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Abstract

In this study, we present a question answering (QA) system for chemistry, named
Marie, with the use of a text-to-text pre-trained language model to attain accurate
data retrieval. The underlying data store is "The World Avatar" (TWA) a general
world model consisting of a knowledge graph (KG) that evolves over time. TWA in-
cludes information about chemical species such as their chemical and physical prop-
erties, applications, and chemical classifications. Building upon our previous work
on KGQA for chemistry, this advanced version of Marie leverages a fine-tuned Flan-
T5 model to seamlessly translate natural language questions into SPARQL queries,
with no separate components for entity and relation linking. The developed QA sys-
tem demonstrates competence in providing accurate results for complex queries that
involve many relation hops, as well as showcasing the ability to balance correctness
and speed for real-world usage. This new approach offers significant advantages
over the prior implementation that relied on knowledge graph embedding. Specif-
ically, the updated system boasts high accuracy and great flexibility in accommo-
dating changes and evolution of the data stored in the knowledge graph without ne-
cessitating retraining. Our evaluation results underscore the efficacy of the improved
system, highlighting its superior accuracy and the ability in answering complex ques-
tions compared to its predecessor.

Highlights
• A QA system for chemistry that leverages pre-trained language models to

translate natural language question in SPARQL queries.

• The QA system can resolve complex queries that involve many relation hops.

• The QA system boasts high accuracy and the flexibility to adapt to changes and
evolution in the knowledge graph without necessitating retraining.
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1 Introduction

With the rapid progression of digital technologies, the chemistry sector is generating vast
amounts of complex data. Traditional methods for information storage and retrieval are
struggling to manage this increasing volume and complexity. The fragmented and often
incomplete state of chemical data also poses significant challenges to machine learning.
While machine learning has the potential to revolutionize data analysis, its application
is inhibited by its need for large quantities of clean data. Much time is often wasted
simply gathering and cleaning data. This accentuates the importance of accurate and
well-structured data [22, 24].

In this regard, since the landmark publication by Berners-Lee et al. [5], semantic web
technologies and Knowledge Graphs (KGs) have been introduced as a solution, providing
an effective framework for semantic information retrieval. A KG is a network of data
expressed as a directed graph, where the nodes of the graph are concepts or their instances
(data items) and the edges of the graph are links between related concepts or instances.
KGs are often built using the principles of Linked Data. KGs enable efficient storage
and retrieval of interconnected web-scale data and can identify new relationships between
various entities. While they may not necessarily speed up queries or reduce hardware
requirements, they have the ability to streamline data discovery and cleaning processes
that lead to more efficient data utilization and processing. Major existing KGs include the
Wikidata KG [54], the DBpedia KG [2], and the Google KG [16]. In the chemistry field,
where the need of clean and well-structured data is of fundamental importance, KGs have
recently begun to be explored in the context of drug and material discovery and have the
potential to assist in key challenges such as target identification [6, 29].

However, querying a KG can be often challenging due to their size and complexity. To
submit a query, the user needs to know the formal query language SPARQL [42] and a
complete understanding of the KG schema. In some cases of user error, the queries return
no data but are considered formally correct, and no warnings are reported.

For this reason, a more user-friendly interface able to retrieve data from KGs is de-
sired. Knowledge Graph Question Answering (KGQA) allows to answer natural language
queries posed over the KG. In particular, KGQA in the chemistry domain is a promising
area of research owing to the rapid growth of chemistry-related KGs and the potential
advantages of a deep search of the chemical space.

Marie [61–63] is a KGQA system for chemistry. It is part of a wider effort to develop a
user-friendly interface to interact with The World Avatar (TWA)–a world model built upon
a dynamic knowledge graph with the aim to interoperate across heterogenous ontologies
and disparate domains, including not just chemistry but also power systems, 3D models of
cities and landscapes, among others [33]. Interactions with TWA are facilitated by agents,
which are applications and services capable of performing various operations upon the
underlying KG. Navigating the suite of agents for varying use cases can be challenging.
Ultimately, a natural language interface for TWA could offer a single unified entry point
for user interactions by providing a layer of abstraction on top of the many services and
data stores available.

The first iteration of Marie [61] was an early attempt at developing a multi-ontology
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KGQA system for chemistry and demonstrates the viability of converting questions in
natural language to SPARQL queries by matching user’s intention to a predefined query
template and populate the template with values extracted from user’s utterance. This
template-based approach [1, 4, 60] is a traditional method falling under the category of
semantic parsing, which aims to parse a given question into its logical form, i.e. a se-
mantically equivalent representation either in SPARQL or an intermediate form that can
be trivially converted to SPARQL [20, 32]. The said system’s reliance on hand-crafted
templates, which are limited to simple one-hop questions, hampers scalability because
the task of expanding the template store falls on domain experts.

