL
development. This discontinuity is depicted in Fig. 15 and is partially caused by the ten-
dency to automate systems and processes for the sake of automation. Although there are
very good reasons for automation to begin with, it does not always continue to make sense
– at least not before digitising peripheral elements such as inventory, space constraints,
etc. as this prioritisation when considering priorities derived from overarching goals and
objectives. We cannot go from a fragmented and partially-analog landscape of tools to
an AI scientist by adding more and more robots within a narrow closed-loop experiment.
This way we risk lock-in effects with regards to technology (potentially even manufactur-
ers, see section 3.1) but also applicability (compare with Fig. 11). Tools should therefore
become independent of the specific instrument or technique used [49].
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Figure 15: Illustration of interim technology gap challenge.

Only David et al. [23] sketch out a different part, starting with accessible and search-
able data before constructing virtual laboratory assistants, digital twins, and finally au-
tonomous laboratories. Even though they remain vague regarding implementation, at
least they consider a route of intermediate steps. The same applies to building knowl-
edge bases and sharing data: while data of past research is often hard to digitise, a lot
of current data is distributed across formats and platforms, It is foreseeable that going
forward, interchangeable standards will be used and data automatically generated or even
reported according to FAIR principles, some even call for mandates to accelerate this tran-
sition [73]. Yet, we have to come up with systems now that can accommodate fragmented
or incomplete old data as well as rich datasets with detailed metadata in the future.

Reporting needs to be done in a way that robots as well as humans can execute the in-
structions and reproduce results. Currently, the only effort to address this specifically is
the XDL format [41, 49]. Human intervention is still necessary in many ways, including
all aspects of lab operations: robots need to be set up, materials purchased, objective func-
tions clearly defined equipment serviced, errors and uncertainties accounted for, environ-
mental conditions recorded and maintained and many other tasks related to management
and maintenance carried out. These human tasks can bottleneck operations [69] as they
need to intake observations for interpretation and analysis, then decide on actions to mod-
ify, maintain, or configure – all of which can be very time-consuming tasks. MacLeod
et al. [69] therefore conclude that “[. . .] time spent on SDL to reliably perform an exper-
iment can far exceed the time saved”. This is due to the nature of conventional SDLs
in which all actions within a narrowly defined experimental system are automated, while
peripheral data and activities – including managerial tasks such as resource allocation –
are very much decoupled from actual design and execution of experiments, residing in
data silos of often proprietary software if digitised at all.

To bridge the described gap in a practical manner we need to keep the human in the loop:
Montoya et al. [74] suggests that a human-in-the-loop is needed for oversight with in-
creasing complexity and to apply knowledge not yet encoded. Beyond that, the concept
of a “human-in-the-loop”is only considered within ontological work – e.g., the process
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chemistry ontology (PROCO) includes an abstract concept of planning process in which
humans and robots are mentioned explicitly. This is also part of EXACT for experimen-
tal actions by humans and robots used in the biotech space [99]. Moreover, the SOHO
ontology for human-robot collaboration exists within a context of mechanical tasks [104].

Lastly, there is another disconnect between efforts towards SDLs and the general digitisa-
tion of laboratories, often under the IoT tag. While the first is more focused on automating
research questions, the second is more focused on smooth operation in production con-
texts. This becomes apparent at the interface: pilot plants, where scale-up efforts span
areas of DoE, computational modelling, as well as design and implementation of con-
trol systems. Jones et al. [51] have pointed this out and suggested retrofitting existing
equipment via an “Industry 4.0” framework to create digital twins of operational units.

4 A change in perspective

We argue that in order to overcome all the challenges discussed in section 3, create AI
scientists that could win the Nobel-Turing challenge, and fully automate research labo-
ratories in their entirety, a change in perspective is needed! Approaching this emerging
topic more from an engineering background rather than a fundamental science one, we try
to offer a fundamentally different viewpoint. Engineers analyse and develop systems to
solve a whole group of problems rather than design of specific solution (e.g., automation
of single tasks) [43, 109]. This includes the consideration of research activities across
disciplines where experimental setups might be fundamentally different to chemistry.

In the field of biotechnology, for example, systems are more complex and some processes
can only be understood from a system dynamics perspective [55] which is formally in-
troduced in section 4.2. At the same time, they provide a unique opportunity as the un-
derlying physical and chemical processes happen within a more narrowly defined and
often times accessible parameter space [72]. This led to an accelerated development of
approaches to metadata collection and storage in this space. Furthermore, the implicit
and explicit inputs of Design-Build-Test-Learn cycles have been analysed and empha-
sised [11]. This includes protocols and knowledge which need to be provided by digital
twins and the goals formulated by humans from which sub-goals need to be derived.

In order to create a framework in which the process of experimental research as a system
can be automated, these approaches to the representation of goals, metadata, and pro-
cesses need to be pursued further. Creating an AI scientist that can plan and carry out
all types of experiments beyond simple synthesis or yield optimisation while consider-
ing its ever-changing three-dimensional physical environment, requires a shift away from
human experts towards a universal knowledge model. This paradigm shift in represent-
ing knowledge – including that which is considered tacit or intuition – is illustrated in
Fig. 16. It requires a revision of our understanding of a human-in-the-loop which con-
ventionally refers to a researcher that observes the SDL, sets objectives, intervenes and
provides domain knowledge [72, 76] as shown in Fig. 16(a). In contrast, Fig. 16(b) depicts
the envisioned state of a universal knowledge model that can derive the optimal immediate
tasks from abstract goals defined by a human outside the system as well as its knowledge
of the world.
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(a) Conventional approach. (b) Paradigm shift.

