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Abstract

Cities today adopt various technologies to gather and analyse cross-domain data in-
cluding Building Information Modeling (BIM) and Geographic Information System
(GIS) to manage urban developments and their consequences. However, BIM-GIS
integration has encountered obstacles given their disparate formats and protocols.
Even when integration is achieved, solutions face difficulties incorporating other
data sources such as sensors and Excel spreadsheets. Given the poor interoperabil-
ity of existing urban technologies, this paper proposes a dynamic knowledge graph
approach, comprising of domain ontologies, autonomous agents, and visualisation
interfaces, to integrate cross-domain multi-scale data including BIM-GIS. The on-
tologies developed semantically annotate and represent data and their relationships
with standardised definitions to align stakeholder perspectives. Agents can perform
tasks such as data retrieval, processing, computation, and forecasting on the real
world via the knowledge graph. The visualisation interface allows users to view
and analyse real-time data for a holistic understanding of the current situation and
alternate scenarios.

Highlights
• Semantic Web technologies are suited to overcome and connect current data

silos

• Knowledge graphs offer promising solution to integrate both BIM and GIS data

• Integration of data beyond BIM and GIS enables real interoperability

• Dynamic knowledge graphs foster dynamism, modularity, and cross-domain
collaboration

• Unified visualisation interface enables data access across domains and scales
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1 Introduction

In recent years, the ever-growing digital ecosystems present in cities have gained sig-
nificant attention for their transformative potential to support sustainable developments
and enhance the quality of life [24, 30, 35]. Most of the technologies available generally
gather data specific to their application [1, 14, 35], such as Building Information Modeling
(BIM) and Geographic Information System (GIS). BIM is a tool for generating, sharing,
and managing detailed building information and their geometry models throughout the
building’s lifecycle [8, 17]. GIS is an information system that represents, processes, and
analyses data associated with a geo-location [11, 34, 37]. These technologies collect data
that are then used to support various decisions in their respective domains.

However, as urban complexities and interconnectivity between various domains grow, the
pressing need for cross-domain data has been hampered by the poor interoperability of
technologies. Interoperability is defined as the ability of tools and systems to understand
and use the functionalities of other tools. In this context, poor interoperability refers to
the difficulty of integrating data from different sources due to the idiosyncrasies between
these technologies’ formats, protocols, and systems [30, 32]. For instance, the integration
of BIM and GIS has been identified as a crucial data source to enhance the efficiency,
safety, and performance of complex urban infrastructure projects [34]. But the inherently
disparate data formats are a significant obstacle to their integration [11, 16, 37]. When
domain specific data are not interoperable, they form data silos that withhold and isolate
the access and availability of information and resources from other stakeholders [10, 15].
This hinders productivity, efficiency, innovation, and service quality [10, 15].

Existing solutions are not yet able to overcome these silos for two reasons: Firstly, these
solutions have yet to demonstrate their extensibility towards other domains. Typically, ex-
isting solutions adopt additional technologies in their workflows to overcome these data
silos. Examples include FME and Dynamo in the BIM-GIS context [17, 18]. Despite
the increased complexity, these solutions are usually tailored for a particular domain and
cannot be generalised to other technologies. Secondly, perspectives on these solutions
are usually siloed, in spite of their claims. Communities tend to focus on resolving their
domain-specific interoperability challenges and fail to consider the broader context. For
example, standards such as Industry Foundation Class (IFC) and CityGML have been
adopted for sharing 3D urban models in their BIM and GIS domains respectively. How-
ever, such standards also represent another form of silo. This creates challenges not only
for integrated BIM-GIS applications, but also for other applications. It is essential to ac-
knowledge that BIM and GIS are merely another data source, albeit a valuable one for
locations, buildings, and cities [30]. There are still other sources of crucial data for var-
ious applications. For instance, Excel spreadsheets and paper documents continue to be
popular tools for managing assets [17]. The increasing deployment of sensors in public
and private settings has emerged as a valuable data source of environmental measures
[1, 4]. It becomes clear that as technology advances, new data sources and consequently,
silos are continually being introduced [30]. This raises the question on how existing so-
lutions can integrate old and new data sources when they are focused only on resolving
domain-specific interoperability problems. Hence, the rapid technological advancements
alongside siloed perspectives have given rise to a pressing research problem: the chal-
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lenges posed by data silos and the growing complexity of their solutions.