More is left to be explored with semantic parsing-based approaches and the use of PLMs.
Key approaches to KGQA that have benefited from generative PLMs include end-to-end
translation [3, 45, 47], the retriever-reader model [8, 11, 23, 51, 57], and dynamic log-
ical form induction [19, 21]. Even though many of these systems have clinched state-
of-the-art results on public benchmarks [3, 21, 51], attempts to quantify their speed to
demonstrate practical usage are still inadequate; we are only able to find reports of system
speed measured on GPU in two papers [19, 21]. This casts doubt on whether systems
with impressive accuracy can be realistically deployed in a real-world setting, where spe-
cialized hardware might not be available. More broadly, we notice that efforts to study
the accuracy-latency trade-off for KGQA in a hardware-constrained setting are lacking
despite the wealth of similar work in other machine learning domains [7, 37, 39, 55, 56].

The purpose of this paper is to present a new version of Marie, a KGQA system that aims
to facilitate an extensive exploration of the chemical space. The proposed design of Marie
aims to translate questions in natural language to SPARQL queries with the use of a fine-
tuned Flan-T5 model [10], known for its demonstrated versatility and efficacy in adapting
to downstream tasks [10] while capable of running inference on consumer-grade hard-
ware. Our system adopts a unified pipeline for KGQA, wherein translation is performed
end-to-end and without separate components for entity and relation linking, but with sim-
ple corrective procedures to counteract the uncertainty in the generation of target queries.
We also explore 8-bit quantization as a technique to negotiate the trade-off between accu-
racy and latency. The developed KGQA system is lightweight and able to not just handle
multi-hop questions and but also balance between correctness and speed in a CPU-only
setting. This new approach offers significant advantages over the prior implementation
that relies on knowledge graph embeddings [63]. Specifically, the updated system boasts
higher accuracy and greater flexibility in accommodating changes and evolution of the
data stored in the knowledge graph without necessitating retraining.

2 Related work

2.1 Pre-trained Language Models for Knowledge Graph Question
Answering

In this section, we provide an overview of major approaches that leverage PLMs for
KGQA and where our system stands in this suite of methods.
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End-to-end translation. Capitalizing on the generative capabilities of LMs, KGQA sys-
tems that adopt the translation approach take in natural language questions and feed them
to fine-tuned LMs to output SPARQL queries. For many systems [23, 47], the grounded
queries are generated in a one-shot manner. Meanwhile, LMs could be employed to ob-
tain only query skeletons, which are then grounded with entities and/or relations detected
by a separate set of components [14, 45]. Recognizing that one-shot generation of exe-
cutable SPARQL queries is prone to KG misalignment especially for unseen entities and
relations, but decoupling entity and relation linking from logical form generation opens
up more room for errors, researchers behind the system GETT-QA [3] propose a middle
ground, whereby in the first step SPARQL queries are generated with entity and relation
slots already filled with their surface forms as found in input questions, and in the second
steps these labels are grounded to actual KG entities and relations.

Retriever-reader model. Similar to text-to-text translation, systems that follow the retriever-
reader model also utilize fine-tuned LMs to generate SPARQL queries, but they augment
the input into the LMs with additional signals. The pipeline of such systems can be bro-
ken down into two main steps: in the first step, a retriever processes an input question
to gather information relevant to the formation of the corresponding logical form; in the
second step, a reader, which is often a fine-tuned LM, takes in the given question and the
retrieved information and outputs the desired logical form. Different systems design for
different kinds of information to be retrieved and fed into the reader, such as entities and
relations detected from input questions [8, 34, 51], candidate logical forms [11], candidate
query paths [51, 57], or linearized facts [59]. To ensure that the generated queries are com-
pliant with the ontology of the KG, many of these system impose decoding constraints on
the reader [51] or perform an additional step of revision to re-align output logical forms
to the KG’s ontology [8, 11].

Dynamic logical form induction. Rather than directly generating formal queries in full,
systems that perform dynamic logical forms induction starts with a partial query and in-
crementally expands it till the desired logical form is found, using the discriminative abili-
ties LMs to guide this construction process [19, 21]. The incremental expansion of logical
forms enables more fine-grained control over the generation process by limiting the search
space of candidate query paths and enforcing grammatical rules.