Figure 16: Human interaction with automated laboratory systems and underlying goals.

Working towards this vision entails three changes in perspective that are discussed in
detail within this section:

1. Automation beyond platform-based SDLs: comprehensive digital twins enable holis-
tic lab automation, see section 4.1.

2. Taking on a systems view instead of defining tasks: a goal-driven approach ensures
alignment, see section 4.2.

3. Instead of siloed information and rectangular databases: actual knowledge models
are required, see section 4.3.

4.1 From self-driving labs to comprehensive digital twins

As laid out in section 3.7, laying the groundwork for the creation of AI scientists requires
broadening the search/optimisation space of SDLs and removing the “predominantly hu-
man activities [which are] principal bottlenecks in scientific progress” [33]. To achieve
this, all-encompassing digital twins are necessary that also enable researchers to build
large-scale precision models (as part of “getting stuff out of the lab” [78]) that include
almost every interaction and molecular behaviour as demanded by Kitano [55]. This way,
the full pipeline of multi-scale modelling and experimental verification or adjustment can
be represented and automated for an iterative improvement of such high-precision models.
We argue this for electrocatalytical reduction of CO2 in a previous publication [89].
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In 2022, Zhu et al. [111] reported the first full “AI chemist” that can capture existing
knowledge in the literature in an automated manner by reading articles using NLP. Based
on this, it can propose experiments and even conduct them autonomously in the laboratory
with a mobile robotic system. Two years prior, Hessam et al. [42] reported a similar
system specific to chemical synthesis which would read basic literature, translate it into
process steps, and recreate these experiments. These albeit impressive efforts remain
highly localised and limited by their monolithic nature in the physical dimension (a single
robot with certain capabilities in a non-smart lab) as well as the digital space (black box
knowledge model with a certain amount of training data).

As analysed in some detail, we need digital twins that not only capture behavioural aspects
within the default operation range but are able to confidently predict behaviour within
novel contexts, including the estimation of possible unknowns leading to errors and un-
certainties. This can only be done by integrating different domain models, metadata, and
physical shapes while embedding fundamental principles as boundary conditions. A dig-
ital twin like this cannot stand alone but has to interact with digital twins on different
scales and continuously adapt itself to account for changes in the real world.

This holistic approach to digital twins has gained some attention in recent times, for ex-
ample as Siemens has introduced their framework “comprehensive digital twins” [39, 61].
They emphasise their approach of model-based systems engineering requiring traceability
which is facilitated by their digital twins [61]. This incorporates many of the requirements
discussed as challenges in section 3 as they explain their concept as “a precise virtual rep-
resentation of a physical object, including its mechanical, electrical, and configuration
management. This one digital twin evolves across its lifecycle with numerous models
used to capture different aspects of the object’s physical behavior [. . .]” [39]. The idea of
the Digital Lab Framework is to implement this type of comprehensive digital twin within
the space of research laboratories.

4.2 From task-driven to goal-driven systems

In order to account for the interdisciplinary nature of challenges faced as laid out in sec-
tion 3, a systemic view should be adopted to help design and integrate solutions across
different domains. This systems engineering or systems thinking view has received little
attention in the field of laboratory automation so far [108] but allows us – amongst oth-
ers – to battle island solutions and “manufacturer lock-in” while enabling more efficient
resource allocation. Such a perspective shift also opens up the opportunity to establish
frameworks to check what should be automated and to what degree [79], coming back to
the challenge identified in section 3.7 to not automate for the sake of automation. We,
therefore, argue for a goal-driven approach rather than the conventional platform-based
approach as shown in Fig. 17.

As illustrated in Fig. 17(a), the conventional platform-based approach aims to solve a
given task at hand and then integrate his solution with an existing platform to achieve
more universal applicability [5, 27, 62]. This iterative platform extension can only im-
prove the system in a linear fashion at best and will – as pointed out in sections 3.5
and 3.7 – probably not lead to a general system capable of performing tasks it has not
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(a) Task-driven platform-centric approach.

(b) Goal-driven holistic approach.

Figure 17: Comparison of task-driven and goal-driven approaches as strategies to create
a digital twin of research laboratories.

been programmed to do. In contrast, Fig. 17(b) depicts a goal-driven approach of defining
overarching goals and concepts that are broken down into more and more granular tasks
and objects within an ultimately all-encompassing world model.

Close comparison of the two processes in Fig. 17 reveals a fundamental difference in di-
rectionality. This reflects the contrast between the inherently limited “bottom-up” think-
ing behind the task-driven approach of adding more and more specific capabilities and the
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“top-down” thinking within the goal-driven approach when deciding whether to execute
an experiment and what conditions to use, a technique known as “backcasting” [45, 105]
or “inverse design” [92, 108] . Such a top-down thinking enables goal derivation and DoE
up to a very high level as analysed in section 3.6.

Top-down vs. bottom-up in lab automation has so far been discussed only in a much more
narrow sense [44, 75]. The closest was Kitano about decision-making in autonomous
agents [55] but we are talking about a way of thinking and decision-making, not imple-
menting agents or designing ontologies. We therefore refer to these different approaches
as goal-driven or holistic vs. task-driven or platform-centric as shown in Fig. 17. Ul-
timately, a flexible and adaptive lab automation system needs to be able to explore and
innovate within the limits of existing scientific knowledge and broadly defined goals while
also expanding that knowledge through experimentation. This shows that a common un-
derlying architecture rather than a common platform is required!