The research problem is framed by two research questions:

1. What are the technologies capable of breaking down these data silos?

2. How could these technologies be designed to overcome these silos in the context of
BIM-GIS integration and beyond?

This paper aims to answer these two questions by demonstrating the case for adopting the
dynamic knowledge graph (KG) technology to enhance the interoperability of BIM-GIS
technologies and their associated data. The dynamic KG employs standardised machine-
readable ontologies to semantically annotate data and their relationships. Autonomous
agents can then act on the KG to retrieve, update, and process these instantiated data for
visualisations or simulations, enabling the discovery and inference of new knowledge. In
addition, this paper explores the extensibility and scalability of the dynamic KG by show-
casing its applicability to integrate other technologies such as energy simulation software,
laboratory equipment, sensors, and utility meters, across scales.

This paper is divided into four sections. Following this introduction, section 2 highlights
the prevalence of data silos and proposes the dynamic KG as a potential solution. In
section 3, we outline the dynamic KG methodology and explore its applications in Section
4. Section 5 summarises the findings.

2 Current state of the BIM-GIS landscape

2.1 Data silos in BIM-GIS integration

As urban complexities and interconnectivity between various domains grow, the repre-
sentation and analysis of massive urban information flows becomes critical to support
sustainable urban processes and enhance the quality of life [24]. Such a task cannot be
accomplished by human capabilities alone, and requires taking advantage of the ongoing
technological developments [30, 34]. Nevertheless, a major impediment to this endeavour
is the inherent poor interoperability between most technologies due to their distinct for-
mats, protocols, and systems [8, 11, 30, 32]. For example, the slow progress on BIM-GIS
integration is predominantly caused by the underlying idiosyncracies between the IFC and
CityGML specifications [11, 41].

IFC is an open standard for sharing BIM data across software platforms [11]. BIM is
valuable for generating detailed 3D building models and managing their associated asset
data throughout the lifecycle: from conception and construction to the operational phase
[8, 14, 17]. But the lack of viable open-source alternatives has led to the dominance of
commercial BIM software like Revit and Bentley, which adopt proprietary formats that
have isolated data from each other. In efforts to promote data sharing, IFC was developed
to break down data silos in the BIM domain.

CityGML is an open standard for representing and sharing 3D GIS building and land-
scape models [11]. GIS technologies have a broader scope of applications beyond the
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built environment industry, and also boast a flourishing software ecosystem. Compre-
hensive software solutions like ArcGIS and QGIS provide user-friendly interfaces for
non-programmers to store, process, and visualise geospatial data as well as perform var-
ious spatial analyses. Various map visualisation libraries such as Mapbox, Cesium, and
kepler.gl are also available. They require technical proficiency to embed map views into
software applications and extend their capabilities. GIS also involves the generation of 3D
urban models from various methods, ranging from photogrammetry and laser scanning to
the use of digital modelling software like SketchUp and ArcGIS CityEngine [39]. How-
ever, the resulting models tend to be stored in various formats and have differing level of
detail [20]. To address this issue, CityGML was developed to standardise these models
for data sharing and overcome the data silos in the GIS domain.

Although CityGML and IFC have improved interoperability within their respective do-
mains, they are yet another form of silo in BIM-GIS integration research. The integration
of BIM and GIS would extend their individual capabilities and provide comprehensive ge-
ometry, material, and asset data that can support the analysis and visualisation of complex
urban infrastructure projects to improve their efficiency and performance across scales
[34]. Despite their opportunities, IFC and CityGML standards present several challenges
that hinder the adoption of this multi-scale geometry and semantic data source. First, both
specifications are proposed for disparate applications, and their concepts do not align in
many cases [11, 37]. For example, CityGML is intended for larger scale urban represen-
tations, inclusive of demographic, terrain, and landscape elements. This differs from the
detailed building representation of IFC that includes interior facilities, cost, scheduling,
and topology linking the site, buildings, storeys, and its spaces. Second, they have distinct
geometry modelling paradigms that cannot be directly mapped [16]: CityGML adopts a
surface-based paradigm, while IFC has a solid-based paradigm. Third, the coordinate sys-
tems of IFC and CityGML are inherently incompatible [16]: IFC adopts a local placement
system that is always relative to another entity. For example, a wall is placed relative to a
storey, which is placed relative to a building. CityGML adopts a world coordinate system
based on absolute coordinates. Finally, IFC has a richer data schema than CityGML to ac-
commodate the granularity and range of smaller assets. Hence, although the specifications
have broken down silos within their individual domains, their differences have contributed
to a technical bottleneck in BIM-GIS integration research. This bottleneck highlights how
these data silos are multi-layered. Improving the interoperability of technologies within
one domain may not always improve their interoperability with other domains.