Relevance to our system. It is critical to assess the applicability of aforementioned ap-
proaches with respect to the development of a KGQA system for chemistry. Although
dynamic logical form induction has yielded state-of-the-arts results [21], this approach
relies strongly on the completeness of the KG to construct logical forms. For instance,
for a rare chemical species, it is not uncommon that the data about some of its proper-
ties are unavailable. In such a scenario, the dynamic logical form induction approach
would fail to generate the appropriate logical form and potentially report its failed pre-
diction, while in fact the expected behaviour would be to produce a valid SPARQL query
and return an empty response. End-to-end translation and retriever-reader approaches are
both promising, differing only in whether the input into LMs is augmented with extra
information other than the question posed to the system. In this work, we adopt the end-
to-end translation approach and draw inspiration primarily from GETT-QA [3] due to its
straightforward design and leave the exploration of retriever-reader model in future work.
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2.2 TWA Chemistry Ontologies

Marie is a KGQA system developed for chemistry, which operates on top of the TWA KG
chemistry domain. The TWA KG is a comprehensive, cross-domain, and dynamic knowl-
edge graph adhering to linked data principles. It seamlessly integrates various ontologies,
such as OntoSpecies [41], OntoKin [15], OntoCompChem [30], OntoPESScan [36], and
OntoMOPs [29], all tailored for representing chemical information. OntoSpecies is a fun-
damental chemistry ontology within TWA KG. This ontology contains the IRIs of about
36,000 and is constantly growing. The ontology also covers the basic chemical and phys-
ical properties of species. It encompass a diverse collection of identifiers, classifications
and uses of chemical species, as well as spectral data, in addition to information indicat-
ing its origins and attribution. OntoKin is an ontology focused on representing chemical
kinetic reaction mechanisms, offering details on reactants and products as well as kinetic,
thermodynamic, and transport models [15]. OntoCompChem is an ontology designed for
computational chemistry calculations, particularly for density functional theory (DFT)
calculations [30]. OntoCompChem currently represents single point calculations, geom-
etry optimizations and frequency calculations. A different ontology, OntoPESScan, has
been specifically designed for the representation of potential energy surface (PES) scans
[36]. OntoMOPs is an ontology designed for the rational design of metal-organic poly-
hedra (MOPs) [29]. It encodes assembly models and generic building units as blueprints
for creating MOPs, facilitating their design with chemical and spatial reasoning. The cur-
rent iteration of Marie is specifically configured to operate within the OntoSpecies KG.
In this research paper, we aim to showcase the utility of a fine-tuned language model for
translating natural language queries into SPARQL queries, particularly for non-shallow
ontologies. This approach enables us to address complex questions within the domain ef-
fectively. However, our ultimate goal is to broaden the scope of Marie in future iterations
to encompass the entire TWA chemistry domain.

3 Methodology

Our system comprises three main steps: pre-processing, translation, and post-processing.
In the pre-processing step, special characters present in the input question are encoded
and physical quantities are converted to SI units. In the translation step, the pre-processed
question is passed to a fine-tuned Flan-T5 model to generate the SPARQL query. In
the last step, the predicted query is post-processed to have special characters decoded
and additional triple patterns added to enhance user experience. We describe our system
architecture in greater details in Section 3.2. Additionally, to train a translation model
that learns a mapping from natural language to formal queries, a supervised dataset of
question-logical form pairs is needed. Our procedure for constructing this dataset is out-
lined in Section 3.1.
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3.1 Dataset

The scope of our dataset includes information from OntoSpecies KG about chemical
species such as their chemical and physical properties, applications, and chemical clas-
sifications. Following landmark works in constructing datasets for KGQA [20, 53], we
devise a data construction pipeline that runs in three main steps: (1) generate logical forms
from a KG, (2) verbalize the logical forms into questions in natural language, and lastly,
(3) rephrase the verbalized questions to obtain examples with more linguistic variability.
Figure 1 illustrates the data generation process in a nutshell.

Figure 1: Steps to generating our dataset. (a) A canonical logical form is generated from
a schema subgraph and its instantiation. (b) The logical form is verbalized
to form a canonical question. (c) The canonical question is rephrased into
different utterances. (d) The final question is sampled from the pool comprising
the canonical question and its valid paraphrases.
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3.1.1 Canonical logical form generation

Emulating the methods used in the creation of general-domain KGQA datasets GrailQA
[52] and GraphQuestions [20], we traverse the KG’s ontology to obtain ungrounded sub-
graphs consisting of classes and their relations; these subgraphs subsequently have some
of their nodes grounded and functions added, yielding canonical logical forms. We con-
trol the level of complexity of our generated queries by applying some heuristics on the
structure of the retrieved subgraphs and the choice of grounded and question nodes. The
out-degree of the os:Species is chosen to vary from 1 to 3, and the grounded and ques-
tion nodes are chosen such that we obtain three types of queries: those that retrieve data
about a specified chemical species or more, those that search for chemical species that
satisfy a set of conditions constrained upon their properties, and those that inquire about
the properties of chemical species belonging a given chemical class. See Figure 2 for
examples of these query types.

Figure 2: An overview of query types included in our dataset. (a) One-hop queries that
look up information about a given chemical species or more e.g. "What are the
boiling point and charge of benzene?". (b) One-hop queries that find chemical
species based on specified criteria e.g. "what are the chemical species that can
be used as a nonpolar solvant and have a boiling point between 373 and 350?".
(c) Two-hop queries that ask about properties of chemical species belonging to
a particular chemical class e.g. "what are the applications of chemical species
classified as aromatic compound?".
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In contrast to the aforementioned general-domain KGQA datasets that include up to only
one function that can be a counting operation, a superlative (argmax, argmin), or a com-
parative (>, ≥, <, ≤) [20, 52], we apply one comparative operator out of the five choices
shown in Table 1 on all numerical qualifiers. The rationale for this is to accommodate
practical scenarios of data lookup in the chemistry domain, such as the use case of finding
solvents whose boiling point falls within a certain range when performing distillation.