To this end, we showed in a recent perspective [6] how next-generation SDLs will evolve
beyond single platforms with ad hoc data representations towards semantic knowledge
representations (e.g., knowledge graphs as discussed in section 4.3). This represents the
basis of the DLF introduced in section 5 and the related work in progress on a general goal
derivation framework [7, 8]. This goal derivation framework differs from the DISK and
AHP approaches in several ways. While DISK uses literature data only [34], our proposed
framework incorporates both existing scientific knowledge and new experimental data to
derive goals for future experiments. It is similar to AHP in that it also breaks down
larger goals into smaller tasks [77], but it differs in that it does so autonomously, without
requiring human input for each step (see section 5.3).

4.3 From data science to knowledge engineering

The Semantic Web provides a description logic to represent and link data on the World
Wide Web [16] within predefined ontologies, describing classes, object properties and
relationships within a certain domain. Ontological objects are instantiated as subject-
predicate-object triples that attach data properties and use linked data [14] to encode
further information. The key strength of semantic data representation is intelligibility
as it allows for actual knowledge accumulation and reasoning within domain models in-
stead of purely data-driven ”black box” models, enabling the often-requested step towards
physics-based models [100]. Semantic web technologies can furthermore augment the
power of AI search [33] and help to manage large workflows, and data sets, as well as their
provenance, permitting systematic tracking and propagation of metadata constraints [53].

A knowledge graph (KG) is a collection of semantic data representations expressed as a
directed graph, where nodes denote concepts or instances and edges denote links between
related concepts or instances. Unique “internationalised resource identifiers” (IRIs) en-
sure an unambiguous representation of these concepts and instances. Knowledge graphs
allow for a distributed architecture that can be accessed from anywhere and queried for
data across multiple connected domains.

The World Avatar (TWA) has been developed within Cambridge CARES as a continu-
ously extendable platform for representing information in a dynamic knowledge graph
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by integrating real-time data, knowledge, models, and tools mainly related to the pro-
cess industry. It is basically an attempt to construct the “Giant Global Graph” introduced
by Berners-Lee [15]. As illustrated in Fig. 18, two main concept types coexist within the
same ecosystem and are both described by modular ontologies: instances representing
interlinked data, and agents as autonomous software applications that can act on the data
and exchange information via the KG [26]. A knowledge graph can also incorporate time
series data either by referencing a local database via IRIs (offline solution) or adding a
context element within a so-called “quad store” (online solution) [3]. This capability is
essential for progress in holistic lab automation as there currently exist no databases with
the ability to store run-time context data collected by related sensors [41].

Figure 18: Three layers of TWA (www.theworldavatar.com) digital twin of the real
world as shown by Kondinski et al. [57]

The use of ontologies in this space is important to “make scientific knowledge more ex-
plicit, help detect errors, enable sharing and reuse of common knowledge, remove re-
dundancies [in domain-specific ontologies], promote interchange and reliability of exper-
imental methods and conclusions” [98]. It also allows for deep knowledge representation
(see section 3.3), linking objects instead of literals and using deep knowledge graphs.
Knowledge graph technology slowly finds its way into industrial applications within the
broader space of chemistry and biotechnology (e.g., AstraZeneca [93]). While seman-
tic web technologies are somewhat established now for the planning and dissemination
phase of scientific experimentation/research, their full capabilities will only be unlocked
by connecting processes throughout all phases [28], including execution and goal deriva-
tion. First progress has been made in formalising the scientific reasoning process in a
more general way [36], potentially unlocking higher levels of DoE agents as discussed in
section 3.6. We consider this necessary infrastructure to unleash the envisioned accelara-
tion of scientific research, resembling “Moore’s law” [22, 90].
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A lot of work has been done in ontology development across different domains and scales
but due to ongoing research and discussions around the correct structures and paradigms,
far-reaching technology roll-outs have been rare. We think that it is important to be very
practical about this and follow the principles of agile project management to create solu-
tions as quickly as possible and iterate on them. For this reason, we make use of exist-
ing domain ontologies whenever possible and do not get caught up in discussions about
paradigms or usage of top-level ontologies like SUMO. Therefore, the creation and use
of ontologies does not follow a top-down approach, which is limited to selection and
derivation of goals as explained in section 4.2.

As more and more standards for specific problems exist, it becomes more important to
make existing standards interoperable than creating new ones, as we can assume that the
technology to solve most problems exists but needs to be connected [49]. This creation
of frameworks is essential for the holistic, goal-driven laboratory automation we have
been arguing for in this article. Next to the framework introduced in the coming section,
there have been a few efforts in this direction, e.g., the Open Semantic Lab [102] which is
currently focused on battery-related research.

5 The Digital Lab Framework

Based on the systems perspective discussed in section 4 we introduce a Digital Lab Frame-
work (DLF) to fully digitise and automate all aspects of research laboratories as part of
TWA. The DLF aims to fully incorporate equally the three aspects initially identified by
applying a systems perspective in section 1.2: the laboratory (including environmental
conditions, building aspects, and available resources) as infrastructure, the experiment
(including setup, chemicals, and related knowledge) as stationary unit, and the handler
(restricted to tasks that require physical presence) as mobile unit. These three compo-
nents can best be shown in a Venn diagram such as Fig. 19 (in contrast to Fig. 3). In order
to achieve full holistic laboratory automation as envisioned in section 1.1, these aspects
cannot be treated in isolation.

