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Abstract

This paper investigates the usage of knowledge graphs to bridge the gap between
current data silos in deriving a holistic perspective on the impact of flooding. It
builds on the idea of connected digital twins based on the World Avatar dynamic
knowledge graph to deploy an ecosystem of autonomous software agents to con-
tinuously ingest new real-world information and operate on it. Multiple publicly
available yet isolated data sources, including geospatial building information and
property sales data as well as real-time river levels, weather observations, and flood
warnings, are connected to instantiate a semantically rich ecosystem of knowledge,
data, and computational capabilities to provide cross-domain insights in projected
flooding events and their potential impact on population and built infrastructure. The
extensibility of the proposed approach is highlighted by further integrating power,
water, and telecoms infrastructure as part of the very same system, in order to anal-
yse flood-induced asset failures and their propagation across networks. The World
Avatar promotes evidence-based decision making during several disaster manage-
ment phases, supporting both tactical and strategic risk assessments, which supports
the United Nations Sustainable Development Goal 11 to improve the assessment of
vulnerability, exposure, and risk of communities imposed by flooding events.

Highlights
• Dynamic integration of previously isolated yet related complementary data

sources.

• Provision of holistic cross-domain perspective on potential flooding impacts.

• Fully automated updates of outdated information to ensure up-to-date insights.

• Single system to provide both tactical and strategic risk assessments.

• Unified visualisation interface to support evidence-based decision-making.
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1 Introduction

Floods affect more people than any other type of natural disaster and the number of flood-
related disasters is continuously increasing, endangering lives and leading to heavy eco-
nomic losses [21, 39]. As climate change is likely to amplify climate variability, with
extreme weather events becoming more severe and more frequent [39], especially dev-
astating but short-duration urban floods are on the rise [43]. The United Nations, in its
Sustainable Development Goals, has called for a transition from just responding to flood
events to assessing the vulnerability, exposure, and risk of communities with the ultimate
goal of mitigating potential devastating impacts. The European Union implemented a
framework which requires all member states to identify and assess relevant flood areas,
assess assets and humans at risk in these areas, and implement measures to reduce iden-
tified flood risk [21]. The UK Environment Agency’s National Flood Risk Assessment
shows that there are 2.4 million properties at risk of flooding from rivers and the sea
in England, with further 2.8 million properties being susceptible to surface water flood-
ing [19]. The expected annual damage to residential and non-residential properties at risk
of flooding from rivers and the sea in England is estimated at more than £1bn. On top
of that, a detailed "future flood map" of Britain, simulating the impact of flooding due
to climate change, suggests that annual flood damage could increase by another 20% if
carbon emission reduction pledges are not met [28].

Floods are very complex phenomena involving a large number of stakeholders and do-
main experts to collaborate seamlessly to ensure comprehensive risk analyses as well as
efficient emergency planning and response [51]. A holistic assessment of floods and their
potential impacts requires a cross-domain perspective, considering population, the built
environment, network assets as well as their functional dependencies. Current challenges
in urban flood management comprise multiple dimensions: improving the accuracy and
timeliness of flood forecasting models by capturing localised and rapid changes in ur-
ban environments [25]; fostering coordination and collaboration among multiple stake-
holders, including government agencies, emergency responders, urban planners, and the
public; creating a comprehensive fact-basis for effective decision-making by increasing
real-time monitoring of relevant parameters, such as rainfall intensity, water levels, and
infrastructure conditions [22]; and ensuring adequate integration of data from different
sources, systems, and stakeholders to maintain a comprehensive, aligned, and up-to-date
overview of a flood hazard situation.

One of the coping strategies includes better flood predictions and earlier warnings based
on increasing amounts of sensor data and advancing modelling capabilities [3, 10]. While
this targets the real-time data availability constraint, this also amplifies potential inter-
operability issues due to heterogeneous types and formats. Multiple tailored platform
solutions exist to consolidate flood related data and partially also assess impacts with re-
gards to people and building stock at risk, such as FloodFactor [25], FloodMapp [10],
or GIS solutions built on ArcGIS’ Living Atlas of the World [16, 20]; however, all of
them are quite limited in scope (i.e., all target individual cities or regions within the USA)
and are not easily extensible due to proprietary data models. Fragmentation and different
schemas to represent data result in high friction when exchanging and integrating data
between stakeholders and potentially lack the capability to disambiguate complex rela-
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tionships across domains. Ontologies foster interoperability and resolve such ambiguities
by providing aligned and unique descriptions for relevant concepts and their relationships.
They help to avoid miscommunication between stakeholders stemming from naming in-
consistencies across multiple domains and support context-aware information retrieval
in interdisciplinary settings, such as flood management. Graph technology provides the
opportunity to instantiate ontologies and connect data about various aspects of disaster
management and response into a network of entities and their interconnections [34].

The World Avatar dynamic knowledge graph is designed as open system to foster in-
teroperability and effectively address cross-domain questions, such as where flooding is
occurring and whether it represents a risk [1]. It combines ontologies (i.e., data defi-
nitions) with actual data instances (i.e., from (open) APIs), and computational services
operating on the instantiated data (i.e., so-called agents). It follows a system of sys-
tems approach where individual task-oriented agents and their interplay help to describe a
complex behaviour to gain comprehensive understanding and foster informed decisions.
Multiple agents can be connected using the so-called Derived Information Framework [2]
to ensure that newly instantiated information automatically traverses through the entire
graph, including updates to all related information. This infrastructure can be utilised to
dynamically assess the building stock value at risk whenever new flood information is
ingested [33]. Moreover, several digital twins can work collectively to combine comple-
mentary perspectives and derive broader insights on flooding events. For example, the
Climate Resilience Demonstrator digital twin, developed by the National Digital Twin
programme, integrates asset and flood datasets, failure models, and system impact analy-
ses to understand the effects of extreme weather, particularly flooding, on energy, water,
and telecoms networks [15]. The demonstrator reveals how potential asset failures prop-
agate both within but also across networks to enhance infrastructure resilience in the face
of climate change.

The purpose of this paper is to demonstrate the capabilities of the World Avatar to dy-
namically ingest heterogeneous data from a variety of previously isolated sources to sup-
port a more holistic view on flooding. Sequences of autonomous and connected agents
are deployed to automatically assess potential impacts of expected flooding events with
regards to population and built infrastructure at risk. The versatility of this approach is
demonstrated by combining both tactical short-term as well as strategic long-term per-
spectives in the very same system, highlighted by integrating scenario analyses of flood-
induced asset failures and their propagation across networks into the dynamic evaluation
of affected people and buildings.