Table 1: Comparative operators present in our dataset.

Logical form Verbalization

higher x > a higher than a
lower x < a lower than a
inside a < x < b inside the range between a and b

outside x < a ∥ x > b outside the range between a and b
around 0.9a < x < 1.1a for a > 0 around a

Unlike most KGQA datasets, we do not include entity IRIs in our generated SPARQL
queries, and instead perform entity linking directly within the SPARQL queries by ex-
act string matching with node labels; for the case of entities of the class os:Species,
linking is done by exact matching with any of its chemical identifiers of any subclass of
os:Identifier.

3.1.2 Verbalization

To support the different ways that a query intent can be formulated and submitted to QA
systems, we consider three kinds of verbalizations: the interrogative form, the imperative
form, and keyword search. Each of these yields a different canonical question; see Table 2
for an example.

Table 2: An overview of verbalization types used for the formulation of canonical ques-
tions.

Verbalization type Example

Interrogative form "What is the charge of benzene?"
Imperative form "Tell me about the charge of benzene."
Keyword search "charge of benzene"

3.1.3 Paraphrasing

Paraphrasing serves the purpose of capturing different sentence structures that express
the same query intent, as well as the various surface forms that an entity or relation can
appear in. For example, the two questions "What is the boiling point of water?" and "At
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what temperature does water boil at?" correspond to the same SPARQL query involving
a single hop over the relation os:hasBoilingPoint.

With the assumption that entity linking is done by exact string matching of detected entity
spans, we do not alter entity mentions in query verbalizations during paraphrasing; in
other words, only the surface forms of relations are rephrased. We perform paraphrasing
to only verbalizations in the interrogative and imperative forms, using OpenAI’s chat
completion API with the gpt-3.5-turbo model. For each canonical question, 5 paraphrases
are generated, which are manually checked for semantic correctness; paraphrases that
deviate from the original meaning are rejected. Lastly, the final question is sampled from
a pool comprising the canonical question and its valid paraphrases.

3.1.4 Dataset analysis

Three datasets are generated: (1) the train set, which is used for fine-tuning of pre-trained
language models; (2) the dev set, which helps with model selection during the fine-tuning
process; and (3) the test set, which enables unbiased evaluation of fine-tuned models. In
total, our dataset covers 56 relations defined in the ontology of OntoSpecies. See Table 3
for the statistics on some characteristics of our dataset.

Table 3: Statistics on some characteristics of our dataset.

size

% of examples
with x relations % of function occurrence

x = 1 2 3 higher lower inside outside around

train 1608 57.84 37.25 4.91 8.27 8.77 7.59 8.58 9.08
dev 180 65.56 32.22 2.22 11.11 6.11 8.33 8.89 7.78
test 182 63.73 33.52 2.75 10.44 9.34 7.69 8.79 7.14

3.2 System architecture

Flan-T5 [10], which is the improved version of its predecessor T5 [44], is our model of
choice. The T5 model family has been mobilized in several KGQA systems [3, 8, 34,
48, 51, 57, 59] owing to its open-source nature and the ability to run on consumer-grade
hardware.

One issue with T5 is that it is trained specifically on natural language texts, thus the
T5 tokenizer treats characters such as the less-than sign ("<") and the curly braces ("{"
and "}") as unknown tokens. To handle this out-of-vocabulary problem, we map these
characters into alternative string representations, specifically their corresponding HTML
entities ("&lt;", "&lcub;", "&rcub;"). For symmetry, we also convert the greater-than sign
to its HTML entity counterpart (">" is substituted with "&gt;"). Below are outlined the
additional preprocessing and postprocessing operations employed by our system. See
Figure 3 for a running example of a query passing through our KGQA system.
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Figure 3: The key steps in our KGQA system. (a) Physical quantities in the input question
are converted to SI units, special characters are encoded, and an instruction
prompt is prepended. (b) The question is fed into a fine-tuned Flan-T5 model
to obtain SPARQL translation. (c) Special tokens in the translated query are
decoded and additional node patterns are added to enhance user experience.
(d) The query is executed against the KG to obtain the results.

3.2.1 Pre-processing of input texts

Physical quantities are only meaningful so long as their units are specified, and different
users under varying scenarios might have their own preferred unit system that they find
more convenient to work with. To facilitate interoperability with different unit systems,
we convert any mentions of physical quantities in the input questions to SI units, which
is the unit system used by the OntoSpecies knowledge graph. Here, we assume that units
indicated by the user are always valid for the invoked physical quantities e.g. when talking
about temperatures the user would use degree Celsius, degree Fahrenheit or Kelvin and
not kilogram.