The same three aspects can also be derived via overarching goals: The fundamental goal
of a research lab is to expand the boundaries of knowledge. As physical setups and ac-
tions are required for this, additional boundary conditions and therefore derived goals are
imposed. The laboratory is supposed to run as cost-efficient as possible while keeping
humans (as well as equipment) safe and happy. Our hypothesis is that currently, automa-
tion is mostly done within the three components separately and not at the interfaces. But
exactly this is needed to fully automate by combining capabilities of SDLs, smart labs,
and DTs as discussed in section 3.7. Exemplary use cases are shown in section 6.

To summarise, within the DLF we now aim to create comprehensive digital twins (see
section 4.1) to automate all parts of the scientific research process, driven by overarching
goals from which individual tasks are derived (see section 4.2), using dynamic knowledge
graph technology developed within TWA project (see section 4.3). When it comes to the
implementation of the DLF, we are guided by three key ideas: First, we want to take a
holistic view and thereby not only represent and automate narrowly defined but broad
systems that can be well-integrated with their environment on all levels. Secondly, we
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Figure 19: Lab Automation Framework Venn diagram.

want to create interconnected digital twins that access distributed deep knowledge from
many sources. Lastly, we want seamless yet clearly defined human-machine interactions;
particularly, within closed-loop experimentation.

5.1 Holistic view: Integrating experiment, handler, and laboratory

In order to not only run an efficient but also a sustainable laboratory, a holistic perspec-
tive needs to be taken [86]. The DLF aims to provide this mainly in two distinct ways:
First, by considering all aspects of the research laboratory system as shown in Fig. 19.
This enables wider interoperability and lays the foundation for informed reasoning and
decision-making. By widening the system boundaries to include all peripheries, we can
for example include economic sustainability metrics into the goal derivation process as
discussed first in section 2.3. Secondly, the framework is set up to be applicable to the
widest possible range of research areas: this goes beyond the common applications in
material science and synthesis and includes areas such as biotechnology, combustion re-
search, flow reactors, etc. This even extends to theoretical modelling and simulative ef-
forts, i.e. computer experiments as explained further below.

The DLF does not only consider the narrow definition of lab automation between design,
analysis, and execution of predefined experimental spaces. Instead, we look at all re-
lated activities and required knowledge and break it down into different parts that can be
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automated separately. This includes the actual laboratory space including environmen-
tal conditions and surrounding buildings as well as related inventory, utilities, and other
resources that need to be included in representations of a future-proof laboratory [81].
By providing interoperability (see section 3.1) and enabling knowledge depth (see sec-
tion 3.3) in this way, we can not only automate managerial tasks and ensure better repro-
ducibility. By widening the search space for optimisation tasks to this extreme degree, we
might find for example that automating reordering chemicals is a higher priority than the
further implementation of liquid handlers for example.

In order to fully represent a (chemical) research laboratory in all its aspects, different
ontologies across scales, domains, and representation levels are necessary as shown in
Fig. 20. This entails the usage of existing ontologies such as OntoCityGML to describe
building information or OntoCAPE to represent the chemistry domain. On the other hand,
it is the creation of completely new ontologies to represent experimental setups (OntoLab)
such as reactors and processes taking place in them (OntoReaction). Combining these
concepts will allow us to implement and connect existing use cases of 3D visualisation,
Data Analysis of experimental setups, and chemical models based on first principles.

Figure 20: Representation of concepts across different scales and levels via ontologies in
TWA to facilitate the DLF.

To give a few examples, we integrated BIM and GIS representations in TWA [84], created
OntoLab as a base ontology to represent experimental setups for automated execution [8],
and established OntoSpecies as a core ontology which is underlying chemical models and
materials throughout the system [80]. The use of ontologies in this way removes ambi-
guities and enables connections across completely different levels of scale and function,
e.g., linking a measurement to the city it has been taken in [49]. Going forward, more use
cases can be developed easily based on the existing tech stack, filling in the gaps between
scales to create a truly interoperable digital scientist. The next steps in this endeavour are
laid out in section 6.
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5.2 Distributed and connected digital twins

The connection of scale levels in Fig. 20 is necessary to couple the two most prominent
instances of research automation – computational simulations (and data screening) on an
atomistic level and the experiments carried out at lab scale. These two instances can be
approached with the same methodology [100] as the former can be advantageously framed
as computer experiments [30]: there is no need to differentiate between measurements or
theory as data sources on a fundamental level as they are all based on experiments (physi-
cal or computational) and are based on a certain line of reasoning accessible by logic. The
lines become blurry in any case: on a fundamental level, data analysis processes resemble
multi-step computational methods – including the specific implicit assumptions necessary.
These processes can all be captured in the same manner as scientific workflows [32, 53].