The structure of this paper is as follows: Section 2 summarises existing flood tools and
previous technical works; section 3 introduces the target use case, relevant data sources
and details on the knowledge graph instantiation; section 4 highlights the results and
gained insights from the knowledge graph-based digital twin; and section 5 concludes the
work.
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2 Background

Goal 11 of the UN Sustainable Development Goals [49] recognises disaster risk reduc-
tion as an integral part of social and economic development. Numerous studies have been
conducted to create detailed understanding of flood risks and vulnerabilities to support
strategic planning: Chang et al. [9] have created an urban flood vulnerability index using
a social-ecological-technological systems vulnerability framework to examine the com-
plexity of urban floods. A generic framework for multi-dimensional risk assessment has
been proposed by Ekmekcioğlu et al. [18] to prioritise certain city districts regarding flood
hazard, flood vulnerability, and flood risk based on a multi-tiered comprehensive decision-
making procedure. Given the increasing importance of urban flash floods, Mohtar et al.
[38] have developed an integrated flash flood index to assess susceptibility, vulnerability,
and socio-economic impact of urban flash floods, in particular with regards to buildings
and infrastructure. The main purpose of all these efforts is to identify critically flood-
prone areas and provide assistance in improving resilience and mitigation plans.

Flood-induced damages to infrastructure networks can be costly, and are, compared to ex-
tensive research on impact on communities and economies, rather under-researched [41].
For example, in the 2007 summer floods in the UK, of the £4bn damage to the economy,
approximately £670m was credited to damages to critical infrastructure [29]. The impact
of compound flooding (i.e., pluvial (rain), fluvial (rivers), and coastal flood) and its cas-
cading effects on infrastructure systems in densely populated coastal areas has been stud-
ied by Najafi et al. [41]. While this work provides insights into potential failure cascades,
it relies on expert judgement to create logical connections between individual assets and
is limited to static analyses. The Climate Resilience Demonstrator (CReDo) investigates
the impact of extreme weather, in particular flooding, on the energy, water and telecoms
networks to identify weak spots and potential failure cascades to increase overall system
resilience at lowest possible cost [15]. The CReDo digital twin uses information about
the type, operational state, and location of each asset as well as the physical and logical
connectivity between them to resolve the cascade of effects caused by a failure in any of
the networks. The digital twin is based on the World Avatar (TWA) dynamic knowledge
graph (KG), introduced in section 2.3, to combine a description of the assets with data
from flood simulations for different climate change scenarios. The use of KG technology
ensures the creation of an extensible ecosystem for connected digital twins that support
the interoperability of distributed data across sectors, and ensures that data are connected,
discoverable and queryable via a uniform interface [1].

Flood impacts vary with time. In the short term, they pose risks to life, cause property
damage, and lead to infrastructure failures (e.g., transport and electricity networks). In
the medium term, contaminated flood waters increase the risk of the spread of diseases.
In the long term, flooding-induced disruptions can have economic consequences beyond
the immediately affected region [29]. Much research has been conducted in the area of
short-term flood impact assessment, either using simulated flood scenarios or the post-
evaluation of actual flood events [3, 29, 44]. Flood impacts can be categorised as tangible
(property damage or financial losses) and intangible (loss of life, environmental impacts,
etc.). Another distinction is between direct impacts (resulting from immediate physical
contact with floodwater) and indirect damage (induced by direct impacts, e.g., stock price
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reduction). Direct tangible damage represents the best understood class of flood impacts
and encompasses physical harm to properties, contents, and infrastructure due to direct
exposure to floodwaters [29]; however, the majority of the works focuses on static evalu-
ations and scenario planning instead of providing a live view on value at risk for a current
flood hazard.

Credible estimates of flood impacts are important to provide decision support and allow
for efficient resource allocation and risk management [29, 47]. The assessment may
cover environmental, economic, and social perspectives, or all three. To integrate the
different perspectives, either a common metric can be applied (i.e., almost always in mon-
etary terms), or impacts can be assessed using multi-criteria techniques. Flood impacts
on buildings, infrastructure, and land-use are commonly assessed using damage func-
tions that link expected damage to flood characteristics such as extent, depth and flow
velocity [3, 44, 47]. Damage functions exist in various complexities and often distinguish
between different asset types. It has been shown that the influence of different damage
models is small compared to the influence of different hazard and exposure maps used to
identify flood-affected objects [47].

2.1 Existing Flood Tools

The European Flood Awareness System offers an early warning system for real-time mon-
itoring and forecasting of floods across Europe, aiding in flood preparedness and response.
It supports preparatory measures for anticipated flood events; however, data access is lim-
ited to partners and is not publicly available [22]. The UK, however, provides a rich body
of data enabling the creation of high-resolution, high-accuracy flood hazard datasets to
provide indications of the magnitude and probability of flooding. While several publicly
available flood assessment tools exist to provide some consolidated insights, most of them
remain limited to individual domains. For example, a live flood map [37] shows current
flood warnings, together with current readings for river, sea, groundwater, and rainfall
levels, and the expected flood risk over the next 5 days. Additionally, separate govern-
mental services are available to raise notifications for all registered users in the vicinity of
issued flood warnings. However, none of the available tools provides real cross-domain
insights, such as assessing the impacts of a potential flood in terms of people and built
infrastructure at risk. Our work addresses this gap, partially inspired by related efforts in
the United States, such as FloodFactor [25] or FloodMapp [10].

FloodFactor [25] provides a free online tool that equips individuals with the ability to un-
derstand whether a property has flooded in the past or is currently at risk, and how that risk
is likely to change over time. It supports estimating damage cost associated with flood-
ing and highlights infrastructure and community risks. It relies on a comprehensive flood
model initially developed by Bates et al. [3], which analyses flood hazards (including plu-
vial, fluvial, tidal events, and storm surge), projects future climate scenarios, incorporates
local adaptation, and validates against modeled historic floods as well as satellite images
and government records. Originally aimed to provide the general public with insights
into the effects of flooding events on property values (i.e., to level the playing field com-
pared to institutional investors, and promote greater awareness of flooding within society),
FloodFactor has evolved into one of the most precise probabilistic flood models available
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in the United States. It includes the analysis of flood risk for social facilities, critical in-
frastructure, commercial properties, and roads; however, it does not provide insights into
failure cascading and is rather focused on static scenario analyses, such as estimating the
total share of infrastructure assets at risk.

FloodMapp [10] provides real-time flood intelligence tools for emergency managers, with
tailored products for each stage of the disaster management cycle: flood forecast live map-
ping up to seven days before a flood event to plan evacuations and protect sites and assets
(updated hourly); real-time flood inundation extents and depths mapping during a flood
event to maintain situational awareness and take targeted actions (updated every 15 min-
utes); and detailed flood depth and inundation maps immediately after a flood event to
rapidly assess damage and initiate recovery. The service is not open data and currently
limited to the United States and Australia, where real-time and forecast rainfall, tidal and
river height data are used together with machine learning techniques to create a dynamic
1 m resolution flood inundation and extent model. However, the focus is clearly on pro-
viding dynamic high-resolution flood mapping instead of up-to-date impact assessments.

2.2 Ontologies and Knowledge Graphs

Ontologies are formal representations of knowledge capturing concepts, relationships,
and properties within a specific domain. They provide a structured framework for or-
ganising and sharing information in a machine-readable format. Representing data using
ontologies results in the formation of directed graphs, so-called knowledge graphs (KGs),
where nodes define entities and data (i.e., concepts or instances) and edges denote their
relationships [1]. KGs provide an extensible data structure that is well suited to represent
arbitrarily structured data and which can be hosted decentralised, i.e., distributed over
the internet, using Semantic Web technology [4]. This takes the form of Linked Data [5],
where every concept and relation can be referenced back to its definition, making informa-
tion discoverable across the web and providing additional context information to enable
machine readability and automation.

