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Abstract

This paper presents a novel Knowledge Graph Question Answering (KGQA) system
for chemistry implemented on hybrid knowledge graph embeddings. Unlike other
existing designs, the system operates on multiple embedding spaces, which use vari-
ous embedding methods, and queries the embedding spaces in parallel. With the an-
swers returned from multiple embedding spaces, the system leverages a score align-
ment model to adjust the answer scores and re-rank the answers. Further, the system
implements an algorithm to derive implicit multi-hop relations to handle the com-
plexities of deep ontologies and improve multi-hop question answering. The system
also implements a BERT-based bi-directional entity-linking model to enhance the ro-
bustness and accuracy of the entity-linking module. The system uses a joint numeri-
cal embedding model to efficiently handle numerical filtering questions. Further, it is
capable of invoking semantic agents to perform dynamic calculations autonomously.
Finally, the KGQA system handles numerous chemical reaction mechanisms using
semantic parsing supported by a Linked Data Fragment server. This paper evaluates
the accuracy of each module within the KGQA system with a chemistry question
dataset.

Highlights
• A novel design of a QA system that operates on top of multiple embedding

spaces which utilize different embedding methods.

• An algorithm to efficiently derive implicit multi-hop relations within deep on-
tologies.

• A novel embedding method combining TransR model with joint numerical em-
bedding.
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1 Introduction

In the rapidly evolving digital world, the chemistry sector is producing an enormous
amount of data, which is becoming increasingly complex to handle. The traditional meth-
ods of information storage and retrieval are inadequate to manage this vast quantity of
information. In this context, Knowledge Graphs (KGs) provide a flexible and powerful
framework for semantic retrieval, enabling efficient storage and retrieval of complex and
interconnected data. KGs can also uncover new relationships between different entities in
the data. By conducting a deep exploration of the chemical space using knowledge graphs,
researchers can effectively navigate the vast and complex chemical space to uncover pre-
viously unknown relationships between chemical entities, further expanding their under-
standing of the chemical space and its potential applications. However, KGs are usually
very large and not easily accessible for users as they need to know a query language as
well as the structure and relations in the KG.

Knowledge Graph Question Answering (KGQA) [11, 44, 48, 64] systems bridge human
users to the complex knowledge within KGs through natural language queries by pro-
viding a natural language interface for querying KGs and accessing relevant information.
This allows users to perform more complex and nuanced searches than would be possi-
ble using traditional search methods. Thus, the application of a deep exploration of the
chemical space using KGQA systems has the potential to revolutionize the information
discovery process and pave the way for more efficient and effective utilization of chemical
data across a wide range of fields.

A Knowledge Graph (KG) is a form of data representation, that consists of collections
of descriptions of entities: events, concepts, or objects in the physical world, where the
entities are interconnected with each other via relations. It is a directed graph with the
entities as nodes and their relations as edges. Each directed edge in this graph, along with
its head and tail entities, constitutes a triple, i.e., (head entity, predicate, tail entity). The
description of entities has formal semantics provided by ontologies. As a result, machines
can process information in KGs in an unambiguous manner. Major existing KGs include
the Wikidata KG [51], the DBpedia KG[3], and the Google KG [18].

KGQA systems have emerged as a prominent research topic in the KG community and at-
tract massive attention. In particular, KGQA in the chemistry domain is a promising area
of research owing to the rapid growth of chemistry-related KGs and the potential advan-
tages of a deep search of the chemical space. There are various implementation methods
of KGQA systems. One such rule-based method is Semantic Parsing (SP) which trans-
forms natural language queries into machine-readable logical forms that can be processed
by KGs. In the past, chemistry KGQA systems such as Marie [66] utilized the template-
based SP method to interpret questions and generate SPARQL queries by filling query
templates with Internationalized Resource Identifiers (IRIs) for question-answering. The
2 key advantages of such template-based SP methods lie in its lower reliance on training
data, allowing the system to be implemented quickly with limited training material and
the higher accuracy of answers.

However, SP-based KGQA systems are faced with several limitations due to the increas-
ing complexity of constructing precise queries making them prone to errors. The chem-
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istry domain consists of non-shallow ontologies such as PubChem, OntoSpecies, neces-
sitating multiple steps in a SPARQL query to retrieve the correct answer, contributing to
the increasing difficulty of the QA system to construct the appropriate query. The na-
ture of formal representations like SPARQL queries make them vulnerable to semantic or
syntactic errors, which can lead to inaccurate results or query failure. Furthermore, the
chemistry domain has multiple ontologies with different schemas, which creates scalabil-
ity and robustness issues for SP-based KGQA systems which are incapable of handling
the heterogeneity of such KGs. Hence, there is a need for a KGQA system that can over-
come the aforementioned challenges.

In order to bridge this gap, this paper explores, Information Retrieval (IR)-based KGQA
systems [24, 38, 57] which have become popular due to their ability to generate limited
answer candidates and rank them in accordance with the question, thereby overcoming
the constraints of template-based SP approaches.

The purpose of this paper is to present Marie and BERT, an IR-based KGQA system de-
signed to facilitate an extensive exploration of the chemical space. The proposed design
of Marie and BERT aims to handle heterogeneous multi-ontology KGs and alleviate the
costs of creating SPARQL templates by using hybrid KG embeddings. It aims to rec-
ognize entity references within natural language questions through a BERT-based Entity
Linking (EL) model. The system also proposes the application of a predicate prediction
model to ascertain the relationship within the question. Furthermore, the system is de-
signed to include a score alignment model to handle multiple answer candidates from
various Chemistry KGs. In order to address the issues posed by complex non-shallow
ontologies, this paper proposes an implicit multi-hop relation derivation mechanism to
create triples for training KG embedding models. Further, Marie and BERT aims to learn
and infer information from the existing knowledge in the KG. It aims to invoke semantic
agents that operate over TWA KG to perform dynamic calculations. Finally, the system
intends to handle a vast number of chemical reaction mechanisms utilizing a combination
of SP with Linked Data Fragment when addressing chemical reaction-related questions.

2 Related work

2.1 The World Avatar Knowledge Graph

The modern world is composed of intricate and complex systems such as industrial sym-
bioses, chemical plants, and cities. These systems are made up of diverse components
such as power generators, storage tanks, and abstract industrial operations. However,
integrating the relevant data, knowledge, and models from these components to achieve
complex tasks such as running simulations and optimizations, and coordinating multiple
components, poses a challenge due to communication friction resulting from the use of
heterogeneous conventions across domains.

TWA project is aimed at creating a comprehensive virtual representation of the physical
world, with the goal of facilitating seamless integration and interoperability across diverse
domains. The project builds on the concept of Digital Twins, which involves creating
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virtual representations of entities in industrial processes and takes it to the next level by
extending it to cover all aspects of the physical world. The aim is to enable uniform
integration between not only devices, but also between devices and operations, thereby
upgrading the Internet of Things to the Internet of Services.

Through the J-Park Simulator (JPS) [15], one specific implementation of TWA project,
a data management common ground for these components has been provided to enable
semantic interoperability. The JPS is now fully integrated into TWA KG, which is a large-
scale, dynamic KG that integrates multiple ontologies from different domains. By using
Semantic Web technology, information is represented in a machine-readable way, where
concepts, entities, and the relations between them are formally defined and connected.
This connection enables the retrieval and navigation of related data within a KG, and
interconnects previously isolated datasets by linking knowledge from different domains.

To update and maintain the large-scale KG over time, a number of agents are part of TWA
KG, which perform functions like data retrieval, simulation, and data update on top of
the knowledge layer. In the TWA KG, agents are crucial for its dynamic functionality.
These agents are web services deployed in a distributed manner and can be accessed
through HTTP requests. Their semantic descriptions are stored in the KG, and they are
semantically described by OntoAgent [65]. This allows for the implementation of an agent
composition framework, which enables automated discovery, composition, and invocation
of agents. The TWA KG hosts a wide range of agents, including the Thermodynamic Data
agent (STDC agent) and the Power Conversion Efficiency agent (PCE agent), which are
specific to the chemistry domain.

2.2 Chemistry Ontologies

Marie and BERT is a KGQA system developed for chemistry, which operates on top of
the chemistry ontologies in TWA KG and the Wikidata KG.

2.2.1 TWA Chemistry Ontologies

TWA KG is a large-scale, cross-domain, and dynamic knowledge graph (dKG) that fol-
lows linked data principles and integrates ontologies from various domains including
chemistry. TWA integrated and interconnected a number of ontologies specifically de-
veloped for representing chemical data such as OntoKin [16], OntoCompChem [29], On-
toSpecies [37], and OntoMOPs [27] ontologies.

OntoKin is an ontology that represents chemical kinetic reaction mechanisms. These
mechanisms involve the set of stochiometric reactions among different chemical species,
described through various thermodynamic and transport model concepts and identified by
OntoSpecies IRIs [16]. It employs Description Logic (DL) to provide a semantic rep-
resentation of chemical data within reaction mechanisms, which offers various benefits,
such as interoperability between chemical kinetic systems, automated comprehension of
chemical mechanisms by agents, and the capability to perform complex semantic queries
on mechanisms in a web environment [17]. OntoKin includes specific details about where
the reaction takes place, such as in gas or on a surface, and offers a range of common re-
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action rate models for gas-phase and surface reactions. Additionally, OntoKin models
the reversibility of a reaction using the reaction order, and it allows for easy detection of
inconsistencies in thermodynamic, transport, and reaction data across mechanisms.