The systemic view shown in Fig. 19 can be applied to computational experiments as well
– the computer hardware and operating environment (e.g., Linux enterprise system, cen-
tral and graphics processing units, . . . ) functions as the laboratory to conduct the ex-
periment. As the experiment itself we can view the model and simulation details (e.g.,
quantum-mechanical calculations based on “density functional theory” of carbon monox-
ide on copper surfaces, . . . ). The handler is represented by the actual solver or hardware
that is being used (e.g., Vienna ab initio simulation package VASP [40]). Even though
there are a lot of similarities, the aspects infrastructure and handler seem less relevant as
computations are deemed more deterministic. Yet, in the field of computational modelling
it is well known that reporting on the computational details and solver parameters is crit-
ical. Also when it comes to managing large distributed computations and resources [53]
(e.g., planning, scheduling and managing jobs on an high-performance computing clus-
ter), the systemic view becomes quite relevant. Moreover, computer experiments follow a
similar cycle that needs to be completely represented for closed-loop automation: Decide
– Experiment – Hypothesise – Predict [74] (compare to appendix B).

Apart from increasing practicality of computational studies by including synthesisability
aspects [74], these two can now interact beneficial in both directions: Models can inform
the experiment by providing material properties needed or even suggesting candidates for
condition parameters or materials [100] as discussed in section 3.3. At the same time,
experimental measurements can inform the computational model, for example by high-
lighting deviations from idealised behaviour or parameter spaces that need to be explored
further.

In a seemingly contradictory way, we want these digital twins not only to be connected but
distributed. This distributedness does not infer isolation though and rather supports the
connectedness of concepts and digital twins. There are two main aspects to this distribut-
edness: First of all, data itself is distributed within our approach to dynamic knowledge
graphs – namely The World Avatar as introduced in section 4.3. It is inherent to the KG
technology and can help solve data volume problems as discussed in section 3.3. Sec-
ondly, the experiments or laboratories themselves can be physically separated and even
distributed around the globe, enabling complex orchestration as discussed in section 3.4.
Distributing experimental research like this in a similar way to distributed computing on
the modelling side is needed to accelerate R&D efforts and has been demonstrated as
effective in a recent work of present authors [8].
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5.3 Human-machine interactions: Inside and outside the loop

As discussed in section 3.6, seamless interfaces between humans and machines are neces-
sary to ensure goal alignment. Moreover, humans will need to stay part of a closed-loop
experimentation cycle for the foreseeable future to narrow the interim technology gap
(see section 3.7). The phrase human-in-the-loop therefore traditionally refers to humans
carrying out two potentially intertwined but fundamentally different tasks [76]:

1. Decision-making, trouble-shooting, result-checking. These tasks mostly arise due
to complexities not captured by machines [76]. At high speeds, human intervention
becomes effectively impossible [54], causing bottlenecks discussed in section 3.7.

2. Maintenance, manual work, etc. that is too costly too automate (yet). This includes
humans operating machines of LoA 0 (see Fig. 11) which – with the exception of
small handheld tools – is almost gone by now.

Current SDLs report to remove this human factor completely within closed-loop experi-
mentation [68, 91]. On closer analysis, this is only true superficially speaking:

1. The tasks are very specific and closed loop system boundaries are very narrowly
defined so that goal derivation only on the level of a DOE1 agent (see Fig. 13) is ac-
tually implemented and further reasoning and strategising about goals is outsourced
to humans outside of the SDL.

2. SDLs are known to require lots of maintenance which is often done exclusively
manually and without much system-intrinsic troubleshooting support due to rele-
vant aspects not incorporated in digital twins or the inaccessibility of black box
systems.

To achieve fully autonomous laboratories and eventually an AI scientist, the ultimate goal
seems to imply removing the human-in-the-loop altogether. Considering a systems per-
spective including economic and sustainability criteria though, the DLF only aims to move
the decision-making human slowly out of the loop while keeping technicians etc. as po-
tential mobile units. These perform tasks as instructed by TWA, which will naturally fade
out over time based on improved cost-efficiency of robotic systems.

In order to bridge the interim technology gap (see section 3.7), as current systems still
need plenty of direct instruction and supervision, the process of moving the goal-setting
human out of the loop needs to be a continuous process: first, separating the two functions
of humans in the loop, then starting to explicitly instruct humans via the system for car-
rying out plannable work, and finally implementing better and better goal derivation and
self-evaluation systems. In the meantime, we need to account for the inevitable interlock
with the research ecosystem of human scientists as Kitano articulated [55].

For this, we might make use of existing frameworks such as SOHO because “CORA [and
others] do[es] not support the contextualisation and interpretation of behaviours and other
autonomous agents (e.g., human operators) with respect to the global production objec-
tives and processess” [104]. Going forward, we see humans as versatile handlers (i.e.,
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mobile units) that act as physical agents based on the information provided to them. In
the short term, humans will still synthesise findings and formulate the next investigation as
phases of the general scientific data analysis process [36, 82]. These instances of “human-
machine teaming” [100] can be achieved e.g., with collaborative robots that allow human
researchers to work in the same physical space [19].

For efficient teaming, seamless HMI are required that exhibit low latency. This can be
achieved for example via easy-to-use mobile or web.based applications, which have been
developed for specific island solutions (see section 2) – e.g., ELN [59]. A framework
for mobile applications interacting with TWA would offer a much broader range of po-
tential applications to enable holistic lab automation and is currently under development.
Furthermore, recently the rise of large language models (LLM) has revolutionised the
way humans can interact with digital systems via natural language. The development
of “copilot” systems to interact with SDLs such as CRESt [88] or ChemOS [90] have
demonstrated the applicability and relevance in the field of lab automation. We therefore
plan to extend the capabilities of Marie [110], a “knowledge graph question answering
system” for TWA, to include all concepts related to the DLF (see Fig. 20).