In understanding the full impact of these silos, we must consider the broader context in
which they operate, beyond specific applications or domains. It is critical to first acknowl-
edge that these silos are beneficial to an extent. They emerge as a tool for organisations to
isolate valuable information and augment their efficiency and innovation for a competitive
advantage in a market with intensifying competition [15, 24]. For example, proprietary
formats perpetuate vendor lock-ins, which are beneficial for economic profits but dampens
consumer value [15, 28]. Furthermore, some industries have already established a strong
reliance on specific technologies. One example is the use of BIM and GIS in the archi-
tecture, engineering, and construction industry. Given the significant resources and costs
associated with their initial implementation, it can be challenging to introduce new tech-
nologies that could replace them. Consequently, these economic imperatives will cause
such silos to persist even as we become more aware of their repercussions.
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As urban environments become increasingly complex and interconnected, reliance on a
single data source is no longer sufficient to fulfil the changing requirements over time. For
example, BIM data is predominantly generated for the requirements of the construction
and design phase [14]. But such data often proves insufficient for managing the facil-
ity during its later phases [14]. As a result, supplementary data must be obtained from
other sources, such as paper documents or Excel workbooks, and integrated into the BIM
software [17].

Moreover, past efforts in integrating multiple data sources into a singular system are not
scalable beyond very narrow contexts. Given the continuous need to accommodate addi-
tional datasets, current platforms effectively forming “islands” of solutions that function
within their respective technologies but prove challenging to extend to different contexts
and data sources. For instance, BIM integration with asset management data can be ac-
complished within BIM technologies, but their integration with GIS technologies requires
a different solution [11, 17]. Even if BIM-GIS solutions are available, it is merely another
“island solution” that requires work to extend to other technologies. This becomes a co-
nundrum when considering that advancements in technology will generate new sources
of data that should ideally be captured as well. But based on current trajectories, new
technologies are more likely to create isolated silos of data and varying interoperability
solutions that may not be scalable or extensible to other technologies [30]. As a result,
these data silos continue to pose a growing challenge that must be addressed.

2.2 Semantic Web and knowledge graphs

Semantic Web technologies are a potential solution for bridging these silos. These tech-
nologies semantically annotate data and their relationships through ontologies based on
a standardised machine-readable Resource Description Framework (RDF) format and the
principles of Linked Data [6, 7]. An ontology is a formal specification of knowledge,
including the concepts and relationships of any domain, that can be described and un-
derstood by humans and/or machines [3]. They usually comprise of a terminological
component (TBox) and an assertional component (ABox) [36]. A TBox describes the
concepts and relationships, while an ABox contains data that realises concrete instances
of these abstract constructs based on real-world entities. For example, a TBox might state
that every individual is a person who has another person as a parent. Conversely, an ABox
will specify that Joe is an instance of a person and has a parent – Mary, who is also an
instance of a person. Each instance in the ABox can be accessed with a unique interna-
tionalised resource identifiers (IRIs) on the World Wide Web, with semantics to describe
the concept, its attributes, and their context. In this manner, the instances in an ontology
enable the discovery, integration, and transfer of information between different domains
and systems [7]. Some applications extend these capabilities using KGs to derive new
knowledge and support larger scale applications [2, 21]. A KG is a collection of inter-
linked ontologies in a directed graph, where the nodes refer to entities of interest and the
edges represent their relationships with each other [21]. Effectively, the KG and ontolo-
gies in the Semantic Web act as a layer of abstraction to standardise, integrate, and store
data for any applications across domains and scales.

In the architecture, engineering, and construction industry, there has been a growing up-
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take of Semantic Web technologies to not just cut down data silos, but also meet the surg-
ing demand for granular and dynamic urban data across domains and scales [29, 39]. Cur-
rent technologies face significantly greater difficulties in expressing meaning and adding
dynamism into data. One example is in the BIM domain, where a BIM model for a win-
dow can contain information on its dimensions, materials, and manufacturer details. But
in the absence of semantics, this information cannot be interpreted by a computer to in-
fer new knowledge; it requires a human interpreter. Moreover, there is still no consistent
and persistent approach to update assets’ information as they are developed, added, or
removed over time throughout the lifecycle [39]. On the other hand, Semantic Web tech-
nologies have already demonstrated its potential to enrich data models semantically and
achieve interoperability, logical inference, consistency, and scalability across complex
systems and domains [29, 39].

When implementing these technologies for BIM-GIS integration, it is crucial to note that
the current state of Semantic Web approaches has not yet fully realised its potential to
break down these silos in a larger context. Despite their claims of enhanced interoper-
ability, a majority of the literature presented in recent reviews [11, 17, 41] have typically
implemented their proposed solutions within a single application and context. Few have
yet to demonstrate the extension of their work to new applications. This lack of conti-
nuity may lead readers to doubt the potential of Semantic Web technologies as a whole.
However, we argue that this shortfall is an outcome of rigid ontology designs that are not
reusable or scalable to new domains.