OntoCompChem is an ontology designed to enhance the semantics of chemical data in
computational chemistry calculations, with a focus on density functional theory (DFT)
for molecular systems [28]. It extends the Gainesville Core and CompChem ontologies
and employs DL-based semantics to enable interoperability between quantum chemistry
software, reduce computational resource consumption via calculation reuse, and aid au-
tomated agents in understanding such calculations. OntoCompChem represents various
aspects of a calculation, including its objective, software, theoretical level, charge, spin
polarization, and calculated frontier orbitals and self-consistent field energy. It also stores
optimized geometries and computed vibrational frequencies for geometry optimizations
and frequency calculations, respectively, linking them back to their corresponding calcu-
lations.

The OntoMOPs ontology reflects concepts and relationships relevant for the rational de-
sign of metal-organic polyhedra (MOPs) [27]. These concepts involve chemical and spa-
tial factors that are used in chemical and spatial evidence based reasoning respectively.
MOPs are assemblies made of organic and metal-based chemical building units (CBUs)
that resemble regular polyhedra. To facilitate the design of new MOPs, OntoMOPs en-
codes assembly models (AMs) and generic building units (GBUs) as mental blueprints
that guide the selection of CBUs from available sets. Additionally, OntoMOPs employs
the OntoSpecies ontology to instantiate the CBUs as species.

OntoSpecies [37] is a fundamental chemistry ontology in TWA KG. This ontology con-
tains the IRIs of about 36,000 and is constantly growing. The ontology also covers the
basic chemical and physical properties of species. It is used as a foundation and has
been expanded to encompass a diverse collection of identifiers, classifications and uses of
chemical species, as well as spectral data, in addition to information indicating its origins
and attribution.

2.2.2 Wikidata chemistry

The Wikidata chemistry ontology is a subset of the Wikidata KG [51, 53], focused exclu-
sively on chemical species. This ontology was created by generating a customized dump
that includes only instances classified under the sub-classes of the class "group or class
of chemical substances". The Wikidata chemistry ontology currently comprises 33,061
distinct chemical species and approximately 50,000 triples.

The Wikidata chemistry ontology primarily captures chemical and physical properties
of the included species, such as "mass", "chemical structure", "chemical formula", "re-
fractive index", "ionization energy", and "autoignition temperature". In addition, it also
includes the identifiers of these species in other databases, such as PubChem CID, Chem-
Spider ID, and CAS Registry Number. This feature allows for easy linking and integration
of Wikidata chemical data with external databases, facilitating cross-database searches
and interoperability.
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2.3 Knowledge Graph Question Answering System

Knowledge Graph Question Answering (KGQA) [11] is a major focus in both the KG
community and the Natural Language Processing (NLP) community, as KGs are rich
sources of semantic and structured data, and question answering represents one of the
biggest challenges for NLP. In general, KGQA systems answer questions using two meth-
ods [60]: Semantic Parsing-based (SP-based) method [48, 64] and Information Retrieval-
based (IR-based) method [24, 57].

2.3.1 Semantic Parsing

In the SP-based method, questions are parsed into formal representations such as SPARQL
queries [39], λ -DCS [33], or FunQL [26]. These formal representations are then executed
against the KG to find answers. There are three different approaches for SP-based meth-
ods: ranking methods, coarse-to-fine methods, and generation methods.

Ranking method: In the ranking method, the QA system first generates a list of candidate
formal representations through a process known as candidate enumeration. For example,
Abujabal et al., Bast and Haussmann, Berant and Liang create candidate queries by filling
pre-specified query or machine-generated query templates with IRIs and other specific ar-
guments. Another approach for candidate enumeration is to traverse the relation paths and
neighbours linked to the topic entity in the question, and add query operations including
constraints or aggregation functions to form candidate queries.

Once the candidate queries are formed, the ranking method employs semantic match-
ing techniques to select the top-ranked candidates. Neural models such as CNN [62],
LSTM [63], and Pre-trained Language Models (PLM) [20, 61] are commonly used to
score question-query pairs.

Coarse-to-fine method: The coarse-to-fine method comprises two steps. First, the QA
system predicts a rough skeleton that focuses only on the high-level structure of the query.
Recent works often predict rough queries using encoder-decoder models. For example,
Ravishankar et al. utilized a transformer-based SEQ2SEQ model initialized with BERT to
generate the SPARQL skeleton corresponding to the question text. Sun et al. use a pipeline
of sub-tasks including question split and span prediction for skeleton parsing. Das et al.
use the pretrained T5 encoder-decoder model to directly produce a coarse skeleton.

With the rough skeleton in place, the QA system then populates it with details and creates
the final queries. For example, Ding et al. use an attention-based BiLSTM network to
link possible entities and relations in the questions, and come up with all combinations of
entities and relations for each skeleton. Hu et al. use BERT as a binary classifier to map
attributes in the question to semantic relations.

Generation method: The generation method features two paradigms: graph search and
encoder-decoder. In the works that leverage graph search, formal representations are cre-
ated by traversing the graph from the topic entity in the question. For example, Lan
et al. iteratively searches through reachable relation paths starting from the topic en-
tity and ranks the relation paths in the context of the question. The encoder-decoder
paradigm aims to directly translate the questions to their formal representations. Numer-
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ous works [8, 10, 19, 40] experiment with various encoder-decoder models to improve the
correctness and well-formedness.

2.3.2 Information Retrieval

The IR-based method, given a question, extracts a question-specific subgraph, which ide-
ally includes all entities and relations related to the question, and applies a ranking algo-
rithm to find the answer within the subgraph.

One of the most prevalent IR-based KGQA methods is the KG embedding-based method.
First, all entities and relations are represented within a vector space, where their semantic
relations are preserved. With the KG embedding, the likelihood or relative likelihood of
a triple (h,r, t) can be measured by a scoring function φ(êh, êr, êt). In a KG embedding-
based KGQA system, the system translates the question into an embedding vector which
serves as the relation embedding êr. Meanwhile, the system typically extracts an entity as
the head entity and looks up its embedding êh. In addition, all the neighbours within an
n-hop distance from the head entity are extracted as candidate answers A = {a1, ..,an}. To
rank all the candidates, for each a′ ∈ A, the likelihood of the hypothetical tripe, φ(h,r,a′)
is calculated.

Huang et al. first proposed the KG embedding-based method which leverages KG embed-
ding to answer simple questions. BiLSTM is used to convert the question into a vector
representing the predicate, while TransE and TransR are applied to embed the KG. Sax-
ena et al. then improved the KG embedding-based method by using the RoBERTa model
for question embedding and applying the Complex embedding method for KG embed-
ding. Shang et al. further improved the method for answering time-sensitive questions
over temporal KGs.

The KG embedding-based method has been applied in several domain-specific KGQA
systems. For instance, in the biomedical field, Rao et al. proposed a KGQA system over
the Hetionet dataset, which leverages RoBERTa and BioBERT for question embedding
and applies Complex embedding for KG embedding.

2.4 Entity linking

Entity Linking (EL) is a crucial component of KGQA systems as it bridges the gap be-
tween human language and KG representation. EL involves identifying entity references,
called ’mentions’, in unstructured text and mapping them to corresponding entities in the
KG. Traditional EL approaches use a pipeline structure consisting of three sub-tasks [2]:
Named Entity Recognition (NER) for identifying the mention boundaries in text, Candi-
date Generation for generating pre-filtered candidate lists for mentions, and Entity Rank-
ing for ranking the candidates based on certain criteria.

Recent studies have demonstrated that PLMs like BERT [13] significantly outperform
traditional rule-based systems in EL [45]. Wu et al. [55] use BERT-based encoders in
a two-stage fashion for EL, achieving the state-of-the-art (SOTA) performance in local
settings, while Yamada et al. [58] consider global contextual information and achieve the
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highest SOTA performance in global settings. These studies highlight the advantages of
using pre-trained BERT for EL. However, most of these studies evaluate their approaches
exclusively on general-topic KGs such as DBpedia [3] or Freebase [6], limiting their
application to laboratory setups instead of actual KGs in operation. Further research is
needed to transfer these methodologies to specific scientific disciplines, such as chemistry,
or specific downstream applications, such as QA.

EL for QA requires a specific approach since it involves short questions that have less con-
text information compared to general EL that focuses on lengthy and properly formed doc-
uments like Wikipedia pages or news articles. Li et al. [32] leveraged BERT-embedding
for EL and designed it specifically for QA scenarios. However, their evaluation is based
on DBpedia entities, limiting their study’s applicability to scientific domains. The vo-
cabulary sets and domain-related characteristics of scientific domains present additional
challenges that need to be addressed.

The biomedical domain has presented some experience in EL, with the community de-
veloping BERT models based on domain-specific corpus, such as BioBERT [31] and
ClinicalBERT [47] in addition to the original BERT models trained on Wikipedia and
BookCorpus [59]. Ji et al. [25] fine-tune pre-trained BERT models for the sentence pair
classification task and achieve the SOTA performance, demonstrating the advantages of
using domain-adapted BERT models over the original BERT model. Chen et al. [9] pro-
posed a simpler model with a specific feature suited for biomedical terms. However, these
approaches primarily focus on disease terms and clinical records, which are not directly
applicable to the chemical QA scenario.

2.5 Knowledge Graph Embeddings for KGQA

KGs are widely used to represent structured information in various domains. One of the
key challenges in working with KGs is to effectively manipulate and reason with the large
amount of data they contain. KG embedding is a popular technique that can address this
challenge by representing entities and relations in a continuous low-dimensional vector
space. This technique is widely used in tasks such as KG inference, relation prediction,
KG completion, and in supporting KGQA.

A KG is represented as a set of triples G = {(h,r, t)}, where each triple contains a head
entity h, a tail entity t, and a relation r between them. The sets of entities and relations
are denoted as N and M, respectively. To learn the embeddings, a loss function L(h,r, t)
is defined and the embeddings are iteratively updated to minimize the loss.