Linked Data supports FAIR data principles [50] which help overcome interoperability
issues due to information silos, improve data clarity and resolve inconsistencies. Linked
Data enables the interconnection of diverse datasets by utilising subject-predicate-object
triples, where the subject represents a resource, the predicate indicates a specific property
or relationship, and the object represents a value or another resource. In the context of
flood risk, an ontology could define concepts like River, WaterLevel, and Damage,
while Linked Data could connect these concepts through subject-predicate-object triples,
such as River A - has - WaterLevel X or River A - causes - Damage Y.

The use of KGs has gained traction as a vital technology for offering machine-interpretable,
semantic information about real-world entities on a large scale. For example, Johnson
et al. [34] have presented a scalable workflow for merging data from OpenStreetMap,
Microsoft USA building footprint layer, and the OpenAddress project to create a com-
prehensive KG of urban infrastructure data. Machine learning models are applied to the
KG to infer and populate potential gaps in order to ensure availability of important in-
formation for emergency responders in case of a flood event. GeoSPARQL queries are
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used to assess both built infrastructure and demographics at risk of flooding; however, no
dynamic data assimilation is supported and a new KG needs to be created on demand for
each new analysis.

2.3 The World Avatar

The World Avatar project [1] aims to create a digital ‘avatar’ of the world. The funda-
mental idea behind TWA is the creation of an all-encompassing world model to foster
interoperability between previously isolated but conceptually connected domains, both
in terms of knowledge and data. Initially centered around chemical and process engi-
neering [35, 52], TWA has meanwhile expanded to address decarbonisation challenges
in the energy sector [14, 45, 46] and overcome interoperability constraints during city
planning [6–8]. Consistent semantic descriptions of relevant concepts as well as their re-
lationships are provided by ontologies. The digital world is represented using a dynamic
KG that contains concepts and data that describe the world together with an ecosystem
of autonomous computational agents to simulate its behaviour. Computational agents are
software tools which are described ontologically and are themselves parts of the KG. This
allows computational capabilities to become discoverable themselves, which means that
the graph provides information about its data as well as what could be done with it. A
conceptual illustration of TWA is shown in Fig. 1.

Figure 1: The World Avatar dynamic knowledge graph. Representing data using ontolo-
gies results in the formation of directed graphs, where nodes define entities and
data (i.e., concepts or instances) and edges denote their relationships. Com-
putational capabilities to operate on the data, so-called agents, are an integral
part of the graph making it inherently dynamic.
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TWA is modular and scalable by design, supporting both decentralisation and interoper-
ability across heterogeneous data sources and software. The intelligent agents integrated
within TWA function as executable knowledge components, ensuring the system remains
up-to-date and self-evolving. TWA offers utility in three key aspects: 1) providing cross-
domain insights into the current state of the world, 2) controlling real-world entities, and
3) facilitating complex what-if scenario analyses. As everything is connected (i.e., data,
concepts, and agents), this design enables a system of systems approach to create an
ecosystem of connected digital twins. Compared to platform solutions, TWA promotes
open protocols and standards to avoid potential lock-in effects and surging switching cost.

The Derived Information Framework [2] is a knowledge-graph-native solution for track-
ing data dependencies and managing information flow within TWA. It is focused on data
provenance, aiming to identify the source of information and how it has been obtained.
By representing intrinsic dependencies within the KG, it enables autonomous data han-
dling by agents with the ability of information to cascade automatically through the KG.
In flooding contexts, this capability can be deployed to automatically assess potential
impacts on population and building stock: Multiple input agents collect (real-time) data
from various publicly available sources (detailed in section 3.1) to create an accurate rep-
resentation of the built environment as well as environmental conditions of the real world
within TWA. Subsequently, three autonomous agents, connected through the Derived In-
formation Framework, ensure that all dependent information are updated in conjunction
with newly ingested data. Consequently, whenever new flood warnings are raised and
assimilated, up-to-date estimates of the total building stock value and population at risk
are available. While the technical details are discussed elsewhere [33], this work focuses
on the gained insights and the added value for flood risk management.

3 Use Case

This work aims to address the urgent need to reduce imminent risk and impact of flood
hazards along three dimensions. While the approach is generally applicable to the entire
UK, this proof of concept focuses on King’s Lynn, a mid-size coastal town in the East of
England:

Firstly, flood related data from numerous sources is instantiated using consistent knowl-
edge models, enabling interoperability between previously isolated information and cre-
ating a more holistic perspective to evaluate flood risk. Connecting complementary data
enables both humans and software agents to make better fact-based decisions, e.g., by
bringing together data about potential flood events (i.e., severity, areal extent) with data
about the built environment (i.e., building locations, building usages, property values),
or allowing plausibility checks of sensor readings across multiple sources (e.g., verifying
rising river levels with precipitation data from another source). A uniform query and vi-
sualisation interface for the connected dataset is provided to ease access to cross-domain
insights about (imminent) flood events (e.g., understand which building types are mostly
affected).
Secondly, the Environment Agency (EA) frequently issues alerts and warnings for poten-
tially hazardous flood situations; however, such flood warnings lack information about
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anticipated impacts on people and buildings. Our infrastructure addresses this gap and
facilitates the dynamic integration of new data as well as automated (re-)assessments of
all dependent information within the KG. This includes automatic impact re-estimations
whenever flood warnings are issued or any other relevant input data gets updated, provid-
ing an up-to-date view of the situation at all times.
Thirdly, the very same infrastructure also supports strategic analyses beyond the dynamic
assessment of immediate flood impacts. TWA can be used to understand how flood-
induced infrastructure failures cascade across different utility networks to identify critical
nodes and potential weak points. Together with strategic flood risk maps this can help to
increase overall flood resilience.

3.1 Public Data Sources

A thorough search for open data sources related to built infrastructure, environmental
measurements, and flood data has been conducted, with a primary focus on the vicinity
of King’s Lynn. Several static sources and application programming interfaces (APIs)
have been identified and are summarised below. Tables 1 and 2 offer an overview of
the considered data feeds, with additional details provided below. For a comprehensive
discussion on data instantiation, please refer to Hofmeister et al. [33].

3.1.1 Building Data

The Ordnance Survey (OS) is the national mapping agency of Great Britain responsi-
ble for producing and disseminating geospatial data for government and public use [42].
It provides several open (e.g., OpenMap Local) and premium (i.e., Building Height At-

Table 1: Publicly available (rather) static data sources considered for instantiation of
building data.