Following unit conversion, characters that are out of T5’s vocabulary are encoded into
HTML entities as aforementioned. Lastly, to keep in line with the training and fine-tuning
approaches of Flan-T5 [10, 44], we prepend the input question with the instruction prompt
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"translate to SPARQL: ".

3.2.2 SPARQL encoding

SPARQL encoding determines the representation of SPARQL queries that the language
model learns. Besides encoding out-of-vocabulary characters, we follow [58] in convert-
ing the prefix marker of query variables, which is the question mark character ?, to the
string prefix var_. As mentioned earlier, the design of T5 training and tokenization and
its intended application is for natural language. With the assumption that the syntactical
function of a question mark is to delimit the end of an interrogative statement, the T5
tokenizer by default strips all whitespaces that appear before a question mark. When this
behaviour is applied to SPARQL, a triple pattern such as "a ?b c" is read by the model
as "a?b c", rendering the role of the question mark ambiguous: is it a prefix, a suffix, or
a delimiter? To clearly designate the SPARQL syntax for query variables, we instead use
a string prefix. See Table 4 for an illustration.

Table 4: An example of how a SPARQL query is encoded in our KGQA system. The
substitutions are in bold.

Original SPARQL query
SELECT ?SpeciesIRI ?BoilingPointValue
WHERE {
?SpeciesIRI os:hasBoilingPoint ?BoilingPointIRI .
?BoilingPointIRI os:value ?BoilingPointValue .
FILTER ( ?BoilingPointValue > 373 )

}

Encoded SPARQL query
SELECT var_SpeciesIRI var_BoilingPointValue
WHERE &lcub;
var_SpeciesIRI os:hasCharge var_BoilingPointIRI .
var_BoilingPointIRI os:value var_BoilingPointValue .
FILTER ( var_BoilingPointValue > 373 )

&rcub;

3.2.3 Post-processing of predicted SPARQL queries

SPARQL queries generated by the language model are in the encoded representation as
specified in 3.2.2. Therefore, they are first decoded to recover the original form. The
subsequent post-processing procedures are as follows.

Triple pattern expansion. In theory, the retrieval of entity nodes as answers is suffi-
cient for question answering. However, users might require additional information for the
answers to be meaningful and human-readable. For instance, when inquiring about the
boiling point of a chemical species, it is important to also display the reference state at
which the boiling point is measured. Therefore, after decoding SPARQL queries predicted
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by our translation model, we augment them with additional triple patterns depending on
the class of the answer nodes. See Table 5 for an example.

Table 5: An example of triple pattern expansion in our post-processing step. The added
query variables and triple patterns are in bold.

SPARQL query with minimal triple patterns
SELECT ?SpeciesIRI ?BoilingPointValue
WHERE {
?SpeciesIRI os:hasBoilingPoint ?BoilingPointIRI .
?BoilingPointIRI os:value ?BoilingPointValue .
FILTER ( ?BoilingPointValue > 373 )

}

SPARQL query with expanded triple patterns
SELECT ?SpeciesIRI ?IUPACNameValue ?BoilingPointValue

?UnitValue ?RefStateValue ?RefStateUnitValue
WHERE {
?SpeciesIRI os:hasIUPACName ?IUPACNameIRI .
?IUPACNameIRI os:value ?IUPACNameValue .
?SpeciesIRI os:hasBoilingPoint ?BoilingPointIRI .
?BoilingPointIRI os:value ?BoilingPointValue ;

os:unit ?UnitIRI .
?UnitIRI rdfs:label ?UnitValue .
OPTIONAL {
?BoilingPointIRI os:hasReferenceState ?RefStateIRI .
?RefStateIRI os:value ?RefStateValue ;

os:unit ?RefStateUnitIRI .
?RefStateUnitIRI rdfs:label ?RefStateUnitValue .

}
FILTER ( ?BoilingPointValue > 373 )

}

Copy correction. Our preliminary experiments show that PLMs face difficulties copying
exact text spans of chemical species when the surface forms are long, repetitive patterns,
as illustrated by Table 6. While researchers have come up with elaborate copy mech-
anisms that often involve reworking network architectures [9, 18, 23, 49], we make no
alteration to the underlying translation model. Instead, we assume that the model is able
to detect correct text spans but might not be able to generate them with absolute copying
fidelity. To rectify the copy error, we match the model’s generated text spans with the
closest substrings of the input question, using the Levenshtein distance as the distance
metric.

Relation correction. We follow [3] in realigning predicted relations to the actual ones
in the ontology of OntoSpecies using an embedding matching mechanism. We employ
the Sentence-BERT [46] model, which has been trained using a Siamese network for the
semantic matching task, to map relations to low-dimensional vector representations and
match them using the cosine similarity as the distance measure.
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Table 6: An example of a question about a chemical species represented by its SMILES
string. The corresponding SPARQL query has to copy the string span exactly.