Over the years, a wide variety of KG embedding algorithms with unique loss functions
have been developed, each capable of capturing different features of the KG. Choosing
the appropriate embedding algorithm is crucial for achieving optimal efficiency and ac-
curacy in embedding the KG, as the scale and structure of the KG can vary widely across
domains.
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2.5.1 TransE

TransE [7] is one of the simplest and most effective embedding methods for KGs that
have only 1-to-1 relations. For a triple (h,r, t) ∈ G , it models the process of predicting the
tail entity, t given the head entity, h and the relation, r by translating h to t via r.

Given a triple (h,r, t) ∈ G , the TransE embedding in Rd results in three d-dimensional
vectors denoted as êh, r̂, êt ∈R1×d . The TransE embedding is constructed such that êh+ r̂≈
êt if (h,r, t) holds. To achieve this, the TransE score function φ(êh, r̂, êt) is introduced,
which measures the distance between the sum of the vectors of the embedded head and
the embedded relation and the embedded tail entity, defined as:

φ(êh, r̂, êt) = ||êh + r̂− êt ||1/2. (1)

The training of TransE embedding is done by a pairwise method, which creates a fake
triple (h′,r, t ′) /∈ G for each (h,r, t) ∈ G by replacing the head or tail entity with a random
head or tail. The loss function, L is a margin ranking function, which takes the embed-
dings of both the true and fake triples, (êh, r̂, êt

′) and (êh, r̂, êt) as inputs and calculates the
difference between the scores of the triple pair with a margin γ , defined as:

L(ê, r̂) = max(0,γ +φ(êh, r̂, êt)−φ(êh
′, r̂, êt

′)). (2)

The training algorithm updates the embedding of all entities ê∈ Ee and r̂ ∈ Er with respect
to the gradient of L(ê, r̂) iteratively to minimize L(ê, r̂).

2.5.2 TransEA

TransEA [56] is an extension of the TransE embedding method that can handle numerical
literals in addition to entity triples, (h,r, t) ∈ G . Some knowledge graphs, such as Wiki-
data, contain both entity triples and attribute triples, (h, l,v) ∈ G , where l is the attribute
and v is a literal value associated with the entity. In TransE, attribute triples are ignored.

In the TransEA method, a loss function for the embedding of numerical literals, Ll(ê, l̂, b̂)
is added to the TransE loss function for entity triples, Lr(ê, r̂). For the embedding of a
triple with a numerical literal (êh, l̂,v), the loss function is defined as:

Ll(êh, l̂, b̂l) = ||l̂⊤ · êh + b̂l− v||1/2 (3)

where l̂ ∈ R1×d is the embedding of the attribute l, b̂l ∈ R1 is the bias for the attribute l̂,
and v ∈ R is the numerical value of the entity attribute.

The TransEA loss function Lr(ê, r̂) for an entity triple (h,r, t) is identical to that of TransE.
To model both entity triples and attribute triples, TransEA sums the two loss functions
with an adjustable factor α . The combined loss function L(ê, r̂, l̂, b̂l) is defined as:

L(ê, r̂, l̂, b̂l) = (1−α) ·Lr(ê, r̂)+α ·Ll(ê, l̂, b̂l). (4)
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2.5.3 ComplEx

ComplEx [50] is a tensor factorization approach that represents the entities and relations
in the KG in the complex space as complex-valued vectors, which enables the use of
complex algebra to model semantic relationships among them.

For each triple (h,r, t) ∈ G , ComplEx generates (eh,er,et) ∈C and defines a scoring func-
tion:

φ(h,r, t) = Re(⟨eh,er,et⟩)

= Re(
d

∑
k=1

ek
h ek

r ek
t )

(5)

such that φ(h,r, t) > 0 for all true triples, and φ(h,r, t) < 0 for false triples. The real
and imaginary parts of the embeddings capture different aspects of the semantics of the
entities and relations, respectively, and their combination in the scoring function allows
for the modeling of more complex and nuanced relationships among them.

2.5.4 TransR

TransR [34] is an extension of TransH [54], which encodes entities and relations into
distinct spaces. For each triple (h,r, t), entities embeddings are h, t ∈ Rk and relation
embeddings are r ∈ Rd . A projection matrix Mr ∈ Rk×d is learned for each relation r,
that can project an entity to different relationship semantic spaces [34]. Each of these
spaces captures a different aspect of an entity that is related to a distinct relationship. The
projected vectors of entities are denoted as:

hr = hMr (6)

tr = tMr (7)

The loss function is defined as:

fr(h, t) = ||hr + r− tr||22 (8)

3 Datasets

3.1 Entity Linking Dataset

To train an effective EL model, a high-quality EL dataset is required, which consists of
text labelled with mentions and their corresponding IRIs. The EL dataset is designed
to support the training of EL models that can recognize mentions of these entities in
questions and link them to their corresponding IRIs in the KG. The EL dataset focuses
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on several domains, including chemical formula, name, SMILES, and InChI, as well as
various classes such as MOPs and CBUs.

The data in the EL dataset is collected from Wikipedia pages related to chemistry and
chemical species. These pages contain not only textual information about the chemical
species but also their Wiki IDs. By utilizing the information provided by Wikidata, we
map these Wiki IDs to their corresponding PubChem Compound Identifiers (CIDs).

For data not available on Wikipedia, such as classes like MOPs and CBUs from a spe-
cific domain ontology, we employ scripts to automatically generate training data from the
ontology. These scripts traverse the domain ontology, gathering IRIs and labels. Subse-
quently, the scripts generate text with labeled mentions by applying pre-defined templates
and rules.

The input to the dataset is text labelled with mentions, and the output is the IRI of the
mention.

3.2 Relation Prediction Dataset

The relation prediction dataset is designed to train a model for predicting relation em-
beddings given a question. The purpose of this dataset is to enable the development of
models that can accurately predict relation embeddings between entities in a KG based on
the input question.

The input to the dataset is a question, and the output is the relation embedding. The dataset
covers both explicit and implicit relations within all chemistry ontologies in this project’s
scope, providing a comprehensive range of relation types to support the development of
relation prediction models.

The data for this dataset is also generated using scripts. These scripts traverse the KG and
gather both explicit and implicit relations along with their labels. Pre-defined question
templates are then populated with the relation labels to generate questions. For instance,
a question template might be "How much does it weigh?" where the entity is omitted.
Implicit relations are pre-labeled manually before the data generation process.

3.3 Score Alignment Dataset

The score alignment dataset is designed to train a model for re-ranking the answers re-
turned by different domain Question Answer (QA) engines based on the input question
and the ontologies with which it is affiliated. The purpose of this dataset is to enable the
development of models that can accurately align scores across different QA engines and
improve the accuracy of question answering.

The input to the dataset is a question and a list of ontologies with which the question is
affiliated. The output is a re-ranked list of answers returned by different domain QA en-
gines, based on the alignment of their scores. The dataset covers possible questions from
all chemistry ontologies within this project’s scope, providing a comprehensive range of
question types to support the development of the score alignment model.
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The training dataset is created using a method similar to that employed for the relation
prediction dataset.

4 Design

4.1 Overview

The Cross Graph Question Answering (CGQA) engine, as depicted in 1, serves as the
primary interface for the QA engines developed for each ontology within the Marie and
BERT system. The CGQA engine incorporates seven distinct QA engines, with each one
designed for a specific chemistry ontology in the TWA KG. Each QA engine operates on
the KG embeddings associated with its particular ontology.

When the CGQA engine receives a natural language question, it distributes the query
to all QA engines which operate in parallel. In response, every QA engine generates a
collection of answer candidates and ranks them using a score function. This function
assesses the likelihood of each candidate answer’s existence.

Subsequently, the CGQA re-ranks the answers provided by the individual QA engines and
presents a final set of the most suitable answers within its context.

4.2 Entity Extraction

It is crucial to first obtain the IRI of the head entity referred to in the input question before
a QA engine can predict the answers. For a KG G , a set of entities E and question text q,
the Entity Extraction module aims to find the corresponding IRI h of the head entity e∈ E
referred to in q. The occurrence of an entity in a natural language sentence is referred to
as a ’mention’. The conventional workflow involves first identifying a mention span in the
question and then scoring entities based on their similarity to the mention span text. This
process is divided into two steps: Entity Recognition (ER) followed by Entity Linking
(EL). However, we propose a different workflow for three main reasons:

1. Mention boundaries of entities are irrelevant in Question Answering.

2. Scientific notations like SMILES differ significantly from natural language, making
them difficult to process with a single unified language model.

3. A stand-alone ER system infers solely from the question text and does not utilize the
information in the KG. Once the span is marked, additional information in the ques-
tion text is discarded and not utilized in the follow-up EL. Moreover, the question
text being short and lacking context, ER as a standalone step might be error-prone
and become the bottleneck.

Instead, we implement a joint ER and EL approach similar to [32]. Additionally, we
include a SMILES translation module to extract any SMILES names and convert them to
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Figure 1: The overall design of the Marie QA system: for each ontology, an independent
set of entity embeddings is trained, where Ee are indexed set of entity embed-
dings and E is the indexed set of entity IRIs, and an independent QA engine is
implemented. Given a question q, each QA engine will return a set of answers
together with their scores S and the encoded label L of the corresponding em-
bedding space Ee. Given the scores S and the embedding space labels, and the
question q, the score alignment model will adjust the scores with respect to the
inputs and re-rank the answers returned from different embedding spaces and
QA engines.