For example, the IfcOwl and CityGML ontologies are developed as equivalent represen-
tations of the geometry and semantic concepts in IFC and CityGML [13, 29]. Regardless,
these two ontologies are not suitable for cross-domain applications for several reasons.
Firstly, they are not concise as they include their original schema’s intermediary relation-
ships, which are necessary to link entities in an XML-based schema, but are redundant
concepts in ontologies. One example is the IfcRelAggregates property in IFC that
could link a chair to the floor it is found on. When instantiated into the IfcOwl ontology,
users will have to generate three relationships:

:IfcRelAggregates_01 rdf:type ifc:IfcRelAggregates .

:IfcRelAggregates_01 ifc:relatingObject_IfcRelDecomposes :Storey_02 .

:IfcRelAggregates_01 ifc:relatingObject_IfcRelDecomposes :Chair_03 .

Instead, the chair instance could be directly linked to its storey using one relationship.
The additional relationships add complexity to the query syntax and leads to longer data
retrieval times. Secondly, as per their schemas, the representation of specific domain
knowledge are often incomplete even in the ontologies. For example, CityGML has in-
corporated landscaping and infrastructure concepts like vegetation and tunnels. Regard-
less, these concepts do not include any semantic attributes besides their geometry. Such
concepts are not rich or granular enough to suffice the requirements of some applications.
Lastly, these ontologies require users to possess expertise in the BIM and GIS domains,
and a thorough understanding of the IFC and CityGML schemas and their workflows.
But such technical expertise demands considerable time and resources that have opportu-
nity costs and could be dedicated to other tasks. Effectively, existing ontologies are not
sufficiently concise or complete for applications outside of their initial domains.
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Nevertheless, certain ontologies have suggested the potential of an alternate method in-
volving the use of modular domain ontologies. One example is the BOT ontology which
provides a minimal representation of the topological hierarchy of IFC models, connecting
sites, buildings, storeys, spaces, and elements [31]. Users can then extend the ontology
with more elaborate domain or application ontologies that includes the attributes neces-
sary for their specific use case. This approach views each domain ontology as a module
that is interconnected through key concepts. Moreover, ontologies can be developed for
each phase of the building life cycle to incorporate the dynamic nature of their data. For
example, a construction ontology could represent material information and costs, sched-
ules, and other information during the construction and design phase. At the operational
phase, an asset management ontology could represent each asset, their date of purchase,
replacement dates, and maintenance schedules. Hence, in meeting current urban needs,
the proposed Semantic Web approach will have to incorporate principles of modularity,
interoperability, dynamism, and scalability.

3 Methods

3.1 The World Avatar

As conveyed by its name, the “World Avatar” aims to develop an all-encompassing digital
twin that can connect data and computational agents in real-time to create a living digital
“avatar” of the real world, inclusive of abstract concepts and processes [2]. A digital twin
is a digital representation of assets, processes, or systems in the built or natural environ-
ment that creates the opportunity for positive feedback into the physical world [9]. The
World Avatar (TWA) adopts a dynamic KG, which is a KG that is continuously updated
and restructured by autonomous agents. Acting on the real-time status of the physical
world, these agents continuously interact with the KG for updates, analysis, decision-
making, and control of real-world entities. Within a digital twin, the agents in a dynamic
KG can update the digital twin’s specifications and influence the real world depending on
predefined objectives.

Originating from a chemical engineering perspective, TWA was applied to the decarbon-
isation of the chemical industry in Singapore. It is currently able to describe a number
of concepts around chemistry, chemical processes, laboratories, power systems, city and
environmental planning [25]. This paper presents our approach to describe, integrate,
and apply asset, building, and infrastructure data from BIM, GIS, and other sources in
use cases such as laboratory automation and smart cities. As these data are linked to
real-world entities with physical geometries, this paper will also introduce how TWA in-
corporate and visualise 3D urban models from the BIM and GIS domains.

3.2 Dynamic knowledge graph approach

As illustrated in Fig. 1, the dynamic KG consists of three key components – domain
ontologies, autonomous agents, and a visualisation interface.
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Figure 1: The three key components and features of a dynamic knowledge graph: Domain
ontologies, autonomous agents, and a visualisation interface

3.2.1 Domain ontologies

Domain ontologies represent the concepts and relationships involved in the domain of
interest. When implemented with a modular design, they can be extended to connect
different domains and their knowledge. In TWA, ontologies are designed as modules
specific to their domains, reusing existing concepts where possible and extending them
otherwise. Fig. 2 illustrates the modularity and interoperability of ontologies in TWA for
the BIM and GIS domains, namely OntoBuiltEnv, OntoBIM, and OntoCityGML. The
BOT ontology has been reused in OntoBIM to represent the building topology [31]. We
distinguish between geometry and semantic representation as their entities may not have
digital geometry representations of any kind, but will always hold functional information
in the real world. For example, a building entity will always have a bot:Building in-
stance with semantic relationships in the KG, but it might not have a digital representation
of its geometry.