The dual task of humans in the classical as well as the newly proposed approach to lab
automation is illustrated in Fig. 16. In Fig. 16(b) we see TWA agents instead of humans
breaking down the original abstract goal into smaller sub-goals and eventually deriving
concrete tasks and experiments (see section 3.6). Due to its integrated knowledge model,
no outside databases, literature, or experts need to be consulted. Furthermore, the world
model is constantly updated and kept consistent in TWA via the so-called “derived infor-
mation framework” [7]. This differs from the network envisioned by Martin et al. [72]
where the goal-setting human researcher is part of the loop by giving recommendations
to an automated lab. The inclusion of a “traditional lab” with humans still carrying out
some of the physical labour shows some similarities but is not as deeply integrated as in
this approach.

6 Implications and applications

The successful application of AI and automation in chemistry research depends heavily
on the effective embedding of chemistry knowledge. The use of digital twins and dynamic
knowledge graphs provides an opportunity to integrate chemical data and knowledge into
the digital twin framework proposed in section 5. This framework is, by design, techni-
cally able to suffice the “principles of thoughtful AI” formulated by Yolanda Gil [31, 32]:

• Deep semantic knowledge representations – including metadata – incorporate ra-
tionality by design and enable providing context.

• The holistic view of a systems engineer with which we approach the research lab-
oratory and its digitisation suffices the systems and network principles by design
and enables proper articulation.

• The goal-driven approach introduced in section 4.2 enables the system to take ini-
tiative and follow a predefined strict code of ethics.
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The DLF aims to enable automation across all aspects of a research laboratory. In Fig. 19
the overlaps of these aspects are highlighted and names are given to potential applications
for each intersection. The integration of chemical knowledge into our framework allows
for the creation of these digital counterparts of typically human responsibility areas to
enhance and streamline laboratory processes. Here, we discuss these three use cases: the
“Digital Lab Facility Manager”, the “Digital Research Scientist”, and the “Digital Lab
Manager”.

6.1 Digital Researcher

Applying the DLF to AE setups enabled us to connect and orchestrate multiple SDLs
remotely as detailed in a recent publication [6]. As next steps, we are planning to connect
all lab assets to BMS, LIMS, and LIS systems, thereby enabling automated management
of environmental conditions as well as procurement, as indicated in Fig. 21. The final goal
is full integration of flexible and modular automated experimentation, see appendix A.

Figure 21: Potential application of Digital Researcher operating and managing experi-
ments over distributed labs, adapted from Bai et al. [6].

6.2 Digital Lab Facility Manager

The decarbonisation potential of the building sector is huge, particularly regarding HVAC
operations [48]. As chemical research labs require consuming large amounts of makeup
air and electricity, loss of energy can be potentially saved. For this, knowledge about
building, infrastructure, and behaviour has to be integrated. Within the DLF, we, there-
fore, aim to connect information and controllability of GIS, BIM, and BMS systems to
enable optimisation of temperatures, airflow rates, etc. as shown in Fig. 22.
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Figure 22: Application of a Digital Building Manager regulating airflow in a research
lab based on operations and live conditions to reduce energy consumption.

Such a system would not only have major implications with lab sustainability [86] but
also enable optimised scheduling and planning of experiments within individual research
campaigns. The first steps in this direction have been successful by connecting GIS and
BIM data of a chemical research laboratory in Singapore [84].

6.3 Digital Laboratory Manager

The integration of BIM with BMS, assets management, and live data on the other hand
enables the automation of many tasks traditionally carried out by a lab manager. As
shown in Fig. 23 this encompasses automated asset management, inventory tracking, and
resource allocation.

Integration with data about specific experiments and actual chemical knowledge would
now even empower scientists to seamlessly choose the types of reactants and setups that
suffice certain criteria imposed by lab management. Within the Digital Lab Framework,
first steps have been undertaken by showcasing the ability of automated solvent selec-
tion [80] based on sustainability-related criteria.

42



Figure 23: Envisioned user interface of a Digital Lab Manager, depicting the integration
of different tasks and information that are currently spread across individual
and siloed applications, adapted from Quek et al. [84].

7 Conclusion

In the face of mounting global challenges, the urgency for accelerated research has never
been more apparent. We imagine a world in which this urgency is taken with adequate se-
riousness in terms of resource allocation and policymaking, such that the rate of scientific
discovery has been increased by orders of magnitude. Such a world would at some point
resemble the vision of AI scientists formulated by Hiroaki Kitano which are capable of
making Nobel-prize-worthy scientific discoveries. In such a world, humans would only
set high-level goals based on which the AI scientist derives appropriate experiments that
are designed, executed, and analysed autonomously. Evaluating the current trajectory of
automation within the domain of experimental research, we took on the perspective of
a systems engineer, considering all aspects of a research laboratory: the experiment it-
self, the handler conducting and monitoring the experiment, the laboratory infrastructure,
and peripheral systems beyond. These aspects overlap and interact with each other, each
presenting unique challenges for automation. While specific solutions are available to au-
tomate parts of certain aspects, a holistic approach to lab automation is required to move
towards the vision of an AI scientist.