IUPAC names, which are more accessible for a language model to make predictions. We
propose the following two-stage workflow, as shown in 2:

4.2.1 SMILES Translation

We recognize SMILES names as unique surface forms in the chemical domain that are
difficult to process with a unified language model. Consequently, we design a SMILES to
IUPAC name translation module as a pre-processing step. For this purpose, we fine-tuned
a BERTBASE model TSMILES along with an additional linear classifier C on the token classi-
fication task, following standard practices. Each token in the question text is classified as
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Figure 2: The workflow of the Entity Extraction module is completed in two stages, Left:
the SMILES-Translation stage: if a SMILES substring exists in the question q,
it is identified and translated through an off-the-shelf SMILES to IUPAC trans-
lation module. The question is then preprocessed by replacing the SMILES
string with its IUPAC translation. Right: the joint ER and EL stage: token-
level embedding of the question text, vq is obtained from the question encoder.
The mention classifier then outputs the possibility of a mention span [i, j] in the
question being the true mention span P([i, j]). Its embedding is the average
embeddings of the tokens in the span, vmention. Entity embeddings ve are gen-
erated by the Entity Encoder and cached before runtime. P(ve|vmention) is the
probability of an entity being the gold entity given a mention.The mention entity
pairs are eventually scored based on the joint probability P[i, j]P(ve|vmention).

either belonging to a SMILES string or not. The training procedure is detailed in 9.

Given a question text q, the trained model can now identify SMILES substrings. Once
identified, we translate the SMILES string to its common IUPAC name and replace it in
the question text before feeding it into the Joint EL and ER model for entity extraction.
For translation, we employ the off-the-shelf library STOUT [41].
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4.2.2 Joint ER and EL

A joint ER and EL system considers all possible spans of the question text as mention
span candidates and measures the joint probability of a span being the mention span and
the mention matching a candidate entity in the KG. The design for the model follows the
method of [32]. The model consists of three trainable components:

1. The question encoder, which encodes the question text.

2. The entity encoder, which generates entity embeddings from the KG.

3. The mention classifier, which outputs the probability of all mention spans being the
true span.

The model is trained using the dataset described in 3.1. We follow the methodology in
[32] and train the model in a two-step fashion. First, we use the EL dataset with the given
mention spans to train a plain bi-encoder. Then, we freeze the entity encoder to train the
new question encoder and the mention classifier for the joint ER and EL task. Details
of the training procedure can be found in 7 and 8. After the training is completed, the
models are frozen, and the entity embeddings for all KG entities are cached for faster
computation.

During runtime, a question is first fed into the question encoder to obtain the question
embedding. Using the question embedding, the mention classifier outputs the probability
of each mention span being the true span. Given a candidate mention span, the mention
embedding is calculated as the average of the textual embeddings of all tokens in the
mention span. The probability of each entity being the true entity given this mention span
is then calculated by comparing the mention embedding and the question embedding.

The final joint probability of an entity-mention span pair is computed as the product of two
probabilities: the probability of the mention span being the true span, and the probability
of the entity being the true entity given this mention span. For all entity-mention span
pairs, we select the top K pairs with the highest joint probability.

4.3 Hybrid Knowledge Graph Embeddings

The KG embedding module aims to represent entities and relations within a KG in vector
space. Several KG embedding methods are available for KGs of varying complexities
and structures. Due to the heterogeneous and cross-domain nature of the TWA KG, we
implemented a novel system wherein different ontologies are embedded using distinct em-
bedding methods. The candidate embedding methods include TransE, TransEA, TransR,
TransRA, and Complex embeddings.

OntoSpecies, Wikidata chemistry, and OntoMOPs contain 1 to N relations, in which one
head node can connect to multiple tail nodes via the same relation. The majority of the
information contained in these ontologies is numerical rather than semantic.

Consequently, the TransRA embedding method is chosen for its ability to model 1 to N
relations, compared to the TransE embedding method [34]. Additionally, experiments
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conducted to analyze the performance of different embedding methods on the task of in-
ferring knowledge from OntoSpecies reveal two main findings. First, the addition of joint
numerical embedding significantly improves the inference performance on OntoSpecies,
which is primarily numerical. Second, the experimental results also demonstrate that joint
numerical embedding is significantly less effective when applied to Complex embedding.

As a result, the TransRA embedding method is selected as the embedding method for
OntoSpecies, Wikidata chemistry, and OntoMOPs. OntoCompChem and OntoKin, on
the other hand, contain less numerical data. However, these two ontologies have non-
shallow structures, where the answer nodes can be multiple relations away from the head
node. Therefore, Complex embedding is chosen for its capability to capture implicit
relations [50].

4.3.1 Implicit Multi-hop Relation Derivation

Ontologies like OntoCompChem are non-shallow and of complicated structures, as illus-
trated in 3. In these ontologies, a property of a species can be three or more hops away
from the species itself. Consequently, the formal representation for querying such KGs
can be complex and therefore prone to errors. This complexity also poses challenges
for IR-based methods. Although Complex embedding can capture implicit relations, the
complicated structure of OntoCompChem limits its capability and accuracy of relation
prediction.

To address this issue, we adopt an implicit multi-hop relation derivation algorithm as de-
scribed in algorithm 6. This approach involves deriving possible implicit relations in ad-
vance and creating a limited set of triples with these implicit relations for training the KG
embedding models. This method does not require significant effort but greatly enhances
the accuracy of relation prediction.

5 Implementation/Method

5.1 QA Engine Workflow

Figure 4 illustrates the workflow of a QA engine operating on the embedding space for
one KG, G , where the set of all entity IRIs is denoted as E , the set of all relation IRIs as
R, the embeddings of entities as Ee, and the embeddings of relations as Er.

Each QA Engine receives a question string, q, as input. The question is passed to the
EL module, which extracts the head entity in the question and links it to its IRI, h. The
subgraph agent then extracts the candidate answers, A′ = {a1

′, ...,a j
′}⊂ E , that are within

n-hops from h. For each a′ ∈ A′, we look up its embedding to create Ea
′ = { ˆea1

′, ..., ˆea j
′},

and similarly, we look up the embedding êh of h.

In the meantime, given the question q, the relation prediction model maps the relation in
q to a relation embedding, êq. For each candidate answer êa

′ ∈ Ea
′, the embeddings of a

hypothetical triple (êh, êq, êa
′) are created. All hypothetical triples are then scored using
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Figure 3: The illustration of the structure of the OntoCompChem ontology. As shown in
this figure, the head entity, which is a species, is 3-hops away from the candi-
date answers. In addition, the first two hops from the head entity to the candi-
date answers are identical.

the scoring function φ(êh, êq, êa
′) of the embedding method being used for G . A set of

candidate answer embeddings Ea = { ˆea1, ..., ˆeak} with the highest scores is formed and
converted to their IRI forms A = {a1, ...,ak}, where k ≤ j. If a ∈ A is linked to numerical
values, the numerical values are then retrieved by the lateral lookup agent.

5.2 Information Derivation

Inference in KGs refers to the process of deducing new information from the existing
knowledge represented in the graph. The use of inference can enhance the accuracy and
completeness of the information represented in the graph and can be used for a variety of
tasks, such as link prediction, question answering, and recommendation systems.

The information derivation task can take several forms such as tail, relation or head in-
ference. Marie and BERT employs the TransRA embedding methodolody to achieve the
inference task on OntoSpecies. The performance of TransRA compared to the other em-
bedding methods is shown in Table 1.

Information derivation offers several applications. One potential application is to infer the
use of a particular species represented in OntoSpecies.

5.3 Numerical Questions

Marie and BERT’s CGQA is capable of handling numerical questions in the chemistry
domain. For example, they can answer questions like, "Which species have a molecular
weight less than 50 gm/mol?" Based on the filtering criteria specified in such questions,
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Figure 4: The working flow of the QA engine for one embedding space, where the indexed
set of entity embedding is denoted as Ee and the indexed set of entity IRIs E : q
represents the question string and êq represents the predicted embedding vector
of q, h denotes IRI of the head entity within the question while êh denotes the
embedding of h in the vector space, A′ denotes the IRIs of a set of candidate
answers while êa

′ denotes the embeddings of a′ in the vector space. For each
ea
′, φ(êh, êq, êa

′) is calculated to score the hypothetical triple (êh, êq, êa
′).

such as "larger," "smaller," or "close to," the set of candidate species is narrowed down by
predicting their numerical attributes.

To handle numerical questions, the QA engine employs two rounds of filtering operations.
In the first round, a set of candidate species is obtained based on their predicted numerical
values, which must align with the numerical filter specified in the question. Next, the
actual numerical attribute values for this subset of species are determined using their em-
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Table 1: Performance of different embedding methods on OntoSpecies tail inference task.

f_mrr f_hit_1 f_hit_5 f_hit_10

TransE 0.4055 0.3396 0.4528 0.6038
TransEA 0.4821 0.3396 0.6603 0.7169
TransR 0.3911 0.2452 0.6038 0.7547
TransRA 0.5134 0.3962 0.6226 0.6981
Complex 0.3736 0.1698 0.6603 0.6981
Complex_Numerical 0.233 0.1509 0.3396 0.415

beddings. Finally, the second round of filtering produces a final list of answer candidates
whose actual numerical attribute values adhere to the numerical filter in the question.

This methodology is time-efficient, which is crucial for effectively answering numerical
questions. We evaluated the accuracy of numerical filtering mechanism by evaluating
its recall, precision, and F1 score. Two separate tests are conducted, the filtered test is
conducted given the true relation and true numerical operators in the question while the
unfiltered test is conducted without the ground truth information. Table 3 shows the results
of the two tests.