At the geometry level, OntoBIM and OntoCityGML represent the geometry concepts and
relationships contained in 3D IFC and CityGML models respectively. The entity’s concept
is linked to their geometry concepts through the optional hasIfcRepresentation and
hasOntoCityGMLRepresentation relationships. Yet, this is dependent on the avail-
ability of the IFC and/or CityGML geometric representation. Such a distinction between
geometry and semantic concepts is significant for two reasons: First, it avoids any as-
sumptions that the IFC and CityGML models are perfect geometric representation of their
real-world counterparts. Second, functional information remains available in the dynamic
KG, which can support other tasks that do not involve geometry.

At the semantic level, OntoBuiltEnv encompasses the larger scale GIS concepts and
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Figure 2: An extract of the modular ontology design (TBox) connecting both BIM and
GIS perspectives about buildings, by linking cross-domain knowledge through
a common ‘Building’ or ‘Element’ concept. All referenced namespaces are
declared in Appendix A, with ":" referring to their current domain namespace.

relationships such as address, land use, and property type, while OntoBIM incorporates
the building topology between sites, buildings, storeys, facilities, and rooms. In accom-
modating for multi-storey facilities, OntoBIM connects them directly to their building
and room instances, instead of following the storey relationships. The critical node is the
bot:Building concept that links OntoBuiltEnv and OntoBIM to access both ontolo-
gies’ concepts and relationships. Critical nodes act as gateways to connect at least two
ontologies and their knowledge together.

The next critical node is the bot:Element concept in OntoBIM, which is linked to the
building topology via the bot:containsElement relationship to either a storey or room.
Acting as a bridge to other domain ontologies, this concept can be utilised to represent
any smaller scale element such as devices, sensors, walls, doors, or furniture. For ex-
ample, OntoBuildingStructure describes the building structure components such as
walls, roofs, and stairs, and their specific dimensions and properties. When their par-
ent BuildingStructureComponent class is linked to the bot:Element concept, we
are able to access their structural attributes, topology, and geospatial relationships in the
ABox. Thus, the bot:Element concept enables the ease of extending TWA’s KG to
include more domain ontologies such as sensors, furniture, and even chemical reactions.
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3.2.2 Autonomous agents

In TWA, autonomous agents are part of the dynamic KG, and are represented with an
agent ontology [25]. Each agent is a Semantic Web service that acts upon the KG or the
real world to fulfill tasks such as data retrieval, update, forecast, and even simulation.
For example, some agents continuously retrieve real world data such as from sensors and
mobile phones, and update their representation in the dynamic KG accordingly to enable
real-time dynamism. In the dynamic KG, the agents communicate and interact with each
other or the KG through HTTP requests. Ontologies support this multi-agent system by
establishing shared definitions of their knowledge.

In the context of BIM-GIS integration, data instantiation agents are crucial to manage
and process specific data formats such as BIM, GIS, sensors, and Excel spreadsheets
into the dynamic KG. An example is the Ifc2OntoBIMAgent that converts IFC mod-
els into an OntoBIM ABox that is stored within the KG. Furthermore, the visualisa-
tion of these data on the interface requires several agents. Visualisation agents like the
Ifc2TilesetAgent generate 3D tilesets and glTF files from the IFC and CityGML
models alongside the ABox. Each element will have an associated IRI that informa-
tion retrieval agents such as the FeatureInfoAgent can use to retrieve their real-time
data and time series from the dynamic KG. Users can then interact with the visualisation
interface running on the web browser to navigate the building or floor, interact with the
assets, view real-time data, and more.

3.2.3 Visualisation interface

In the body of literature, the visualisation of BIM and GIS geometry data generally in-
volves the integration of BIM data into GIS environments or GIS data into BIM environ-
ments, with the former being the prevailing pattern [1, 37, 41]. Some of these prevailing
workflows process and visualise BIM and GIS data in a separate Common Data Envi-
ronment (CDE), usually in a GIS-based web platform [33, 41]. An advantage of these
CDEs is the reduction of upfront resources and costs when designed with intuitive user
interfaces. Users do not have to spend resources to learn the different workflows and inter-
faces of each BIM and GIS software as well as their specific domain expertise. Coupled
with other reasons, which we will expand on, we have decided to visualises both BIM and
GIS data in a CDE.