Data source Instantiated parameters Update frequency

Ordnance Survey
(via Digimap) [42]

Building footprint
Building elevation
Building height
UPRN

Initial download and
static instantiation

Energy Performance
Certificate API [13]

Property type and built form
Property usage category
Address (incl. postcode)
Number of habitable rooms
Total floor area
Energy rating
UPRN

Every 4-6 months

His Majesty’s
Land Registry [30]

Property sales transaction record
(i.e., address, sales price, date)
UK House Price Index

Monthly
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tribute) datasets describing the physical characteristics of the built environment in various
levels of detail. While the Building Height Attribute (BHA) data represents the most gran-
ular data about individual buildings, including their base polygons, building heights, and
ground elevation, the OpenMap Local contains building data on a more aggregated level
and lacks information about building heights. Premium datasets are generally license re-
stricted; however, made available via Digimap [17] for educational and research purposes.
It has been observed that some buildings are only contained in either of the two datasets.
Therefore, both the BHA and OpenMap Local data have been geospatially merged to cre-
ate the most comprehensive building coverage possible. Wherever building information
from both datasets is available, the BHA data is used. Consequently, the geospatial build-
ing information used in this study is mainly based on the OS BHA dataset. Both datasets
contain the Unique Property Reference Number (UPRN) for each building, which consti-
tutes a unique and officially maintained identifier assigned to every addressable location
in the UK (i.e., used to cross-link information across datasets).

The Department for Levelling Up, Housing & Communities offers open Energy Perfor-
mance Certificate (EPC) data [13] via three dedicated APIs for domestic, non-domestic
and display (i.e., mostly public buildings) certificates. This data contains property-level
information about energy efficiency rating, environmental impact rating, and recommen-
dations for improving energy efficiency. Additionally, it provides details about a build-
ing’s heating, cooling, and ventilation systems, key construction characteristics (i.e., num-
ber of rooms, total floor area, building type, etc.), high-level usage classification, address
and location details, and is updated every four to six months. The EPC data can be used to
enrich the sole geospatial building representation from OS (i.e., via UPRN matching) with
key features required to conduct energy analyses or estimate property prices. Available
data comprises EPCs issued for domestic and non-domestic buildings constructed, sold or
let since 2008 and contains approximately 60% of the housing stock in England. Despite
a quite homogeneous coverage across all regions, the data should not be interpreted as a
complete representation of the building stock in England, since not every single building
is included.

His Majesty’s Land Registry publishes several public datasets related to residential prop-
erty sales, namely the Price Paid Data and the UK House Price Index (UKHPI) [30]. The
Price Paid Data tracks residential property sales in England and Wales, with new transac-
tions being added every month [31]. Data is captured for single residential properties that
have been sold and lodged with Land Registry since 1995, making it a reliable source of
house price information with currently more than 24 million records. The recorded data
contains actual prices and transaction dates, together with full address details and the type
of property, such as detached, semi-detached, terraced or flat. Since UPRN information
is not included in the recorded data, previous property sales transaction records can be
combined with further building information via address matching only. The UKHPI cap-
tures the monthly change in the value of residential properties (i.e., with regards to a base
of 100 set to January 2015) on different levels of geospatial granularity [32] (details in
Appendix A.1).
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3.1.2 Environmental Sensor Data

The UK Meteorological Office (abbreviated as Met Office) provides a collection of near
real-time observation and forecast weather information through its public API known as
DataPoint [36]. DataPoint includes observations for approximately 140 sites and forecasts
for approximately 6,000 sites across the UK. Actual weather observations are provided
with hourly resolution for the past 24 hours, while forecasts are created with daily and
three-hourly resolution for the next five days. Both data feeds get updated hourly. Obser-
vation reports are recorded in real time by the Met Office Monitoring System, and reported
parameters depend on the physical instrumentation installed at each site. It needs to be
noted that the published observation data has not yet been subject to final quality control
by the Met Office. Table 2 provides an overview of all available weather parameters.

Table 2: Publicly available near real-time data sources considered for instantiation of
environmental observation data.

Data resolution

Data source Available parameters Spatial Temporal

UK Met Office
DataPoint [36]

Temperature
Dew point
Pressure
Relative humidity
Visibility
Wind speed
Wind gust
Wind direction
Precipitation probability
UV index

~140 observation and
~6000 forecast stations
across the UK

Observations with hourly
resolution (past 24 h),
Forecasts with 3h resolu-
tion (next five days),
both updated hourly

UK-AIR
Sensor
Observation
Service [48]

Nitrogen dioxide
Nitrogen monoxide
Sulphur dioxide
Carbon monoxide
Ozone
PM2.5

PM10

~300 observation
locations across the UK
(organised in different
networks; not all locally-
managed networks
published via API)

Observations with hourly
resolution (including his-
torical data)

River Levels 1 Water level
River flow rate
Rainfall

~4000 river stations and
~1000 rainfall gauges
across the UK

Observations with 15 min
resolution (updated 1-2
times per day)

Flood alerts/
warnings 1

Affected flood area
Severity
Warning description
Warning change log
(i.e., timestamps of
changes)

Entire UK, covering
specific warning and
alert areas

Updates provides every
15 minutes

1 Provided via EA Real Time flood-monitoring API [11]

The UK Air Information Resource (UK-AIR) collects data from a network of air qual-
ity sensors across the UK, providing real-time and historical information on pollutants,
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such as nitrogen and sulphur oxides, particulate matter (i.e., PM2.5 and PM10), and ozone,
via an open machine-readable Sensor Observation Service (SOS) [48]. There are two
types of monitoring networks: automatic and non-automatic. While automatic networks
provide hourly pollutant concentrations collected from individual sites using modems,
non-automatic networks measure less frequently (i.e., daily, weekly, or monthly) using
physical collection methods like diffusion tubes or filters. There are around 300 EA man-
aged monitoring sites across the UK as part of a national monitoring strategy. Those
sites are organised into several networks focusing on particular observation tasks, and fur-
ther complemented with locally-managed monitoring networks, including sites operated
by local authorities, industry partners, and airports. The location and purpose of these
locally-managed sites differ from the national network and are subject to different reg-
ulations. The data from these sites are stored in various databases operated by different
custodians and are collected from publicly available online resources or provided to UK
AIR voluntarily via a dedicated API. UK-AIR provides an interactive monitoring map to
access the data from both national and locally run networks: The map includes data from
the majority of automatic network stations as well as some non-automatic ones. Addition-
ally, approximately 80% of the automatic sites from local authorities are available on the
map. However, it should be noted that not all local networks, for example King’s Lynn
and West Norfolk, are available via the SOS.

3.1.3 Flood Monitoring Data

The EA offers several API endpoints with (near) real-time information related to flooding
and flood risk: The Real Time flood-monitoring API [11] provides a listing of all current
flood alerts and warnings as well as information about flood areas to which those apply,
including relevant meta information, such as severity and associated water bodies. The
same API also includes an endpoint for live readings of water levels and flows recorded at
various measuring stations along rivers and other water bodies. Hydrological data about
river levels, river flows, groundwater levels, and water quality is provided via EA’s Hy-
drology API [12]. Moreover, the Flood Forecasting Centre issues a machine-readable
daily flood risk forecast, assessing the likelihood of flooding 5 days into the future [26].
All APIs are provided as open data under the Open Government Licence.