5.4 OntoKin Chemical Reactions

The OntoKin Chemical Reactions ontology comprises 89,780 unique reactions, 9,964
unique species, and 679,737 triples. Several experiments were conducted to embed this
ontology, however, the embedding faces two major challenges. First, the large size of
the ontology results in a high embedding cost. Moreover, upon analysing the structure of
the ontology, it bcomes evident that all nodes within the ontology are connected, and no
subgraph can be separated without breaking connections. Second, the ontology structure
is highly imbalanced. Some very common species are connected to a significantly larger
number of reactions compared to some rare species. For example, the species Hydrogen
is connected to 7,316 reactions, whereas C9H7 is only connected to 76 reactions. Due to
this imbalance, the embedding becomes less effective [21], which further complicates the
embedding process for the OntoKin Chemical Reaction ontology.

To address the aforementioned challenges, we adopted a more cost-effective SP-based ap-
proach for querying OntoKin Chemical Reactions. This approach involves the use of the
NLTK semantic parsing module to analyse the grammatical dependencies in a question
and setting up a Linked Data Fragment (LDF) server to support reaction querying. The se-
mantic parsing module leverages probabilistic dependency grammar to parse the question
into a tree structure, illustrating the grammar dependencies among different components
within the question. We then identify the reactants and/or products within the question.
Figure 5 illustrates an example of the grammatical dependency in a reaction query ques-
tion.

Nonetheless, due its large scale, hosting the ontology using a traditional gragh database,
such as Blazegraph or RDF4J, can be computationally expensive. The LDF [52] approach
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offers a solution for querying semantic data. This method enhances the scalability and
availability of the query endpoint through partitioning strategies and caching mechanisms.
Consequently, we implemented an LDF server to host the OntoKin Chemical Reactions
ontology.

When_H2_reacts_with_OH,_what_is_the_final_outcome_of_the_reaction

when/WRB ALL_REACTANTS

SPECIES_SET

SPECIES

H2/NNP

react/ADD SPECIES

OH/NNP

final/JJ outcom/NN reaction/TARGET

Figure 5: Grammatical dependency structure of question "When H2 reacts with OH,what
is the final outcome of the reaction".

5.5 Semantic Agents for Dynamic Calculations

In order to perform calculations on the fly, Marie and BERT accesses the dynamic com-
ponents of the TWA KG: the agents. Agents are web services that are deployed in a
distributed manner and accessible via HTTP requests, with their semantic descriptions
stored in the KG. In TWA KG, an agent is semantically described using OntoAgent [65].
The typical OntoAgent description of an agent has been revised and simplified to include
a detailed description of its input/output (I/O) signatures, its URL, and associated question
templates, as illustrated in Figure 6.

The TWA KG encompasses a wide range of agents. Within the chemistry domain, these
agents consist of the Thermodynamic Data agent (STDC agent) and the Power Conversion
Efficiency agent (PCE agent). The STDC agent calculates the gas-phase thermodynamic
properties of a chemical species as a function of temperature T and pressure P [35], while
the PCE agent computes the power conversion efficiency of an organic solar cell, given
the SMILES string of the donor molecule of the cell [67].

In the previous Marie QA system, the process of agent discovery relied on SPARQL
queries, which are prone to errors. Additionally, using a simple classifier for agent dis-
covery proved inadequate for distinguishing between very similar agents. To address these
challenges, we have implemented an agent interface in the Marie and BERT CGQA sys-
tem that is independent of all QA engines. This agent interface operates on the OntoAgent
embeddings for chemistry-domain agents, with concepts in the OntoAgent description be-
ing embedded using TransR.

The embeddings of the input/output configurations for each agent are utilized to create
matrices representing each semantic agent. Given a question, we employ a BERT-based
relation prediction model to predict the relation embedding present in the question. In this
approach, a pre-trained BERT model is connected to two fully connected layers, which
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Figure 6: Revisions to the schema of the OntoAgent ontology used to instantiate the
Agents and create their respective embeddings. The greyed-out sections in the
Initial OntoAgent schema represent certain components in the schema that have
been omitted to enhance clarity and eliminate redundancy.

transforms the question into a relation embedding. Subsequently, we conduct similarity
matching between this relation embedding and all available semantic agents using their
respective matrices to determine the question-agent affiliation.

Furthermore, we employ a chemical Entity Linking (EL) model to identify the key com-
ponents within the question. For instance, in the question "What is the heat capacity of
benzene at 100 K?", the term "benzene" is labeled as "species". This labeling is achieved
through a fuzzy set search within a pre-defined vocabulary list containing a large number
of instance and class labels, including species. The label with the highest similarity to
the mention is then looked up in a pre-defined vocabulary dictionary, where labels are
mapped to their types. For example, "benzene" is mapped to the type "species".

Qualifiers, including numerical values and their units, are identified using regular expres-
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sions. For example, in the aforementioned question, the qualifier is identified as "100 K"
and labeled as "temperature". However, in the proof-of-concept implementation, we did
not handle unit conversion and assumed that all temperature units are in Kelvin (K) and
pressure units are in Pascal (Pa).

If a suitable agent is identified, the key components are passed to an agent invocation
interface, which generates the HTTP request, invokes the appropriate agent, and returns
the answer to the score alignment model for further processing.

5.6 Score Alignment Model

By design, the QA engine for each ontology is implemented separately, utilizing indepen-
dent embedding spaces. However, there is also overlap between domains. For instance,
both Wikidata chemistry and OntoSpecies can answer questions about the basic physi-
cal and chemical properties of some species. Consequently, correct answers might come
from multiple QA engines. Moreover, since different embedding methods are applied to
the ontologies, the scale of the answer scores varies, rendering it impossible to directly
compare the scores of answers originating from different QA engines.

To address this issue, we implemented a score alignment model that adjusts the scores
from multiple QA engines, using the question and the domains of the scores as inputs.
The intuition behind this model is to predict a bias for the score associated with each
answer based on the question-ontology affiliation and the domain from which the score is
derived. Algorithm 4 outlines the training process for this model.

Table 5 presents the results of an ablation test for the score alignment model. In the
absence of the score alignment model, the set of scores from each ontology is normalized
by dividing each score by the highest score within the set. Subsequently, the scores from
different domains are re-ranked together. The results indicate that the score alignment
model effectively improves the accuracy of the final answers.

6 Evaluation

6.1 Entity linking

Due to the lack of available chemical QA datasets, we collected chemistry-related natural
language questions from https://socratic.org/chemistry. However, the original questions
exhibited a significant imbalance in the distribution of entities. To address this, we manu-
ally selected 172 template questions and generated our training and test sets by replacing
the original mentions in the question templates with entity mentions sampled from the
KG. These entities were randomly sampled from a combination of the first 5000 Pub-
Chem compounds and our chemical ontologies. For PubChem entities, the mention could
randomly be either the IUPAC name, chemical formula, or any of its aliases.
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To demonstrate our model’s ability to understand unseen question structures, we ensured
that the training and testing templates were separate and had no overlap. We trained
our model on 20,000 questions generated from 32 templates and tested it on 5,000 ques-
tions generated from 140 templates. For SMILES questions, we randomly selected 500
SMILES expressions from the PubChem compounds list and generated questions from
the 140 test templates. We measured the K−1 accuracy of our predictions.

We employed a traditional pipeline denoted by ChemData+fuzzysearch as a baseline for
evaluation. This pipeline first recognizes possible mentions using ChemDataExtractor[49],
a popular toolkit for chemical entity recognition using random fields combining custom
dictionaries and rule-based NLP techniques. The extracted mention is then linked by a
fuzzy name search, including IUPAC names, chemical formulas, and all known aliases.

To compare the performance of our translation pipeline to training with SMILES expres-
sions directly, we trained a second set of models following the same procedure, except
with an additional 4,000 training questions generated from SMILES expressions. In this
case, the extra translation module was not employed, and the SMILE expression was
passed through and compared by the bi-encoder directly. The K− 1 accuracy of all set-
tings are shown in Table 2.

Table 2: Evaluation of Entity Linking.

Model / Test Dataset Template Questions SMILES Questions

ChemData+FuzzySearch 0.20 -

Ours 0.88 0.484
Ours w/o translation 0.88 0.290

6.2 QA engine

In order to assess the accuracy of question answering, we first evaluated the QA engine
implemented for each ontology using an evaluation dataset specifically created for the
ontology. Table 4 presents the evaluation results for each ontology, which includes four
metrics: hit 1 rate, hit 5 rate, hit 10 rate, and mean reciprocal ranking (MRR). The hit n
rate indicates the percentage of instances where the true answer is found within the top-n
answers returned by the QA engine. MRR is defined as follows:

MRR =
1
Q

Q

∑
i=1

1
ranki

, (9)

where ranki refers to the rank of the true answer and Q represents the total number of
questions used for evaluation.
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For each ontology, we calculated a filtered and an unfiltered set of accuracy results. Fil-
tered accuracy measurements were obtained by providing the QA engines with the true
head entity, while unfiltered accuracy measurements were calculated without providing
the true head entity. Consequently, due to errors in EL, the filtered accuracy results tend
to be higher than the unfiltered accuracy results.

Table 3: Accuracy of numerical filtering questions.