In TWA, an open-source JavaScript library called CesiumJS has been incorporated into
the visualisation interface, as shown on Fig. 3. CesiumJS is popular amongst the research
community to generate 3D map views and showcase 3D geospatial data and models for
cities, buildings, and assets [1, 18, 27, 33, 40]. The library can load 3D urban models in
the 3D Tiles, glTF, or KML formats. Cesium 3D Tiles is an open specification based on
glTF, that is designed and optimised to stream and render massive heterogeneous data sets
[12]. It should be noted that glTF acts as a general container for geometry formats that can
accommodate both the solid boundary representation modelling paradigm in IFC as well
as the surface-based paradigm in CityGML. This circumvents the technical bottleneck
of BIM-GIS integration at the geometry level [37, 41]. Furthermore, TWA’s open source
approach prevents vendor lock-in, especially to the commercial BIM software, and further
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promote the sharing and fusion of 3D data. Users are able to reproduce the workflows with
similar libraries or other vendors based on their requirements.

Figure 3: An example of the World Avatar’s visualisation interface running on any web
browser.

4 Applications

This section showcases TWA’s capabilities to seamlessly connect BIM, GIS, and other
domains across scales. At the city scale, a smart city application in Germany features the
opportunities of accessing granular BIM and other information in a GIS environment. At
a facility level, a digital laboratory application in Singapore highlights the opportunities
of connecting disparate niche multi-scale domains such as building management systems,
chemistry, experiments, and sensors, and the capacity to scale this up.

4.1 Smart city

In one instance, TWA has enabled smart city capabilities within the town of Pirmasens,
Germany. Given a population of approximately 40,000 people, Pirmasens strikes a bal-
ance between being a representative size for an urban centre in Germany and still being
small enough to facilitate an efficient implementation for a proof of concept. Despite
previous digitisation efforts of municipal data and governance processes, the majority of
data remains fragmented across multiple city administration departments and in various
formats (e.g., Excel, csv, xml, and shapefiles). As a result, many of these datasets remain
untapped and underutilised.

In this context, the dynamic KG is applied to demonstrate the value of integrating these
diverse datasets from different domains, including the built environment and building en-
ergy. More precisely, this work features the integration of building and energy data to
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support the transition towards renewable energy, a priority theme on Germany’s energy
agenda [26]. While previous subsidies for photovoltaic installation costs have been a
crucial enabler for initial photovoltaic adaption [26, 38], the curtailment of these subsi-
dies in 2012 and 2014 has led to a significant decline in photovoltaic installations [38].
Given the rising costs of conventional energy sources and the pressing environmental
concerns, other levers are required to continue this transition. One recommendation is
to provide home owners with easier access to information about the photovoltaic poten-
tial of their properties and improving information transparency through a user-friendly
publicly-accessible platform [26].

Presently, a web platform (https://solarkataster.rlp.de/start) is publicly
accessible to display solar cadastre data such as potential solar energy yields of individ-
ual buildings; however, the platform lacks sufficient information to actually empower its
users. For instance, it lacks complementary information about energy consumption or
actionable installation instructions to estimate prospective cost savings [26]. In this re-
gard, a seamless integration of BIM and GIS information could address this limitation:
BIM can provide detailed energy consumption data, and infer the number of installable
photovoltaic panels based on the dimensions provided by various vendors and the actual
geometry of the roof and walls. The geolocation information in GIS facilitates the com-
putation of theoretical solar energy yields based on local climate and weather conditions
as well as the influence of surrounding buildings due to shading.

Figure 4: Smart city representation of Pirmasens using semantic data: The GIS represen-
tations allow for planning and management on a city level, while the BIM rep-
resentations (where available) enable inclusion of individual buildings’ func-
tional data within the same application.

As illustrated in Fig. 4, TWA integrates the city scale GIS and detailed BIM data to cre-
ate a rich smart city representation of Pirmasens. By selecting a building, users can then
seamlessly identify and navigate the connections between BIM-GIS data and other se-
mantic information for example, the energy consumption of a particular building. No-
tably, these data connections are extended through additional domain ontologies such as
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OntoDevice and OntoUbemmp that are linked via the central bot:Element concept.
While OntoDevice describes the solar devices and energy consumption measures from
monitoring devices, OntoUbemmp contains the building utility and energy concepts re-
lated to consumption and production. The latter ontology, alongside the dimensions of a
building’s wall facades and roof, are provided as inputs to the City Energy Analyst
Agent to compute the energy consumption and theoretical solar energy outputs via the
City Energy Analyst simulation tool [19]. Thus, the agent, ontologies, and BIM-GIS
representation connects cross-domain data to provide a holistic user interface for energy
management.