Based on a holistic view of these systems, we can identify general challenges that need
to be overcome. The first challenge lies in interoperability, typically referring to the
perceived need for more integrated platforms that amalgamate functionality, such as ELN
and LIMS, or standardised protocols for communication and data exchange. It reaches
further though as a much broader range of knowledge needs to be available to automate
of peripheral tasks usually conducted by managers and technicians, including reordering
consumables, auditing assets, scheduling maintenance, budgeting, and enforcing safety
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protocols. As this knowledge keeps expanding, the need for adaptability to effectively
manage the dynamic nature of research experiments becomes imminent. Modular design
principles are necessary, not only for hardware but also for software components, accom-
modating live data and enabling fundamental changes in setup or underlying models. It is
not enough to account for new data and changing conditions in a reactive way though. A
‘system of systems’ should also orchestrate research activities, ranging from the full cy-
cle of a single campaign to managing complementary experiments or computations. This
facilitates a more distributed approach of research activities which has been shown bene-
ficial. The necessary coordination of information across different domains and scales not
only requires interoperable components but representations allowing for deep knowledge
models. This includes underlying processes (e.g., quantum chemistry) as well as poten-
tial error sources and uncertainties of methods or equipment used which an AI scientist
needs to consider when formulating new hypotheses. Adequate knowledge representation
is only a prerequisite here; algorithms need to be capable of advanced reasoning. These
capabilities are required to infer hypothesised facts from known ones, which will mostly
comprise existing knowledge and new measurement data to ‘close the loop’. Going be-
yond closed-loop experimentation, goal derivation is essential. We view this as a natural
progression of increasingly sophisticated methods for designing experiments based on
relevant hypotheses. Taking this to the extreme, an AI scientist would be able to derive
potential objectives and ultimately experimental campaigns from very abstract goals such
as the SDGs. The underlying model of knowledge and reasoning in most existing SDLs
is based on statistical ML algorithms though, making them behavioural black boxes with
only implicit knowledge of physics or chemistry of narrowly defined experimental setups.
This makes it impossible to autonomously check the alignment of experimental objec-
tives with possibly contradicting higher-level goals that could impel a human researcher
to carry out an experiment in a non-ideal manner. The described discontinuity between
the current and desired state is called interim technology gap and cannot be bridged in a
single step of integrating all available solutions into a unified system.

To address the imperative of integrating sustainability deep into the fabric of scientific
research and experimentation, systems thinking and systems modelling provide power-
ful tools. This has been discussed in detail by Weber et al. [107] and the present per-
spective has been guided by some of their key suggestions: for example, widening sys-
tem boundaries allows assessment of full impact cradle-gate-crave in life cycle analysis
(LCA), which prompted us to rigorously include physical and conceptual peripheries in
the defined system. Furthermore, to manage the complexities emerging from connected
subsystems across many scales (from market systems to reaction networks), semantic web
technology and particularly structured knowledge graphs provide the only promising ap-
proach at this time. Leveraging such an approach now enables us – amongst others – to
evaluate metrics across different systems and implement graph- or network-based deci-
sion strategies more easily.

Based on these assessments, this work offers a change in perspective: instead of building
and extending an increasing number of platforms that cater to specific tasks defined by
humans, what would be necessary to create a universal knowledge model that derives and
allocates tasks based on abstract goals set by humans? We argue that this would require a
focus on creating comprehensive digital twins instead of self-driving laboratories, shift-
ing from a task-driven to a goal-driven approach and using knowledge graphs instead of
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traditional databases. We therefore introduce the TWA Digital Lab Framework for con-
nected and distributed digital twins enabling holistic lab automation while considering
human-machine interactions from the very start. In the upcoming series of publications
following this, we will introduce applications focusing on the automation of specific sets
of tasks within the overall system.
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Nomenclature

AEP Autonomous experimental platform

AE Autonomous experimentation

AGI Artificial general intelligence

AHP Analytic hierarchy process

AI Artificial intelligence

BIM Building information management

BMS Building management system
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CDS Chromatography data system

DBMS Database management system

DIKW Data, information, knowledge, wisdom (model)

DISK (Automated) discovery of scientific knowledge

DLF (TWA) Digital Lab Framework

DoE Design of experiment

ELN Electronic lab notebook

ERP Enterprise resource planning

ESAMP Event-sourced architecture for materials provenance

EXPO The ontology of scientific experiments

GD Goal derivation

GIS Geographic information system

HMI Human-machine interface

HVAC Heating, ventilation, and air conditioning

IoT Internet of things

IRI Internationalised resource identifier

KD Knowledge discovery

KG Knowledge graph

LCA Life cycle analysis

LEAF Laboratory efficiency assessment framework

LES Lab execution system

LIMS Lab information management system

LIS Lab inventory system

LLM Large language model

ML Machine learning

NLP Natural language processing

PROCO Process chemistry ontology

R&D Research and development
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RSC Royal Society of Chemistry

SDGs (United Nations’) sustainable development goals

SDL Self-driving laboratory

SDMS Scientific data management system

SOHO Sharework ontology for human robot collaboration

TWA The World Avatar (project)
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A Necessary concepts

A.1 Conceptual Layers of Experiments

Within the framework of TWA, an experimental setup is a subspace of the base world on
which agents can perform actions (experiments) to use a certain set of input parameters to
receive a certain set of output parameters. For example, eCO2R experiments by Huang et
al. [46, 58, 87] in reference to the DoE process shown in Fig. 13:

• World problem: How can we use carbon dioxide to produce useful chemicals?

– What is a feasible process? Is electrocatalytical reduction a reasonable candi-
date?

– What is the best catalyst? Are copper-based metal electrodes work?

– How can we tune reaction conditions for better selectivity?

– . . .

• Specific problem: How does applied potential influence Faradaic Efficiency?