River Levels and Rainfall The flood-monitoring API provides measurements of water
levels and flow rates as well as information on the monitoring stations conducting those
measurements. Water levels and flow rates are usually measured every 15 minutes. How-
ever, the actual data transfer frequency depends on the monitoring station and the current
level of flood risk, but typically occurs once or twice per day and usually increases during
times of heightened flood risk. The latest release of this API, furthermore, provides access
to approximately 1,000 real-time rain gauges [11], which measure the amount of precip-
itation (mm) using tipping bucket gauges. Due to data protection reasons the geographic
location of the rainfall monitoring stations has been reduced to a 100m grid.

The Hydrology API complements the near real-time water level and rainfall information
from the flood-monitoring API by providing access to historical water level and flow
rate information [12]. The data model differs slightly between the two sources and the
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hydrology data includes flags to indicate the quality of the provided data, as its majority
is subject to (manual) quality control before publishing.

Flood Alerts and Warnings The EA issues a list of currently active flood warnings for
specific flood warning or alert areas, which is updated every 15 minutes. The provided
information for each flood alert or warning includes its severity classification, associated
water bodies, the source of flooding, a continuously updated warning message, and the
flood area as GeoJSON polygon. Flood alert areas denote geographical areas where it
is possible for flooding to occur from rivers, sea, or groundwater. A single flood alert
area may contain a number of flood warning areas. Flood warning areas are geographical
areas where the EA expects flooding to occur and where the flood warning service is
provided. Specifically, those flood warning areas can specify discrete communities at
risk of flooding. There are four distinct severity levels of decreasing magnitude: Level 1
represents a severe flood warning with potential danger to life or widespread disruption.
Level 2 refers to expected flooding with immediate actions to be taken. The purpose of
such a flood warning is to alert people that flooding is expected and they should take
action to protect themselves and their property. Level 3 denotes a flood alert issued to
warn people of the possibility of flooding and encourage them to be alert and make early
preparations. Severity level 4 indicates that a previous flood warning is no longer in force.
While much of the information is provided using stable long term Uniform Resource
Identifiers (URIs), such as flood areas or measurement stations, some resources only exist
temporarily. For example, the URI of an individual flood alert will only exist and resolve
successfully while the alert is in force. Both severity and warning message associated
with an alert can change during its lifetime. And eventually, any alert or warning will
cease and its URI will no longer resolve.

Flood guidance statements issued by the Flood Forecasting Centre represent the best com-
bined understanding of flood risk based on weather forecasts, flood forecasts, catchment
conditions, and the operational status of flood defences [27]. The public five day fore-
cast [26] shows the high level content of a flood guidance statement, appropriate for a
public audience. Compared to immediate flood alerts and warnings, flood forecasts are
associated with higher uncertainty, both with regards to areal extend and anticipated sever-
ity.

3.1.4 Population Data

The OpenPopGrid [40] provides an open and high resolution (i.e., 10m x 10m) grid-
ded population dataset for England and Wales based on the Office for National Statistics
(ONS) 2011 Census as well as OS OpenData. It is specifically designed to enhance the
spatial representation of the published ONS population data, which is originally provided
for so-called Census Output Areas based on aggregated unit postcodes. Using a dasy-
metric mapping approach, the population is redistributed to residential areas based on
building polygons in order to derive a realistic depiction of where people actually live.

To address potential issues regarding the age of the dataset, a comparison with the con-
tinuously updated HDX population map [24] maintained by Meta has been conducted.
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The HDX population map incorporates various sources like census data and surveys, and
also considers anonymised Facebook usage data to estimate population density at a high
resolution. It is commonly used in public health research and humanitarian efforts. The
HDX dataset is slightly coarser; however, both datasets align well on the Super Output
Area Middle Layer (i.e., a typical Census Output Area), with the OpenPopGrid providing
approximately 4% lower population estimates (details in Appendix A.2). Given this small
discrepancy, the OpenPopGrid data is still considered representative and used in this study
due to its greater geospatial resolution and expressiveness of where people live.

3.2 Knowledge Graph Instantiation

All relevant data described above are instantiated by an ecosystem of software agents
as described in Hofmeister et al. [33]. All agents are deployed collectively in the cloud
to ensure reliable service availability. As this use case focuses on the automated cross-
domain flood impact assessment, both the Hydrology and Flood Forecast APIs briefly
introduced above are not instantiated. A few further limitations and simplifications need
to be noted:

Firstly, only buildings with a geospatial representation are considered in this analysis,
as the geolocation is required to understand which buildings are affected by a certain
flood warning. Hence, EPC and property sales data is only instantiated for buildings with
instantiated geospatial representation, using UPRN and address matching, respectively.
While more than 37,700 buildings are instantiated with regards to their geometry, only
about 21,200 (56% of geospatially represented buildings) of them are assigned UPRN
information. This likely stems from unavailable UPRN information in the original OS
data (details in Appendix A.3) and appears to affect all building types and built forms
equally. Since no significant distortion could be identified in the distribution of instan-
tiated building stock, the available buildings are considered a representative subset and
used as baseline for further building data enrichment. Based on the instantiated UPRNs,
approximately 14,700 properties could be linked to EPC information, of which approxi-
mately 11,000 (29% of geospatially represented buildings) correspond to buildings (i.e.,
remaining portion referring to individual flats).
Secondly, the current approach to estimate the market value of properties is rather sim-
plistic. It involves scaling the latest historical transaction record based on the UKHPI or
using average square metre prices for the respective postcode. However, in reality, numer-
ous factors influence real estate values, including local market conditions, property type
and age, number of rooms, nearby infrastructure, etc.
Thirdly, the air quality monitoring in the vicinity of King’s Lynn belongs to a locally-
managed monitoring network not (yet) included in the UK-AIR SOS. Hence, no real-time
data can be retrieved automatically via the API. To still demonstrate the general capabil-
ity, a virtual station is instantiated in the town of King’s Lynn, showing actual data from
the nearest available monitoring site.
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4 Results

This section describes the results of the proof of concept implementation: In subsec-
tion 4.1 we show how TWA effectively connects previously isolated but related informa-
tion to foster more holistic and fact-based decision-making. Data is connected based on
aligned knowledge models and visualised in an uniform web interface. The automatic as-
sessment of potential flood impact based on automatic information cascading is presented
in subsection 4.2. Subsection 4.3 exemplifies the extensibility of TWA by seamlessly in-
tegrating with the more strategic CReDo visualisation, facilitating comprehensive short-
and long-term analyses within one unified system.

4.1 Enabling Cross-domain Interoperability

The World Avatar acts as single point of access to current weather, air quality, and flood
related information. In the focus area of this use case (i.e., the vicinity of King’s Lynn),
additional data about the built environment, including building usages, location, construc-
tion details, and previous property sales transactions, are included. The developed agent
framework aligns and enriches this data by introducing links between related entities in
order to add a geospatial dimension to property sales data (i.e., by combining it with OS
and EPC data via address matching) and using automated agent tasks to derive up-to-date
property market value estimates for all instantiated properties. TWA’s unified web-based
visualisation interface presents this comprehensive information in a map-based format,
accessible through standard web browsers. Fig. 2 provides an illustrative example of the
visualisation.