Figure 5: Dynamic cross-domain data visualisation in the World Avatar: Comparing a
residential building’s actual electricity consumption (BIM data) against its to-
tal photovoltaic potential (assessed using location and proximity information,
i.e., GIS data) enables cost-benefit analyses of solar panel installation.

As shown in Fig. 5, users can view their energy consumption and theoretical energy yields
through an unified visualisation interface. This has several advantages:
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First, the integration of BIM-GIS parameters plays a key role in calibrating and enhancing
the accuracy and precision of city-scale simulation models. This is crucial for the City En-
ergy Analyst, which is a general purpose simulation tool that depends on various assump-
tions which differ between regions and building types. By incorporating BIM, precise
building dimensions and actual energy consumption data are available. The geocoding
process of GIS complements BIM data to incorporate weather conditions and evaluate
the impact of surrounding buildings on solar energy reception for the simulation model.
Notably, the time series representation also captures the dynamic nature of this domain,
considering the influence of seasonal variations, weather patterns, and new construction
developments that may impact solar energy generation rates. The consolidation of these
data also acts as a plausibility check, validating computational models against real-world
values. Consequently, these inputs can support simulation tools to calculate precise and
reliable solar energy estimates that are extendable to other contexts.
Second, accessible energy assessments consolidated in a single user-friendly interface
enhances the information transparency of energy savings estimates to the public. Refer-
encing the visualisation presented in Fig. 5, users can easily relate their current energy
consumption to the theoretical solar energy generation and costs to estimate their energy
savings.
Last, upscaling these detailed building level analyses to district and city scale, can help to
derive more accurate aggregates as evidence to support energy policy decisions.

4.2 Laboratory automation

In supporting laboratory automation, TWA has been utilised to create a digital twin of a
chemistry laboratory in the Cambridge Centre for Advanced Research and Education in
Singapore (CARES) at the National University of Singapore’s CREATE campus. There
has been growing interest in the automation of research activities to accelerate scientific
discoveries in the face of looming sustainability threats [23]. However, existing platforms
have been a hindrance to these goals. Current scientific technologies generally offer iso-
lated perspectives on chemistry and experiment design, but may neglect to consider the
influence of humans supervising and executing experiments as well as available infras-
tructure and related costs [5].

For example, the role of a laboratory manager has become somewhat complex due to
the poor interoperability of these platforms. In coordination with a dedicated facility
manager on building-level operations, this personnel has to ensure the availability, com-
pliance, maintenance, and safety of laboratory equipment and chemicals, while managing
the massive energy consumption of laboratories [22]. In the present state, they often
have to access multiple user interfaces and comprehend different software workflows to
grasp and apply the cross-domain knowledge to their tasks. Namely, such a role requires
knowledge on asset management, BIM, building management systems, chemistry related
to ongoing experiments, paper-based floor plans, and sensors. Moreover, in a typical re-
search campus housing multiple laboratories, coordinating data from these different lab-
oratories can be complex due to the poor interoperability and scale, which can interfere
with the laboratory manager’s duties [5]. BIM-GIS integration is anticipated to offer new
opportunities for comprehensive benchmark analyses and propose recommendations for
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modifying laboratory designs, equipment, and layouts to support laboratory managers.
Specifically, BIM provides granular information on energy consumption and other spec-
ifications for each asset, which can be linked and aggregated to a facility, building, and
even campus level using the precise location provided by GIS. When coupled with the
equipment and environmental data supplemented by existing building management sys-
tems and the Internet of Things, laboratory managers can then formulate best practices
and benchmarks for laboratory equipment, layouts, and designs. This enables them to de-
velop effective energy management strategies and promote sustainable practices not only
at the individual laboratory level but across the entire research campus.

One instance of the ongoing TWA work to augment and automate some aspects of the
laboratory manager’s role can be seen in Fig. 6. A single accessible user interface display-
ing cross-domain data enables laboratory managers to monitor various facility operations
and device conditions. The representation of these cross-domain data in the dynamic
KG have been integrated through various ontologies such as OntoDevice, OntoBMS,
OntoLab, and OntoSpecies. OntoDevice describes the device concepts and their
generic properties and measurements, which can be extended to represent specific de-
vice domains in niche ontologies such as the representation of building management
systems via OntoBMS. OntoLab describes the concepts within the laboratory, inclusive
of their equipment and experiments, while OntoSpecies describes the chemicals and
their properties within the chemistry domain. These ontologies are linked directly to the
bot:Element in OntoBIM, thus, enabling cross-domain linkage.