Test Recall Precision F1 score Operator accuracy Mean value error

Unfiltered 0.8367 0.7177 0.7726 1.0 0.4583
Filtered 0.8367 0.9684 0.8978 1.0 0.5519

Table 4: Evaluations of separate QA engines.

hit 1 rate hit 5 rate hit 10 rate mrr

Pubchem 0.8122 0.8155 0.8155 0.8132
Pubchem filtered 0.9449 0.9544 0.9544 0.9996
Ontocompchem 0.3366 0.39 0.39 0.7971
Ontocompchem filtered 0.8147 0.9621 0.9621 0.8542
Ontokin 0.88 0.885 0.885 0.6767
Ontokin filtered 0.9943 1.0 1.0 0.8755
OntoSpecies 0.7907 0.8210 0.8210 0.7784
OntoSpecies filtered 0.9168 0.9519 0.9519 0.8920
Wikidata 0.4910 0.5731 0.5731 0.5255
Wikidata filtered 0.8182 0.9364 0.9364 0.8673
OntoMOPs 0.7356 0.8451 0.9132 0.8736
OntoMOPs filtered 0.8612 0.8933 0.9245 0.8952

Table 5: Ablation test for score alignment.

hit 1 rate hit 5 rate hit 10 rate mrr

w/o score alignment 0.4762 0.9452 0.9469 0.5677
with score alignment 0.9822 0.9879 0.9903 0.9784
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6.3 Language Models

Large Language models (LLMs) are primarily designed to process and generate text,
which can lead to challenges when handling numbers and numerical operations. A clear
example of this limitation can be observed in the performance of ChatGPT when dealing
with numerically-focused questions. Although ChatGPT may provide accurate informa-
tion in certain instances, such as identifying the density of benzene as 0.87 g/cm3, it can
also generate incorrect or self-contradictory answers.

Figure 7: Response from ChatGPT [36] to question "What is the density of benzene and
find solvents that have less density than benzene". We observe the result incor-
rectly includes solvent with density greater than that of benzene.

For instance, when asked to find solvents with a lower density than benzene, ChatGPT
incorrectly lists chloroform as one of the options, even though its density is 1.49 g/cm3,
as illustrated in Figure 7. This example highlights the limitations of language models like
ChatGPT when it comes to accurately processing and answering numerical questions.

7 Results

This section showcases the performance of Marie and BERT through a series of screen-
shots that provide a clear and insightful view of the KGQA system’s capabilities in pro-
ducing accurate responses. For instance, Figure 8 demonstrates the ability of Marie
and BERT to answer a question from the Metal Organic Polyhedras (MOPs) domain.
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Figure 9 demonstrates the ability of the system to answer a question dynamically by
invoking the Thermodynamic Data agent (STDC agent). The response includes a vi-
sual representation of the heat capacity of Cyclopropanone at constant pressure and con-
stant volume. Lastly, Figure 10 illustrates Marie and BERT’s proficiency in answering
numerical questions. Users can interact with Marie and BERT by following this link
https://como.ceb.cam.ac.uk/people/mab999/. However, this system is still under develop-
ment and the accuracy of the results will increase with further refinement of the underlying
ontologies.

Figure 8: Response from Marie and BERT to question "List the MOPs with assembly
model (3-planar)4(3-pyramidal)4(Td)."

8 Conclusion

In this paper, we have introduced a novel IR-based KGQA system that employs hybrid
knowledge graph embeddings to accurately answer natural language questions in the
chemistry domain. Our system improves the robustness of chemistry KGQA by utiliz-
ing IR-based methods, which are less sensitive to errors compared to SP-based KGQA
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Figure 9: Response from Marie and BERT to question "What is the heat capacity of
C3H4O".

systems.

To address the heterogeneous structure of the TWA chemistry KG, we have applied dif-
ferent embedding strategies for various chemistry ontologies based on their complexity
and structure. We have also proposed a score alignment model that re-ranks results from
different embedding spaces by providing a score bias based on the question-ontology af-
filiation. This enables the production of a final list of inter-ontology answers scored on a
uniform scale.

In order to manage the large volume of numerical data in the TWA KG, we have combined
the translation embedding method, TransR, with a joint numerical embedding model to
form TransRA. This model enhances the quality of KG embedding and, consequently,
improves the accuracy of the information derivation task. Additionally, we have imple-
mented a numerical filtering mechanism to reduce the time and space complexity of an-
swer selection for numerical questions.
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Figure 10: Side-by-side responses from Marie and BERT (left) and ChatGPT [36] (right)
to question "Find all species with boiling point above 0 celsius". The red
box on the right indicates that the results returned by ChatGPT incorrectly
includes species with boiling point less than 0 celsius. The response shown
from Marie demonstrates a subset of the results captured for the purpose of
this figure.

Furthermore, we have developed an implicit multi-hop relation derivation algorithm to
handle non-shallow ontologies, such as OntoCompChem, which increases the QA ac-
curacy. Marie and BERT is also capable of answering questions that require on-the-fly
calculations by invoking semantic agents for dynamic calculations in a robust, scalable,
and autonomous manner.

In addition, we have implemented a cost-effective SP-based method to handle numerous
chemical reactions, supported by a Linked Data Fragment service, and to answer ques-
tions related to chemical reactions.

Finally, our EL module is designed to identify SMILES strings and translate them into
their respective IUPAC names. As language models like BERT struggle with handling
SMILES strings for similarity comparisons, this translation significantly improves the
accuracy of identifying species represented by SMILES strings in a question.

However, the lack of a proper Chemistry QA dataset that is diverse and varied presents a
challenge. The task requires both chemistry domain knowledge expertise and the under-
standing of the underlying KG structure, which poses difficulties.

Future work includes efforts to reduce the cost of training embedding models and making
the system more robust. Furthermore, expanding the system to integrate the knowledge
of other domains could also be a fruitful avenue for future research.

30



Acknowledgements

This project is supported by CMCL Innovations and the National Research Foundation(NRF),
Prime Minister’ s Office, Singapore under its Campus for Research Excellence and Tech-
nological Enterprise(CREATE) programme. Part of this work was also supported by
Towards Turing 2.0 under the EPSRC Grant EP/W037211/1. Markus Kraft gratefully
acknowledges the support of the Alexander von Humboldt foundation.

31



Nomenclature

AM Assembly Model

BERT Bidirectional Encoder Representations from Transformers

CBU Chemical Building Unit

CGQA Cross Graph Question Answering

CID Compound Identifier

DFT Density Functional Theory

dKG dynamic Knowledge Graph

DL Description Logic

EL Entity Linking

ER Entity Recognition

GBU Generic Building Unit

IRI Internationalized Resource Identifier

IR Information Retrieval

IUPAC International Union of Pure and Applied Chemistry

JPS J-Park Simulator

LDF Linked Data Fragment

LLM Large Language Model

MOP Metal Organic Polyhedra

NER Named Entity Recognition

NLP Natural Language Processing

PCE Power Conversion Efficiency

PLM Pre-trained Language Model

SMILES Simplified molecular-input line-entry system

SPARQL SPARQL Protocol and RDF Query Language

SP Semantic Parsing

TWA The World Avatar
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Notations

Table 6: Explanation of notations.

Notations Explanations

E indexed set of all entities in G in IRI forms

R indexed set of all relations in G in IRI forms

G = {(h,r, t) : h, t ∈ E ,r ∈R} a knowledge graph

(h,r, t) a triple in the form of IRIs

(êh, r̂, êt) a triple in the form of embedding representations

n the total number of entities in G

m the total number of relations in G

d the dimension of the embedding representations

q the question in text

Er ∈ Rm×d indexed embedding representations of all predicates in G

Ee ∈ Rn×d indexed embedding representations of all entities in G

êq ∈ R1×d predicted relation embedding

êa
′ ∈ R1×d the embedding of a candidate answer for q

j the number of entities within 3 hops distance from h

A′ = {a1
′, ...,a j

′} entities within 3 hops distance from h

Ea = {êa1, ..., êa j} embeddings of entities within 3 hops distance from h

k number of final answers

A = {a1, ..,ak} the top-k answers in IRI forms ranked by their scores

φ(êh, êq, êa
′) scoring function for a triple

η learning rate for model training

L(·) a loss function⊙
element-wise product e.g.[
a1 a2

] ⊙ [
b1 b2

]
=
[
a1b1 a2b2

]
⌢ concatenation operator e.g.[

a1 a2
]⌢ [

b1 b2
]

=
[
a1 a2 b1 b2

]
EL Entity linking model

BERTBASE The pretrained BERT model
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Algorithms

Algorithm 1: Training of TransE embedding
Data: set of all entity IRIs E , set of all relation IRIs R , training set

S = {(h,r, t) : h, t ∈ E ,r ∈R} ∈ G , margin γ , embeddings dim d, number of
entities n, number of relations m, learning rate η , batch size b, number of
epoches epoch_num

Result: Embeddings of entities Ee = {ê1, ..., ên}, relations Er = {r̂1, ..., r̂m}
1 initialization:
2 Ee←{êi ∈ Rd : êi = uniform(−6√

d
, 6√

d
), 0 < i≤ n }

3 Er←{r̂i ∈ Rd : r̂i = uniform−6√
d
, 6√

d
), 0 < i≤ m }

4 r̂← r̂
||r̂|| for each r̂ ∈ Er ;

5 Ent_embed(e)← ê for each e ∈ E and ê ∈ Ee ;
6 Rel_embed(r)← r̂ for each r ∈R and r̂ ∈ Er ;
7 while epoch < epoch_num do
8 ê← ê

||ê|| for each ê ∈ Ee;
9 Sbatch← sample (S,b); // sample a batch of triples of size b

10 Tbatch← /0 ;
11 for (h,r, t) ∈ Sbatch do
12 while (h′,r, t ′) ∈ G do
13 h′← sample(E ,1) ;
14 t ′← sample(E ,1) ;

15 êh← Ent_embed(h) ; êt ← Ent_embed((t) ;
16 êh

′← Ent_embed(h′) ; êt
′← Ent_embed(t ′) ; r̂′← Rel_embed(r) ;