A consolidated visualisation that bridges the gap between different information silos em-
powers residents of smart cities (as well as software agents) by increasing transparency
and ease of access to a wide variety of available data. For example, individuals can easily
access the environmental observations most relevant to them, such as air quality or river
water levels closest to their home. While such a visualisation enhances user experience
and promotes data-driven decision-making, the actual key benefit of the KG instantiation
is the creation of semantically linked datasets: Meaningful links between related data pro-
vide further context information, e.g., by linking air pollutant observations to equivalent
concepts of the European air quality e-Reporting initiative [23] in order to obtain current
pollutant limits and protection targets. Furthermore, direct inference can be used to assess
whether an observation from a sensor should trigger an alert or any further action.

The unified visualisation interface enables users to simultaneously view various flood-
related data, such as the latest water levels, rainfall readings, weather forecasts, and active
flood warnings. The consolidated visualisation provides broader context for individual in-
formation and helps stakeholders to assess potential flood hazards more holistically (see
examples provided in Fig. 3 and Fig. 4). Additionally, it facilitates cross-domain reason-
ing and enables data plausibility checks across multiple data providers.

Figure 3 presents an actual situation in Cambridge on the evening of 09 March 2023: At
5pm, a flood warning was issued as a precautionary measure due to rising river levels
caused by heavy rainfall and snow melt. The forecast indicated that rainfall is expected
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Figure 2: The World Avatar provides consolidated and scalable access to previously iso-
lated environmental observations, including weather, flooding, and air quality
data. Information about the built environment, such as buildings, building us-
ages, and property value estimates, complement this perspective.

to continue for the next 48 hours, which increased the likelihood of flooding on both 09
March and 10 March. These predictions were aligned with the live water level readings of
affected rivers, providing additional confirmation. Additionally, the forecast precipitation
probability by the Met Office supported the warning for ongoing rainfall; however, also
suggested a period of relief as of the second half of 10 March. Figure 4 illustrates the
actual situation in Christchurch Harbour in the afternoon of 08 March 2023: A flood alert
was raised due to the anticipated spring tides, which were influenced by strong south-
westerly winds. The expected tidal surge posed a risk of overtopping the sea defenses,
potentially leading to flooding of roads, farmland, and properties. The forecast spring tide
levels of 1.31 and 1.34 m aligned closely with the latest observations from a nearby river
level station. Furthermore, the forecast wind speeds for 08/09 March from Met Office
supported the flood warning, although winds were rather expected to be on the higher
side of Force 4 (13-18 mi/h) on 08 March.
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(a) EA Flood Warnings API. A flood warning was issued at 5pm as a precautionary measure due to heavy
rainfall, which was anticipated to persist and result in flooding.

(b) EA River Levels API. Latest water level readings of affected rivers supported this judgement. (Please
note: EA API faces infrequent periods of missing data)

(c) Met Office API. Anticipated precipitation probability provided further evidence for possible flooding, but
also indicated a period of relief thereafter.

Figure 3: Actual situation for Cambridge in the evening of 09 March 2023.
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(a) EA Flood Warnings API. Flood alert was raised due to expected spring tides, partially as a result of strong
(south) westerly winds.

(b) EA River Levels API. Anticipated spring tide levels of 1.31 and 1.34 m were in line with latest observa-
tions at nearby river level station. (Please note: EA API faces infrequent periods of missing data)

(c) Met Office API. Forecast wind speeds for 08/09 March supported anticipated exacerbating effect on
upcoming two spring tides.

Figure 4: Actual situation for Christchurch Harbour in the afternoon of 08 March 2023.
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4.2 Automated Cross-domain Flood Risk Assessment

The World Avatar continuously assimilates latest buildings and flood warnings informa-
tion into the dynamic KG. In conjunction with the automatic re-assessment of potential
flood impacts, this ensures an up-to-date view on the real-world situation at all times.
The impact estimation considers the number of people at risk, the number of potentially
affected buildings, and their respective monetary value. Key inputs to the assessment in-
clude the flood alerts/warning itself (i.e., severity, message, classification), instantiated
buildings (i.e., newly instantiated buildings, or updated floor area or sales transaction
data), and the property price index. Any changes in these inputs are automatically re-
flected during the next flood impact assessment. The property price index is used to
re-calibrate historical sales prices of properties to their present-day values. In cases of
properties without previous sales transactions, an average square metre price per postcode
is multiplied with the total floor area of the building to derive a current market value es-
timate. Hence, a re-assessment may occur even if none of the directly affected properties
have been updated, but new property information for the postcode has become available
to refine the previous average square metre price.

Figure 5: Automatic re-assessment of potential flood impact. Whenever relevant inputs
for the flood assessment get updated (i.e., flood warnings change or buildings
data in vicinity, incl. respective property sales transactions, are updated), an
automatic re-assessment of the potential flood impact is triggered. Illustrated
for updated flood warning severity, where a previously active warning ceases
and is finally lifted, resulting in impact assessed as zero.

The agent based re-assessment is schematically illustrated in Fig. 5 for the case of a ceas-
ing flood hazard. Real-world updates, including changes in flood warning severity, are
instantiated into TWA. The Flood Assessment Agent automatically detects that its pre-
vious assessment has become outdated and performs a re-evaluation accordingly. In the
case of ceasing flood warnings, the agent sets the number of affected people and buildings
as well as the property value at risk to zero, indicating the absence of imminent flood risk.
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(a) Initial flood impact assessment. Based on latest real-world data the raised flood alert puts 3475 people at
risk and could affect 920 buildings with an estimated market value of £329.6m.

(b) Updated flood impact assessment. To simulate changes in latest property prices, the underlying prop-
erty price index is scaled by +20 %. The instantiation of an updated flood warning triggers an automatic
re-assessment, which is now expected to affect (still) 3475 people as well as 920 buildings; however, the
estimated market value now sums up to £395.2m.

Figure 6: Automatic re-assessment of potential flood impacts for updated property val-
ues, i.e., newly instantiated property sales transactions and/or updated prop-
erty price index.

Similarly, any changes in property prices (i.e., due to updated property price index data
or newly instantiated transaction records) will result in an updated impact assessment, as
shown in Fig. 6. The figure shows two subsequent evaluations side by side: the initial es-
timation following a newly raised flood alert, and the updated assessment after an increase
in property prices. The initial assessment identifies 3,475 people and 920 buildings at risk,
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with an approximate market value of £ 330mn (Fig. 6(a)). After the initial assessment, a
20% increase in the property price index is instantiated to simulate a rise in the value of
residential properties. Subsequently, the Flood Assessment Agent automatically detects
the need for re-evaluation due to the change in property prices. Although the number of
people and buildings at risk remains the same, the total property value at risk increases to
£ 395mn (Fig. 6(b)). It is important to note that this increase is for illustrative purposes
and is not based on specific market dynamics. However, this scenario demonstrates the
system’s dynamic capabilities, e.g., to automatically reflect adjustments in the monthly
UKHPI in any subsequent flood assessment.