• Experiment: see Fig. 24

• Observation / Raw Data: single data-point of Uref, xGC
j and Imeas

• Result / Interpretation: single data-point of URHE and FE j

Figure 24: Relation of concepts to carry out and analyse experiments, for example
eCO2R on copper-based catalysts under different constant potentials.
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The conceptual layers shown in Fig. 24 are in detail:

• Components: everything needed to run experiment – not prepare!

– Passive components

* Two-compartment cell (10mL each, 0.385cm2)

* Pt electrode (ALS Japan)

* Anion exchange membrane (Selemion AMV, AGC Asahi Glass)

* Ag/AgCl reference electrode (sat. KCl, Pine)

* Cu(100) electrode (99.99%, 10 mm diameter, MTI Corp.)

– Active components

* MFC (MC 100SCCM-D, Alicat Scientific)

* GC (GC-7890A, Agilent)

* H-NMR (500MHz, Bruker Avance 500)

* Potentiostat (Gamry Reference 600)

– Consumables

* KHCO3 (0.1M, 99.5%, Sigma-Aldrich)

* CO2 (99.999%, Linde)

* Phenol (99.5%, Scharlau)

* DMSO (99.9%, Quality Reagent Chemical)

* D2O (99.96% deuterium, Merck Millipore)

• Setup: putting together components to run experiments

1. Assemble cell: Pt electrode, anodic compartment (AC), membrane, cathodic
compart-ment (CC), Cu electrode (WE)

2. Put Reference Electrode in cathodic compartment

3. Fill in electrolyte: 6.4mL in cath., 8mL in an. compartm.

4. Connect CC: inlet to CO2 via MFC, outlet to GC sample

• Preparations: instructions that have to be only done once for X runs

1. New working electrode

(a) Mechanical polishing with alumina slurries to mirror-like finishes
(b) Electropolishing with H3PO4/H2SO4 solution
(c) Acid rinsing w/ deionized water and HClO4

2. Calibrate analytics

(a) Calibrate GC w/ stan-dards (H2, CO, C2H4)
(b) Calibrate NMR w/ stan-dards (formate, acetate, ethanol, propanol)

3. Prepare electrolyte

(a) Saturated KHCO3 with CO2 for 10min
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4. Potential compensation

(a) Interrupt method
(b) Measure pH

• Instructions: every single step I/O to perform a single run

– t = 0s: Bubble CO2 through electrolyte at 20sccm

* Start stirring, 1500rpm

* Apply desired potential

* Start measuring current

– t = 3min: Take 2.5mL headspace aliquot, inject into GC

– t = 14min: GC sampling as above

– t = 26min: GC sampling as above

– t = 37min: GC sampling as above

– t = 40min: Stop current/bubbling

* Take 2mL sample of catholyte & anolyte

* Mix w/ 25mM phenol & 5mM DMSO, take 1mM

* Add 0.2mL D2O, perform H-NMR

A.2 To develop

Additional concepts are necessary as shown in Fig. 25.

Figure 25: Relation of concepts to automate general research activities.
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B Nomenclature

The nomenclature used around laboratory automation is inconsistent across the literature.

B.1 ‘Closed loop’ research cylces

When closed loop experimentation is discussed, the specific steps within this loop are
often identified and named very differently. All things considerd, most authors refer to
the same procedure with some specificities according to their field of application. Some
examples are:

• Design - Experiment - Hypothesis - Prediction [74]

• Design - Build - Test - Learn [11]

• Design - Make - Test - Analyse [6]

• Hypothesis - exp. design - exp. execution - exp. observation - analysis [99]

• Hypothesis generation - experimantal planning - experimental execution [55]

• For literature / data-driven knowledge discovery

– Hypothesis - line of inquiry (retrieve and analyse data) - revised hypothesis
[32, 34]

– Search space - automated experimentation - data analysis - decision making
[108]

• More general / summarised cycles

– (Initialize) - Plan - Experiment - Analyze - (Conclude) [100]

– Plan - Execute - Disseminate [28]

B.2 Platform-based systems

Most ‘autonomous laboratory’ solutions are platform-centric. Some examples are:

• Self-driving laboratory (SDL) [2, 11, 13, 41, 50, 69, 72, 95]: In use since 2015

• Autonomous Experimental platform (AEP) [108]

• Closed-loop experimentation: in use since 1980s

• Robotic chemist [19], transitioning to the digital researcher theme shown below in
appendix B.3. The seamless transition of these phrases indicates again the lack of
awareness for the inteim technology gap (see section 3.7) in the broader scientific
community.
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B.3 Digital or automated researcher

Different names are in circulation for automated systems that can autonomously carry out
certain research tasks. In this instance, the differences are mostly reflective of how exten-
sive the envisioned system is, e.g. including robotic capabilities or not. Some examples
are:

• AI scientist [32, 33, 35, 36, 55]

• Robot scientist [54, 98, 99]

• Machine investigator [11]

• AI chemist [111]

More towards support of human researchers: “copilot” [88] or “in silico colleague” [56]

C Comparisons

Key ideas and details of implementation are shown in section 5. The most important
differences to using a more conventional approach are shown in Tab. 2.

Table 2: Comparison of paradigms between conventional SDL development and the in-
troduced approach of DLF.

Conventional Suggestion

Bottom-up Top-down
Platform Knowledge Graph

Design Thinking Systems Engineering
Task-driven Goal-driven

Self-driving labs Comprehensive digital twins
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