Figure 6: Dynamic cross-domain data visualisations in the World Avatar: Monitoring
facility operations and device conditions on multiple scales through a general
visualisation interface replacing a variety of previous “island solutions” (in
red circles).

Despite the diversity in domains and technologies, the dynamic KG seamlessly integrates
a variety of heterogeneous data formats and systems for a rich digital representation of
the laboratory. This digital laboratory does not merely advance user interactions with
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cross-domain data, but can influence the real world through an automated control system.
Specifically, TWA is able to directly send signals to initiate device state changes based
on predefined thresholds. In cases where remote control is not feasible, the system can
generate email notifications for manual intervention by the laboratory manager. This ca-
pability is made possible due to the availability of granular and dynamic data from the
Internet of Things and building management systems. Leveraging on these data enables
changes of individual assets to be monitored over time, regardless of their domains. In
addition, the future status of these assets can be predicted through the time series inputs
and Forecasting Agent to achieve predictive maintenance. Hence, TWA has achieved
a higher level of automation for laboratories that can augment the laboratory manager’s
duties. Given the integration with GIS, this work can also be scaled up to the campus level
to support sustainable laboratory practices and accelerate scientific discoveries.

5 Conclusion

The current state of digital ecosystems in cities is characterised by a variety of iso-
lated data silos and poor interoperability. These interoperability challenges hinder cross-
domain collaboration to manage the growing complexities of urban environments. Given
the urgency in breaking down these data silos, this paper proposes the use of Seman-
tic Web technologies such as knowledge graphs as a potential solution. By semantically
annotating data and their relationships in a standardised machine-readable format, these
technologies support knowledge discovery, integration, transfer, derivation, and forecast-
ing processes across different scales. Specifically, we present an implementation of a
dynamic knowledge graph approach using domain ontologies, autonomous agents, and a
visualisation interface. The integration of cross-domain, dynamic, and multi-scale data
from the BIM, GIS, building management and further domains is demonstrated to foster
interoperability for two applications, namely laboratory automation and smart cities.

The distinguishing features of dynamic knowledge graphs lie in their dynamism, interop-
erability, modularity, scalability, and transparency. Semantic Web technologies revolve
around open standards and protocols that are publicly accessible and extensible on the
Internet. Given the availability of ontologies in the public domain, domain experts can
be consulted at any stage to establish a consistent, aligned definition of concepts and
schemas. This process addresses data ambiguities and accommodates user requirements
across stakeholders from individuals, local communities, organisations, and the govern-
ment. In addition, the scalability of dynamic knowledge graphs is derived from their ease
of extension to different domains and scales. Domain ontologies can be directly linked
through critical nodes, enabling new data to be extended from these nodes. As a result,
the applications presented have connected diverse domains and scales such as chemistry,
energy, laboratory, buildings, and cities. This differs from non-Semantic Web workflows,
which often require significant modifications to their database schemas and data process-
ing processes to integrate new data. Moreover, the approach showcased in this paper is
flexible and distributable, as evident by the presented applications across diverse geo-
graphic locations in Germany and Singapore. The use of containerisation technologies to
standardise deployment workflows has enabled the flexibility of this technology for both
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local servers and cloud environments. By leveraging existing ontologies and workflows,
integration barriers are also lowered, granting users access to a wider range of private
and public data sources and technologies. This is especially relevant for smaller and less
influential players such as municipal and local governments with limited resources.
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Nomenclature

3D Three-Dimensional

ABox Assertional Component (of an ontology)

BIM Building Information Model

CARES Cambridge Centre for Advanced Research and Education in Singapore

CDE Common Data Environment

CREATE Campus for Research Excellence and Technological Enterprise

GIS Geographic Information System

IFC Industry Foundation Classes

IRI Internationalised Resource Identifier

KG Knowledge Graph

RDF Resource Description Framework

TBox Terminological Component (of an ontology)

TWA ‘The World Avatar’ (project)
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A Namespace definitions

bot: <https://w3id.org/bot#>

icontact: <http://ontology.eil.utoronto.ca/icontact.owl#>

om: <http://www.ontology-of-units-of-measure.org/resource/om-2/>

ontobim: <https://www.theworldavatar.com/kg/ontobim/>

ontobuildingstructure: <https://www.theworldavatar.com/kg/ontobuildingstructure/>

ontobuiltenv: <https://www.theworldavatar.com/kg/ontobuiltenv/>

ontocitygml: <https://www.theworldavatar.com/kg/ontocitygml/>
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