Question Share information regarding the optical rotation of
CC1C(C(CC(O1)OC2C(OC(CC2O)OC3C(OC(CC3O)

OC4CCC5(C(C4)CCC6C5CCC7(C6(CCC7C8=CC(=O)

OC8)O)C)C)C)C)O)O

SPARQL query SELECT ?OpticalRotationValue

WHERE {

VALUES ( ?species ) {

( "CC1C(C(CC(O1)OC2C(OC(CC2O)OC3C(OC(CC3O)

OC4CCC5(C(C4)CCC6C5CCC7(C6(CCC7C8=CC(=O)

OC8)O)C)C)C)C)O)O" ) }

?SpeciesIRI ?hasIdentifier ?IdentifierIRI .

?IdentifierIRI os:value ?species .

...

}

3.3 Fine-tuning

For fine-tuning, we update all model parameters. We use the AdamW optimizer [35] with
a learning rate of 2×10−4 and ε = 1×10−6. We keep a constant batch size of 32 across
experiment runs and adjust the number of gradient accumulation steps as needed. We train
for a fixed number of 3 epochs and perform no hyper-parameter tuning. All fine-tuning
is done in a distributed, data-parallel setting, under a hardware budget of a single node
consisting of 4x NVIDIA A100-SXM-80GB GPUs.

3.4 Evaluation

Translation quality. The translation quality of our system is evaluated using two auto-
mated metrics: the SacreBLEU score [43] and accuracy. SacreBLEU is a variant of the
popular BLEU score used for the evaluation of machine translation systems by comparing
token-level similarity between reference texts and candidate texts; SacreBLEU has been
preferred over BLEU for the former’s reproducibility and ease of comparison. The met-
ric runs on a scale from 0 to 100, with higher values indicating higher degrees of lexical
match. For translation accuracy, we assign a score of 1 if the machine-translated output is
an exact word-level match with the gold reference.

Quantization. Quantization is the technique that maps floating point values to a quanti-
zation space supported by fewer bits. This is an established method to significantly reduce
inference latency and memory requirement of neural networks with manageable impacts
on accuracy [12, 13, 17, 25, 27, 50]. We employ 8-bit dynamic quantization, whereby
the weights of neural networks are quantized to 8-bit integers before test time and ac-
tivations are dynamically quantized during inference. We evaluate the performance of
our system under two settings of floating point precision: full precision (32-bit) and 8-bit
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quantization.

Hardware. Fine-tuned models are evaluated in a CPU-only setting with a 12th Gen In-
tel(R) Core(TM) i7-1270P 2.20 GHz processor and 64GB RAM. To mimic a production
environment, inference is run with a more performant model format and interpreter, which
are chosen to be the ONNX format1 and and ONNX Runtime2.

4 Results and discussion

4.1 Quantitative results and error analysis

Table 7 shows the quantitative results for the translation quality of our KGQA system
with different base models and post-processing procedures. These results indicate that
larger models are able to attain higher accuracies and benefit less from manually-crafted
post-processing steps. The fined-tuned Flan-T5-XXL model, which has three billion pa-
rameters, attains a near-perfect translation accuracy score of 98.90%.

Table 7: Translation qualities for various fine-tuned models. The number of parameters
of base models are given in brackets next to their names.

Model SacreBLEU ∆ Accuracy (%) ∆

Flan-T5-Small (60M) 78.13 - 36.26 -
+ copy correction 77.86 -0.27 37.36 +1.10
+ relation correction 79.79 +1.93 43.96 +6.60

Flan-T5-Base (250M) 95.43 - 63.19 -
+ copy correction 95.46 +0.03 63.74 +0.55
+ relation correction 96.12 +0.66 68.13 +4.39

Flan-T5-Large (780M) 98.75 - 92.31 -
+ copy correction 98.75 +0.00 92.31 +0.00
+ relation correction 99.21 +0.46 95.60 +3.29

Flan-T5-XL (3B) 99.56 - 95.60 -
+ copy correction 99.56 +0.00 97.25 +1.65
+ relation correction 99.69 +0.13 98.90 +1.65

To better understand that capacity of PLMs to learn mappings between natural language
questions and SPARQL queries in the chemistry domain and the effect of scaling the
model size, we conduct an error analysis that classifies incorrect predictions by aspects of
logical forms, as summarized in Table 8. We observe that while a small model such as the
Flan-T5-Small variant, which has only 60 million parameters, is able to learn the surface
representations of SPARQL to some extents, as seen in the unadjusted SacreBLEU score
of 78.13, it fails to acquire the implicit syntactical rules of SPARQL, resulting in 10.99%

1https://onnx.ai/
2https://onnxruntime.ai/

15



of predictions with incorrect SPARQL syntax; meanwhile, this figure drops to zero for
the Flan-T5-XL variant. Smaller models are also less able to handle the diverse query
structures that our dataset encompasses and perform poorer at relation prediction. Of note
is that smaller models such as Flan-T5-Small and Flan-T5-Base face difficulties learning
the mappings for comparative operators, especially when disambiguating the ‘inside’ and
‘outside’ functions.