17 Tbatch← Tbatch∪{((êh, r̂, êt),(êh
′, r̂, êt

′))};
18 L(Ee,Er) = ∑((êh

′,r̂,êt
′),(êh,r̂,êt))∈Tbatch

[max(0,γ +φ(êh, r̂, êt)−φ(êh
′, r̂, êt

′))] ;
19 ê← ê−η×∇L(ê),∀ê ∈ Ee; // update the parameters of entity

embeddings

20 r̂← r̂−η×∇L(r̂),∀r̂ ∈ Er; // update the parameters of relation

embeddings

21 epoch← epoch+1 ;

22 return Ee,Er;

34



Algorithm 2: Training of TransEA embedding
Data: set of all entity IRIs E , set of all relation IRIs R, set of all attributes IRIs L ,

set of all numerical laterals V , training set
S = {(h,r, t),(h, l,v) : h, t ∈ E ,r ∈R, l ∈L ,v ∈ V } ∈ G , margin γ ,
embeddings dim d, number of entities n, number of relations m, number of
attributes j, learning rate η , batch size b, number of epochs epoch_num

Result: Embeddings of entities Ee = {ê1, ..., ên}, relations Er = {r̂1, ..., r̂m}, lateral
attributes El = {l̂1, ..., l̂ j}, and lateral attributes biases Eb = {b̂1, ..., b̂ j}

1 initialization:
2 Ee←{êi ∈ Rd : êi = uniform(−6√

d
, 6√

d
), 0 < i≤ n }

3 Er←{r̂i ∈ Rd : r̂i = uniform(−6√
d
, 6√

d
), 0 < i≤ m }

4 El ←{l̂i ∈ Rd : l̂i = uniform(−6√
d
, 6√

d
), 0 < i≤ j }

5 Eb←{b̂i ∈ R1 : b̂i = uniform(−6√
d
, 6√

d
), 0 < i≤ j }

6 r̂← r̂
||r̂|| for each r̂ ∈ Er ;

7 Ent_embed(e)← ê for each e ∈ E and ê ∈ Ee ;
8 Rel_embed(r)← r̂ for each r ∈R and r̂ ∈ Er ;
9 Attr_embed(l)← l̂ for each l ∈L and l̂ ∈ El ;

10 Bias_embed(l)← b̂ for each l ∈L and b̂ ∈ Eb ;
11 while epoch < epoch_num do
12 ê← ê

||ê|| for each ê ∈ Ee;
13 Sbatch← sample (S,b); // sample a batch of triples of size b
14 Tbatch← /0 ;
15 for (h,r, t),(h, l,v) ∈ Sbatch do
16 while (h′,r, t ′) ∈ G do
17 h′← sample(E ,1) ;
18 t ′← sample(E ,1) ;

19 êh← Ent_embed(h) ; // lookup embeddings with IRI

20 êt ← Ent_embed((t) ;
21 êh

′← Ent_embed(h′) ;
22 êt

′← Ent_embed(t ′) ;
23 r̂′← Rel_embed(r) ;
24 l̂← Attr_embed(l) ;
25 b̂← Bias_embed(l) ;
26 Tbatch← Tbatch∪{((êh, r̂, êt),(êh

′, r̂, êt
′),(êh, l̂,v, b̂))};

27 Lr(Ee,Er) = ∑((êh
′,r̂,êt

′),(êh,r̂,êt))∈Tbatch
[max(0,γ +φ(êh, r̂, êt)−φ(êh

′, r̂, êt
′))] ;

28 Ll(El,Eb) = ∑(êh,l̂,v,b̂)∈Tbatch
||l̂⊤ · êh + b̂− v||1/2 ;

29 L(Ee,Er,El,Eb) = (1−α) ·Lr(Ee,Er)+α ·Ll(El,Eb) ;
30 ê← ê−η×∇L(ê),∀ê ∈ Ee; r̂← r̂−η×∇L(r̂),∀r̂ ∈ Er;

l̂← l̂−η×∇L(l̂),∀r̂ ∈ Er; b̂← b̂−η×∇L(b̂),∀b̂ ∈ Eb; epoch← epoch+1 ;
31 return Ee,Er,El,Eb;
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Algorithm 3: Training of Complex embedding
Data: set of all entity IRIs E , set of all relation IRIs R , training set

S = {(h,r, t) : h, t ∈ E ,r ∈R} ∈ G , embeddings dim d = 2l where l ∈ Z and
l ≥ 1, number of entities n, number of relations m, learning rate η , batch size
b, number of epochs epoch_num

Result: Embeddings of entities Ee = {ê1, ..., ên} and relations Er = {r̂1, ..., r̂m}
1 initialization:;
2 Ere←{êi ∈ Rl : êi = xavier_uniform(l),0 < i≤ n}

Eim←{êi ∈ Rl : êi = xavier_uniform(l),0 < i≤ n}
Rre←{r̂i ∈ Rl : r̂i = xavier_uniform(l),0 < i≤ m}
Rim←{r̂i ∈ Rl : r̂i = xavier_uniform(l),0 < i≤ m}

3 Re_ent(e)← êre for each e ∈ E , êre ∈ Ere ;
4 Im_ent(e)← êim for each e ∈ E , êim ∈ Eim ;
5 Re_rel(r)← r̂re for each r ∈R, r̂re ∈ Rre ;
6 Im_rel(r)← r̂im for each r ∈R, r̂im ∈ Rim ;
7 while epoch < epoch_num do
8 Sbatch← sample (S,b) // sample a batch of triples of size b
9 Tbatch← /0 ;

10 for (h,r, t) ∈ Sbatch do
11 while (h′,r, t ′) ∈ G do
12 h′← sample(E ,1) ;
13 t ′← sample(E ,1) ;

14 y← 1, Tbatch← Tbatch∪ (h,r, t,y) ;
15 y← 0, Tbatch← Tbatch∪ (h′,r, t ′,y) ;

16 Rbatch← /0 ;
17 for (h,r, t,y) ∈ Tbatch do
18 φ(h,r, t) = Re_ent(h) ⊙ Re_ent(t) ⊙ Re_rel(r) +
19 Im_ent(h) ⊙ Im_ent(t) ⊙ Re_rel(r) +
20 Re_ent(h) ⊙ Im_ent(t) ⊙ Im_rel(r) -
21 Im_ent(h) ⊙ Re_ent(t) ⊙ Im_rel(r)
22 x = σ(φ(h,r, t)); // σ: plain sigmoid function

23 Rbatch← Rbatch∪ (x,y)
24 L(Ere,Eim,Rre,Rim) = ∑(x,y)∈Rbatch

[y · log(x)+(1− y) · log(1− x)] ;
25 êre← êre−η×∇L(êre),∀êre ∈ Ere ;
26 êim← êim−η×∇L(êim),∀êim ∈ Eim ;
27 r̂re← r̂re−η×∇L(r̂re),∀r̂re ∈ Rre ;
28 r̂im← r̂im−η×∇L(r̂im),∀r̂im ∈ Rim ;
29 epoch← epoch+1

30 ê ∈ Rd ← êre
⌢êim,∀êre, êim ∈ Ere,Eim // concatenate real and imaginary

parts

31 r̂ ∈ Rd ← r̂re
⌢r̂im,∀r̂re, r̂im ∈ Rre,Rim

32 return Ee,Er
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Algorithm 4: Training of the scoring model
Data: embedding dimension d, S = {(q,r) : r ∈R,r ∈ Rd}, learning rate η , batch

size b, number of epoches epoch_num, pretrained BERT base model
BERTBASE

Result: Weights of fully connected layer w ∈ R768×d

1 while epoch < epoch_num do
2 Sbatch = sample(S,b) ;
3 for (q,r) ∈ Sbatch do
4 tq← tokenize(q) ;
5 p ∈ R768← BERTBASE(tq) ;
6 êq ∈ Rd ← wT · p ;

7 L(w) = ∑(q,r)∈Sbatch
||êq− r̂||1 ;

8 w← w−η×∇L(w)

9 return w

Algorithm 5: Training of score alignment model
Data: S = {((q,St , lt),(q,S f , l f ))}, where q is the question, St is the set of scores of

the true answer, S f is the set of scores of false answers returned by another
embedding space, lt , l f ∈ Z2 are embedding space labels for the true or false
answer, batch size b, learning rate η , loss margin γ , number of epochs
epoch_num

1 pretrained BERT model BERTBASE

Result: Wights of fully connected layer w1 ∈ R768×2, Weights of fully connected
layer w2 ∈ R4×1

2 for epoch < epoch_num do
3 Sbatch = sample(S,b) ;
4 for ((q,St , lt),(q,S f , l f )) ∈ Sbatch do
5 tq← tokenize(q);
6 q̂ ∈ R2← w1

T ·BERTBASE(tq) ;
7 for st ,s f ∈ St ,S f do
8 st ← st/max(St);
9 s f ← s f/max(S f );

10 st ← st +w2
T · (q̂⌢lt) ;

11 s f ← s f +w2
T · (q̂⌢l f ) ;

12 L(w1,w2) = ∑((q,St ,lt),(q,S f ,l f ))∈Tbatch
[max(0,γ +S f −St)] ;

13 w1← w1−η×∇L(w1) ;
14 w2← w2−η×∇L(w2) ;

15 return w1,w2
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Algorithm 6: Algorithm for deriving implicit relations
Data: The target KG G = {(h,r, t)}, sample size for derived triples s, set of entities

with labels El

Result: The set the derived triples S′ = (h,r′, t)
1 R ′← /0, G ′← /0, S′← /0 ;
2 for h ∈ El do
3 hop← 0 ;
4 H←{h} ;
5 R(h,h)← /0 ;
6 while hop < 3 do
7 H ′← /0 ;
8 for h′ ∈ H do
9 for (h′,r, t) ∈ G do