Figure 7: Building types at risk of flooding. The World Avatar provides insights about the
usage types of potentially affected buildings to understand whether, e.g., hos-
pitals, emergency services or schools are affected. This information is crucial
for tailored and timely decision-making and crisis response.

Besides this quantitative assessment, TWA provides further insights into the usage cate-
gories of potentially affected buildings to understand whether hospitals, emergency ser-
vices or schools are at risk (depicted in Fig. 7). This information is crucial to tailor crisis
responses and ensure timely decision-making. Furthermore, TWA provides the ability to
store the flood warning history of flood areas in order to understand systematic risks and
their trends, such as increasing or decreasing frequency or severity. Similar to the analysis
of near misses in incident prevention, this information enhances understanding whether
critical facilities, like hospitals or emergency services, are situated in locations that are
increasingly prone to flooding or have previously been affected. Presently, this valuable
information is currently unavailable, since all flood warnings provided by the real-time
flood monitoring API are transient URIs (i.e., once a flood warning is lifted, it simply gets
deleted).
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4.3 Extensible system of systems approach

So far, this work has demonstrated the automated assessment of immediate impacts of
potential flooding events to facilitate short-term disaster response. However, this repre-
sents only one perspective to cope with flood hazards. Equally important is a thorough
understanding of long-term risk exposure and the ability to conduct strategic planning
and scenario analyses to improve flood preparedness and overall system resilience. The
previously developed CReDo digital twin addresses exactly this gap: It uses simulated
flood maps (i.e., developed based on historical flooding events as well as climate change
projections) to understand the impact of flooding on energy, water and telecoms network.
Based on certain asset failure models, it provides insights into network interdependencies
and investigates failure propagation both within and across networks. Since both works
are based on TWA, they can easily be combined to provide a more comprehensive per-
spective to analyse flood risk and improve both strategic and tactical decision-making.
This additional angle towards flood preparedness is illustrated in Fig. 8, where a severe
flood warning is linked with an electrical substation located in the affected area to under-
stand how a flood-imposed failure of this station would affect connected network assets.
Such insights help refine potential hazard scenarios, such as whether to expect a failure of
the telecoms network, and enable the early detection of potential weak points that require
special attention during crisis response.

Figure 8: Extensibility of the World Avatar. Based on knowledge models, TWA represents
a suitable system to connect a variety of individual digital twins to combine
cross-domain data and enable multi-perspective analyses. Beyond the dynamic
assessment of potential impact of immediate flood risks, the very same system
also enables strategic planning and scenario analyses to understand potential
failure propagation of network infrastructure due to flooding: Illustrated for an
electrical substation outage due to flooding, incl. all further failure cascading.
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The World Avatar is designed as extensible knowledge model based system to integrate
and connect diverse digital twins within one unified ecosystem of data and agents. Based
on this system of systems approach, it is able to represent complex systems without the
need of having one huge monolithic model or platform. Instead, multiple connected digi-
tal twins provide different complementary perspectives on a certain domain or problem to
enrich individual capabilities and analyses, such as combining tactical flood management
with a more strategic flood preparedness dimension, or enriching rather static network
failure analyses with further information about likely affected people and buildings in the
vicinity of out-of-service assets.

5 Conclusions

This work demonstrates the benefits of knowledge model based approaches, such as
the World Avatar dynamic knowledge graph, during disaster situations when timely and
evidence-based cross-domain insights and decisions are required. An ecosystem of au-
tonomous software agents continuously ingests and connects previously fragmented yet
related real-world data from multiple APIs (i.e., environmental sensor networks, energy
performance certificate data, and property sales data) to enhance the value of individual
pieces of information and derive more holistic perspectives on imminent flooding scenar-
ios. TWA’s unified visualisation framework provides aligned and consolidated access to
these previously isolated data and empowers people with a more comprehensive view of
the world and current situation around them, for instance a consolidated view of environ-
mental observations, including weather, air quality, and river level readings. Additionally,
the interplay of multiple interconnected agents provides an infrastructure to ensure au-
tomated information cascading, which is showcased for the automatic re-assessment of
potential impacts of raised flood warnings with regards to people and buildings at risk
whenever relevant input data changes. Although multiple flood monitoring tools, maps,
and even warning services exist, this dynamism and cross-domain assessment represents
a novelty to the best of our knowledge.

This showcase also highlights the potential of the World Avatar as a versatile flood man-
agement and impact assessment tool supporting both tactical and strategic decision-making.
While most other tools focus solely on flood monitoring or strategic risk planning, the
World Avatar is highly extensible and suited to provide multiple perspectives on complex
cross-domain issues. While the system has initially been designed for evaluating the im-
mediate impact of anticipated floods, it can also incorporate a long-term perspective by
integrating strategic flood maps to analyse and improve climate adaptation and resilience.
The Climate Resilience Demonstrator, previously developed by the UK National Digi-
tal Twin programme, can be integrated seamlessly to provide insights into infrastructure
interdependencies and how potential flood-induced system failures could propagate both
within but also beyond individual networks.

There are a few limitations of the current approach. Firstly, the system only focuses on
flood alerts and warnings rather than evaluating actual flood events. Secondly, the predic-
tion of flood events is not performed as part of the World Avatar, but relies on external
warnings issued by domain experts from the Environmental Agency. Given the complex-
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ity of hydrodynamic flood models, this is unlikely to change in the near future and is
also not essential to demonstrate dynamic impact assessment. Thirdly, the current im-
pact assessment is limited to the number of people and buildings at risk, as well as the
total building stock value. Further assets such as roads or other infrastructure compo-
nents are not yet included. Notably, the analysis only considers instantiated buildings,
which may result in an underestimation of the total property value at risk. In addition, the
implemented property market value estimation method could be considered rudimentary,
although it is deemed adequate for this proof-of-concept stage. Lastly, the fuzzy address
matching currently used to link properties with historical sales transactions can further be
improved, particularly in light of the recent advancement in large language models.

Research data

All the codes developed are available on The World Avatar GitHub repository
https://github.com/cambridge-cares/TheWorldAvatar.
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Nomenclature

API Application Programming Interface
BHA Building Height Attribute (OS Premium dataset)
CReDo Climate Resilience Demonstrator
EA Environment Agency
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EPC Energy Performance Certificate
GeoSPARQL Geographic Query Language for RDF Data
GIS Geographic Information System
KG Knowledge Graph
OS Ordnance Survey
PM10 Particulate Matter less than 10 µm in diameter
PM2.5 Particulate Matter less than 2.5µm in diameter
SOS Sensor Observation Service
TWA The World Avatar
UK-AIR UK Air Information Resource
UKHPI UK House Price Index
UPRN Unique Property Reference Number
URI Uniform Resource Identifier
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A Appendix

A.1 UK House Price Index

The UKHPI is produced by the Office for National Statistics (ONS) and represents a com-
prehensive housing market index that captures changes in house prices, market trends, and
regional variations thereof across the UK. It utilises a hedonic regression model and mix-
adjustment techniques to account for composition and property type changes between
reporting periods. Data from various sources, such as Council Tax Valuation, EPCs, and
Acorn classification, are incorporated to capture key construction, property, and demo-
graphic characteristics (details about the calculation methodology are provided by HM
Land Registry [32]). Derived values represent nominal house price changes and are not
inflation adjusted. The index covers all residential properties to provide an accurate and
timely measure of the UK housing market, dating back to January 1995. Property post-
codes are mapped to higher-level geographies using the ONS Postcode Lookup and Post-
code Directory to calculate the index at national and regional level, as well as for counties,
local authorities and London boroughs.