Table 8: Percentages of incorrect predictions classified by aspects of logical forms.

Model
% of incorrect predictions

syntax
query

structure relation function

Flan-T5-Small 10.99 24.18 7.69 17.03
Flan-T5-Base 2.75 7.14 4.40 15.93
Flan-T5-Large 1.10 1.65 2.20 0
Flan-T5-XL 0 0.55 0.55 0

4.2 The accuracy-latency trade-off

Next, we quantify the translation latency for varying model sizes and quantization set-
tings. As expected, larger models, although better at natural language-to-SPARQL trans-
lation, require more resources to run inference. As can be seen in Table 9, while larger
networks produce more accurate results—about 25% increment in accuracy for every in-
crease in the scale of the base model—their translation latency is slower by 2.5 to 3 times,
and their memory consumption rises by 1.5 to 2.5 times.

Table 9: Trade-offs between translation accuracy, translation latency, and memory con-
sumption with varying neural network sizes and quantization treatment, in a
CPU-only setting. As translation latency varies with query complexity, see Fig-
ure 7. for its distribution.

Model
Accuracy

(%) ∆

Translation
latency (s) Speedup

Memory
(GiB) %∆

Flan-T5-Small 43.96 - 1.15 - 3.18 -
+ quantization 21.98 -21.98 0.79 x1.46 2.76 -13.21

Flan-T5-Base 68.13 - 3.00 - 4.32 -
+ quantization 66.48 -1.65 1.72 x1.74 3.29 -23.84

Flan-T5-Large 95.60 - 8.24 - 7.70 -
+ quantization 96.70 +1.10 4.05 x2.03 4.41 -42.73

Flan-T5-XL 98.90 - 25.15 - 19.21 -
+ quantization 89.91 -10.99 9.48 x2.65 8.55 -55.49
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Experiments with quantized models at test time reveal that quantization can significantly
reduce inference time and memory requirement while maintaining similar levels of accu-
racy for medium-sized neural networks. Particularly, quantized Flan-T5-Base and Flan-
T5-Large models experience slight deviations to their accuracy within a 2% margin, yet
their translation latency is sped up by up to 2 times and their memory consumption drops
by up to 40%. Furthermore, the narrow increase in accuracy observed for the Flan-T5-
Large variant indicates that quantization could have a regularization effect, thus enabling
the quantized model to perform better than the full-precision baseline, similarly to pre-
vious work in literature [26, 28, 31]. In contrast, quantization of the Flan-T5-XL variant
incurs a 10.99% drop in accuracy. This anomalous deterioration is a recognized phe-
nomenon that emerges in LMs exceeding a certain size [12]. While there exists quantiza-
tion schemes to rectify this anomalous behaviour [12], the ecosystem is still in its nascent
stage and the implementation for our specific model architecture and inference runtime
is yet developed and rigorously tested. We therefore do not attempt to explore the use of
specialized quantization procedure in our system.

Our systematic quantification of accuracy and translation latency helps us establish the
Pareto front for the multi-objective optimization of accuracy and latency of our KGQA
system, as depicted in Figure 4. This could prove instructive to the practical deployment of
a KGQA system. If the Euclidean distance from the ideal point corresponding to 0 latency
and 100% accuracy were to be taken as the objective function, i.e. a quadratic objective
function, our data support the claim that the quantized Flan-T5-Large model provides the
optimal compromise between accuracy and speed, striking an amount of CPU memory
consumption of less than 5 GiB and an accuracy score of 96.70%.

Figure 4: A scatterplot showing the accuracy-latency trade-off of our KGQA system un-
der a CPU-only setting.
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4.3 Example use case and QA systems comparison

OntoSpecies KG was designed to permit complex queries and easy data analysis and pro-
cessing in the general chemistry domain. The information reported on chemical species
can be used to compare chemical properties of similar compounds, find compounds with
required characteristics as well as automate laborious data gathering from research activ-
ities [41]. In this section we showcase how Marie can be used for some of these tasks
without the requirement of SPARQL knowledge and KG schema knowledge.