10 R(h′, t)←{r} ;
11 H ′← H ′∪{t} ;
12 R(h, t)← R(h,h′)∪R(h′, t);
13 G ′← G ′∪{(h,R(h, t), t)} ;

14 H← H ′ ;
15 hop← hop+1 ;

16 for (h,R(h, t), t) ∈ G ′ do
17 R′← R(h, t) ;
18 if |R′|> 1 then
19 r′← hash(R′) ;
20 S′← S′∪{(h,r′, t)}
21 S′← sample(S′,s) ;
22 return S′
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Algorithm 7: Fine-tuning of plain EL Entity-Question Bi-encoder on BERT
Data: Training set S = {(e,q,qm) : e ∈ E }, question text q, mention text qm,

BERTBASE transformers Te, Tq1, the pretrained parameters of Te, Tq1: θe, θq1,
hyperparameters: learning rate η , epoch_num

Result: Transformers Te, Tq1 with updated parameters θe and θq1 respectively
1 while epoch < epoch_num do
2 Sbatch← sample (S,b) // sample a batch of triples of size b

3 ;
4 for (e,q) ∈ Sbatch do
5 e′← tokenize(e)
6 q′← tokenize(q)
7 ve = F(Te(e′)), F taking the output of [CLS] token
8 vq = F(Tq1(q′)), F taking the output of [CLS] token
9 s(e′,q′) = ve · vq

10 loss =−s(e′,q′)+ log
(

∑
b
j=1 exp(s(e′j,q

′))
)

11 θe← θe−η ·∇loss
12 θq1← θq1−η ·∇loss

13 return θe, θq1
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Algorithm 8: Fine-tuning of joint EL and ER Entity-Question Bi-encoder on BERT
Data: Training set S = {(e,q,qm) : e ∈ E }, question text q, true mention text qm,

BERTBASE transformers Tq2 with pretrained parameters θq2 = [θ1...θL], L the
number of layers in BERTBASE , fine-tuned entity encoder Te with parameters
θe, mention classifier with parameters {wstart ,wend,wmention}, hyperparameters:
learning rate η , epoch_num

Result: Transformer Tq2 with updated parameters θq2 and mention classifier with
updated parameters {wstart ,wend,wmention}

1 while epoch < epoch_num do
2 Sbatch← sample (S,b) // sample a batch of size b
3 ;
4 loss← 0
5 for (e,q) ∈ Sbatch do
6 e′← tokenize(e)
7 ve = F(Te(e′)), F taking the output of [CLS] token
8 q′← tokenize(q)
9 vq1...vqn = Tq2(q′)

10 for [i, j],∀1 ⩽ i < j ⩽ n do
11 vi, j =

1
( j−i+1) ∑

j
t=i vqt

12 p[i, j] = σ(wT
startvqi +wT

endvq j +∑
j
t=i w

T
mentionvqt)

13 s(e, [i, j]) = ve · vi, j

14 p(e|[i, j]) = exp(s(e,[i, j]))
∑e′∈E exp(s(e′,[i, j]))

15 loss = loss + 1
NCrossEntropy(1([i, j] = a), p[i, j]) - logp(e|[i, j])

16 θq2← θq2−η ·∇loss
17 wstart ← wstart−η ·∇loss
18 wend ← wend−η ·∇loss
19 wmention← wmention−η ·∇loss

20 return θq2
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Algorithm 9: Fine-tuning of SMILES Name Recognition on BERT
Data: Training set S = (q, l), q the question text of token length w, l the ground truth

type sequence for q, of length w. BERTBASE transformers TSMILES, with
pretrained model parameters θT = [θqT,1...θqT,L], Linear Classifier C with
model parameters θC = [θqC,1...θqC,L′], L, L′ the respective number of model
layers, hyperparameters: learning rate η , epoch_num

Result: Transformer TSMILES, Classifier C with updated parameters θT , θC

respectively
1 while epoch < epoch_num do
2 Sbatch← sample (S,b) // sample a batch of size b
3 ;
4 for (q, l) ∈ Sbatch do
5 q′← tokenize(q)
6 vq = F(TSMILES(q′)), F the last layer outputs of TSMILES

7 p =C(vq), the predicted type sequence for q
8 loss = ∑

w
i=1CrossEntropy(li, pi)

9 θT ← θT −η ·∇loss
10 θC← θC−η ·∇loss

11 return θT ,θC
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[53] D. Vrandečić. Wikidata: A new platform for collaborative data collection. In Pro-
ceedings of the 21st International Conference on World Wide Web, WWW ’12 Com-
panion, page 1063–1064, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2187980.2188242.

[54] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge Graph Embedding by Translat-
ing on Hyperplanes. Proceedings of the AAAI Conference on Artificial Intelligence,
28(1), 2014. doi:10.1609/aaai.v28i1.8870. URL https://ojs.aaai.org/ind
ex.php/AAAI/article/view/8870.

[55] L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer. Scalable zero-shot
entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814, 2019.

[56] Y. Wu and Z. Wang. Knowledge Graph Embedding with Numeric Attributes
of Entities. In Proceedings of The Third Workshop on Representation Learn-
ing for NLP, pages 132–136. Association for Computational Linguistics, 2018.
doi:10.18653/v1/W18-3017.

[57] Y. Xiao, L. Zhang, J. Huang, L. Zhang, and J. Wan. An Information Retrieval-
Based Joint System for Complex Chinese Knowledge Graph Question Answering.
Electronics, 11(19):3214, 2022. doi:10.3390/electronics11193214.

46

https://doi.org/10.48550/ARXIV.2203.00255
https://arxiv.org/abs/2203.00255
https://arxiv.org/abs/2203.00255
https://doi.org/10.1093/jamia/ocz096
https://doi.org/10.1609/aaai.v34i05.6426
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1609/aaai.v28i1.8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://doi.org/10.18653/v1/W18-3017
https://doi.org/10.3390/electronics11193214


[58] I. Yamada, K. Washio, H. Shindo, and Y. Matsumoto. Global entity disambiguation
with bert. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 3264–3271, 2022.

[59] W. Yao and R. Huang. Temporal event knowledge acquisition via identifying narra-
tives. In Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), 2018.

[60] X. Yao, J. Berant, and B. Van Durme. Freebase QA: Information Extraction or
Semantic Parsing? In Proceedings of the ACL 2014 Workshop on Semantic Pars-
ing, pages 82–86, Baltimore, MD, 2014. Association for Computational Linguistics.
doi:10.3115/v1/W14-2416.

[61] X. Ye, S. Yavuz, K. Hashimoto, Y. Zhou, and C. Xiong. RNG-KBQA: Generation
Augmented Iterative Ranking for Knowledge Base Question Answering. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 6032–6043, Dublin, Ireland, 2022. Association
for Computational Linguistics. doi:10.18653/v1/2022.acl-long.417.

[62] W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic Parsing via Staged Query
Graph Generation: Question Answering with Knowledge Base. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1321–1331, Beijing, China, 2015. Association for Computa-
tional Linguistics. doi:10.3115/v1/P15-1128.

[63] H. Zafar, G. Napolitano, and J. Lehmann. Formal Query Generation for Ques-
tion Answering over Knowledge Bases. In A. Gangemi, R. Navigli, M.-E. Vidal,
P. Hitzler, R. Troncy, L. Hollink, A. Tordai, and M. Alam, editors, The Seman-
tic Web, volume 10843, pages 714–728. Springer International Publishing, Cham,
2018. doi:10.1007/978-3-319-93417-4_46.

[64] W. Zheng, J. X. Yu, L. Zou, and H. Cheng. Question answering over knowledge
graphs: question understanding via template decomposition. Proceedings of the
VLDB Endowment, 11(11):1373–1386, 2018. doi:10.14778/3236187.3236192.

[65] X. Zhou, A. Eibeck, M. Q. Lim, N. B. Krdzavac, and M. Kraft. An agent composi-
tion framework for the j-park simulator-a knowledge graph for the process industry.
Computers & Chemical Engineering, 130:106577, 2019.

[66] X. Zhou, D. Nurkowski, S. Mosbach, J. Akroyd, and M. Kraft. Question Answering
System for Chemistry. Journal of Chemical Information and Modeling, 61(8):3868–
3880, 2021. doi:10.1021/acs.jcim.1c00275. Number: 8.

[67] X. Zhou, D. Nurkowski, A. Menon, J. Akroyd, S. Mosbach, and M. Kraft. Question
answering system for chemistry—A semantic agent extension. Digital Chemical
Engineering, 3:100032, 2022. doi:10.1016/j.dche.2022.100032.

47

https://doi.org/10.3115/v1/W14-2416
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.1007/978-3-319-93417-4_46
https://doi.org/10.14778/3236187.3236192
https://doi.org/10.1021/acs.jcim.1c00275
https://doi.org/10.1016/j.dche.2022.100032

	Introduction
	Related work
	The World Avatar Knowledge Graph
	Chemistry Ontologies
	TWA Chemistry Ontologies
	Wikidata chemistry

	Knowledge Graph Question Answering System
	Semantic Parsing
	Information Retrieval

	Entity linking
	Knowledge Graph Embeddings for KGQA
	TransE
	TransEA
	ComplEx
	TransR


	Datasets
	Entity Linking Dataset
	Relation Prediction Dataset
	Score Alignment Dataset

	Design
	Overview
	Entity Extraction
	SMILES Translation
	Joint ER and EL

	Hybrid Knowledge Graph Embeddings
	Implicit Multi-hop Relation Derivation


	Implementation/Method
	QA Engine Workflow
	Information Derivation
	Numerical Questions
	OntoKin Chemical Reactions
	Semantic Agents for Dynamic Calculations
	Score Alignment Model

	Evaluation
	Entity linking
	QA engine
	Language Models

	Results
	Conclusion
	Nomenclature
	References