A.2 Population Data Comparison

To ensure meaningfulness of the slightly dated OpenPopGrid [40] population raster data,
a comparison with the coarser, but continuously updated HDX [24] population map has
been conducted on the Super Output Area Middle Layer. The relative error of just around
4% suggests that the OpenPopGrid still describes the current population distribution suf-
ficiently accurate (see Fig. 9 and Table 3).

Table 3: Comparison of OpenPopGrid population raster with 2011 ONS census data as
well as continuously updated HDX population map for three Super Output Area
Middle Layer areas.

Population estimates Relative error
Super Output Area
Middle Layer

ONS Census
2011

OpenPopGrid
HDX popu-
lation map

OpenPopGrid
vs. HDX

OpenPopGrid
vs. ONS

King’s Lynn and West
Norfolk 007

6701 5964 6287 -5.1% -11.0%

King’s Lynn and West
Norfolk 009

7206 6946 7196 -3.5% -3.6%

King’s Lynn and West
Norfolk 011

11142 9726 10074 -3.5% -12.7%

Average -4.0% -9.1%

A.3 UPRN Coverage

For each instantiated building, the OS Features API is queried with the building’s bound-
ing box to retrieve all enclosed UPRNs. Those are then tested against the building’s
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(a) OpenPopGrid data for King’s Lynn centre (b) HDX data for King’s Lynn centre

(c) OpenPopGrid data for mix of residential and in-
dustrial area

(d) HDX data for mix of residential and industrial
area

Figure 9: Visual comparison of OpenPopGrid and HDX population raster data for the
town of King’s Lynn: OpenPopGrid data has higher geospatial granularity
and resembles actual residential areas more precisely.

GroundSurface and lod0FootPrint geometries to further filter for intersecting UPRNs
only. Remaining UPRNs are then instantiated and linked with the respective building(s).
As illustrated in Fig. 10, not all buildings are associated with UPRN information. This
could be the result of UPRNs falling within the bounds of a building but not intersecting
its footprint, e.g., those in the inner courtyards of a property; however, this cannot be con-
firmed from the figure. Hence, the sparseness of UPRN designations is likely attributed
to limited UPRN coverage in available OS OpenData.
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Figure 10: Comparison of buildings with (green) and without (red) available UPRN in-
formation: For buildings with missing UPRN, no identifier intersecting the
building’s footprint could be retrieved from OS Features API.
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[18] O. Ekmekcioğlu, K. Koc, and M. Özger. Towards flood risk mapping based on
multi-tiered decision making in a densely urbanized metropolitan city of Istanbul.
Sustainable Cities and Society, 80:103759, 2022. doi:10.1016/j.scs.2022.103759.

[19] Environment Agency. Flooding in England: A National Assessment of Flood Risk,
2009. Available at https://assets.publishing.service.gov.uk/governm
ent/uploads/system/uploads/attachment_data/file/292928/geho0
609bqds-e-e.pdf (accessed May 2023).

[20] Esri Disaster Response Program. Flooding, 2023. Available at https://esri-
disasterresponse.hub.arcgis.com/pages/flooding (accessed May
2023).

[21] European Commission. European Union Floods Directive, 2023. Available at ht
tps://environment.ec.europa.eu/topics/water/floods_en (accessed
May 2023).

[22] European Commission, Copernicus. European Flood Awareness System, 2023.
Available at https://www.efas.eu/en (accessed May 2023).

[23] European Environment Information and Observation Network. General Multilingual
Environmental Thesaurus, 2021. Available at https://dd.eionet.europa.eu/
vocabulary/aq/pollutant/view (accessed Feb 2022).

31

https://environment.data.gov.uk/flood-monitoring/doc/reference
https://environment.data.gov.uk/flood-monitoring/doc/reference
https://environment.data.gov.uk/hydrology/doc/reference
https://environment.data.gov.uk/hydrology/doc/reference
https://epc.opendatacommunities.org/docs/api
https://epc.opendatacommunities.org/docs/api
https://doi.org/10.1016/j.egyai.2020.100008
https://digitaltwinhub.co.uk/credo/credo/
https://digitaltwinhub.co.uk/credo/credo/
https://www.esri.com/about/newsroom/wp-content/uploads/2018/09/a-real-time-flood-warning-system.pdf
https://www.esri.com/about/newsroom/wp-content/uploads/2018/09/a-real-time-flood-warning-system.pdf
https://digimap.edina.ac.uk/
https://digimap.edina.ac.uk/
https://doi.org/10.1016/j.scs.2022.103759
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292928/geho0609bqds-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292928/geho0609bqds-e-e.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292928/geho0609bqds-e-e.pdf
https://esri-disasterresponse.hub.arcgis.com/pages/flooding
https://esri-disasterresponse.hub.arcgis.com/pages/flooding
https://environment.ec.europa.eu/topics/water/floods_en
https://environment.ec.europa.eu/topics/water/floods_en
https://www.efas.eu/en
https://dd.eionet.europa.eu/vocabulary/aq/pollutant/view
https://dd.eionet.europa.eu/vocabulary/aq/pollutant/view


[24] Facebook Connectivity Lab and Center for International Earth Science Information
Network - CIESIN - Columbia University. United Kingdom: High Resolution Pop-
ulation Density Maps + Demographic Estimates. High Resolution Settlement Layer
(HRSL), 2016. Available at https://data.humdata.org/dataset/united-
kingdom-high-resolution-population-density-maps-demographic-
estimates/resource/9007503c-5bf3-450f-8f3f-ca06682f0192 (ac-
cessed May 2023).

[25] First Street Foundation. Flood Factor - Defining America’s Past, Present, and Future
Flood Risk, 2023. Available at https://firststreet.org/risk-factor/f
lood-factor/ (accessed May 2023).

[26] Flood Forecasting Centre. FGS Public API, 2017. Available at https://api.fo
ursources.metoffice.gov.uk/docs/flood-guidance-statement-api-
public# (accessed Apr 2023).

[27] Flood Forecasting Centre. Flood Guidance Statement User Guide, 2017. Available
at https://www.metoffice.gov.uk/binaries/content/assets/metof
ficegovuk/pdf/business/public-sector/hazard-manager/fgs-user-
guide-january-2017-version-4.pdf (accessed Apr 2023).

[28] V. Gill and K. Stephens. Climate change: Warming could raise UK flood damage
bill by 20%, 2023. Available at https://www.bbc.com/news/science-
environment-64866058 (accessed May 2023).
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