Take, for instance, the challenge of identifying property trends for specific chemical cat-
egories, like the boiling points of species identified as alcohols. Traditionally, this would
involve first identifying the species tagged as alcohols and then delving into their associ-
ated properties—a process that can be time-consuming when relying on conventional on-
line sources. However, with the integration of KGs and Marie, this task becomes straight-
forward by simply asking our QA system. An example can be seen in Fig. 5 where a
screenshot of Marie interface showcases a query made in natural language: "list of com-
pounds with chemical class as alcohol and boiling point between 100°C and 120°C".
Upon entering the question into the query box (as indicated by field (1) in Fig. 5), the
search engine refines the question to match the SI unit standards. This revised question
is then displayed in field (2). The engine subsequently produces a table containing the
chemical formula, IUPAC name, boiling point values and units, and, when available in
the KG, reference pressure values and units (field (5) in Fig. 5). This outcome is akin
to what it is obtained from a direct SPARQL query on the KG. Users have the option to
review the generated SPARQL query by selecting field (4). Additionally, the time taken
for translation and the execution latency of the SPARQL query are displayed in field (3).
It’s important to mention that each entry in the table is displayed at least twice due to
every compound in the KG having two distinct IUPAC names. In some cases, the redun-
dancy extends beyond this because of the manner in which OntoSpecies KG sources its
data from PubChem [38, 41]. Given that PubChem aggregates properties from a variety
of sources, it’s not uncommon to encounter multiple instances of the same property. A
case in point is 1-propyn-1-ol, which is listed in Fig. 5 with two separate boiling point
values, each attributable to a distinct source. As a result, the system fetches every possible
combination of the queried data. Nevertheless, in upcoming versions of Marie, we plan
to implement a filter in the SPARQL query to prevent the display of duplicate entries.

Figure 6 presents a comparative view of responses from Marie, Marie and BERT [63]
and ChatGPT-4 [40] when posed with the same question. In contrast to our updated ver-
sion, the earlier Marie and BERT couldn’t provide an answer. This limitation stems from
the multi-hop queries, which our prior version couldn’t handle. Another shortcoming
of Marie and BERT is its inability to manage units effectively (questions must be framed
using SI units), and it also lacks details regarding the reference state. When posing a ques-
tion to ChatGPT-4, the system initially prompts the user to reference a database or upload
a specific PDF source. If we indicate that we don’t have a particular source and request in-
formation based on its inherent knowledge, ChatGPT-4 produces a concise table featuring
four species. Notably, two of these species are marginally outside the specified range but
are included for completeness. The remaining two (1-butanol and 2-methylpropan-1-ol)
are also returned by Marie (species highlighted in yellow in Fig. 6). While ChatGPT-4’s
response is more descriptive, correctly uses units, and provides data on the reference state,
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Figure 5: Illustration of Marie’s interface for the query example "list of compounds with
chemical class as alcohol and boiling point between 100°C and 120°C". The
figure highlights (1) natural language query input, (2) query after SI unit con-
version, (3) latency information, (4) SPARQL query review, and (5) query re-
sults.
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Figure 6: Comparative visualization of responses from Marie (top left), Marie and BERT
(bottom left), and ChatGPT-4 (right) to the query "list of compounds with chem-
ical class as alcohol and boiling point between 100°C and 120°C".

it isn’t as comprehensive as one might hope. This highlights the importance of integrat-
ing external databases (in our case OntoSpecies KG) in the QA system to achieve more
exhaustive and precise results. Our system excels in delivering precise results and seam-
lessly adapts to the evolving nature of the database. As the KG expands, the responses
generated become increasingly comprehensive and accurate. This dynamic adaptability is
a significant advantage, as it eliminates the need for periodic retraining. This means that
as more data is added or updated in the KG, our system can instantly leverage this new
information to provide richer and more informed answers, ensuring users always have
access to the most current and accurate data available.

Users can interact with Marie by following this link (https://theworldavatar.io/
chemistry/documentation/marie). However, the system is still under development,
and the accuracy of the results will increase with further refinement of the underlying
ontologies.

5 Conclusions

In this paper, we develop a KGQA system for the chemistry domain that performs end-to-
end translation of natural language questions to SPARQL queries, with no separate com-
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ponents for entity or relation linking. Additionally, we conduct a hardware-constrained
search to find a lightweight configuration for our system that offers a satisfactory compro-
mise between accuracy and speed in a CPU-only setting.

In future work, we will expand the system to work with more ontologies to facilitate a
wider range of cross-domain use cases in chemistry-related research and industrial appli-
cations.

Data and Software Availability

The code for data generation, fine-tuning, evaluation and deployment is available in the
GitHub repository https://github.com/cambridge-cares/TheWorldAvatar/t
ree/main/MARIE_SEQ2SEQ. All third-party software used in this system is free and
available.
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A Appendix

A.1 Supplementary figures

Due to the cross-attention mechanism for generating next tokens, the runtime of the Flan-
T5 decoder grows quadratic with the output sequence. As the SPARQL queries in the
test set vary in length depending on their complexity, the decoding time is expected to
display considerable deviations from the mean. Therefore, in addition to the mean values
indicated in Table 9, we also report the distribution of the translation latency in Figure 7.

Figure 7: Distribution of translation latency with varying base models and quantization
settings. Note that the y-axis is in the log scale.
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