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Abstract

This paper presents revised novel semantic web systems reference architecture for
inferences and components that can store and operate on knowledge in the form of a
fully dynamic graph to infer new statements by an intelligent autonomous agent capa-
ble of making informed choices based on long-term memories about its tasks that im-
plement inference algorithms of all currently known classes. An Owlconverter tool
was designed and developed as a new component which can produce fully dynamic
knowledge graphs without information loss that otherwise occurs while attempting
to store complex concept definitions in existing open-source dynamic RDF stores.
An Inference Agent with extended cognitive capabilities of making informed choices
based on long-term knowledge was designed and developed to act as an extended in-
ference engine supporting all currently known classes of knowledge graphs inference
algorithms. This capability is supported by the newly developed OntoInfer ontology
that encodes the taxonomy of those algorithms linked to instances of the agent’s tasks
allowing the agent to make choices based on the knowledge stored in the knowledge
graph. This extended architecture can demonstrate the implementation of tasks de-
signed to work as independently executed threads containing examples of known
inference algorithms using existing libraries and reasoning engines (Jena Jung and
HermiT). Multi-domain reasoning capabilities on city object descriptions in terms of
OntoCityGML, OntoZoning and OntoBuildableSpace were showcased on plot data
provided by Urban Redevelopment Authority of Singapore converted into OWL 2
compliant knowledge base.

Highlights
• Revised novel semantic web systems architecture for inferences.

• Inference Agent capable of deriving new knowledge by applying graph and
ontology based inference algorithms.

• OntoInfer ontology that encodes taxonomy of existing knowledge graph rea-
soning algorithms linked to the agent’s tasks.
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1 Introduction

General context and problem space

Cities, taken as complex macro structures that consist of many heterogeneous subsystems
of different scales, are widely recognised as one of the largest contributors to the global
net positive CO2 emissions causing global warming that results in climate change of the
entire planet [75]. Many coastal cities face its effects in the form of rising sea levels
as an existential threat [55] acting as a crisis multiplier [84] at a country level. At the
same time, standard-based digitisation [87] is seen by the global governing bodies, such
as the UN, G20, and the World Bank [66], as a means to achieve comparability [45]
and data interoperability [15] at a global scale. Such efforts should eventually deepen
the understanding of those complex structures and optimise [62] their designs [54] to
minimise any adverse effects and get closer to the discovery of solutions [6] mitigating
this ‘biggest threat ever faced by modern humanity as a whole’ [84].

Semantic Web Technologies (SWTs) [85] and Dynamic Geospatial Knowledge Graphs
(DGKGs) [18] that implement them and adhere to the other well established geospatial
standards at the same time are believed to be a modern technological answer to facili-
tate such interoperability using sustainable digitisation practices [83]. Cities Knowledge
Graph (CKG) [22], built upon the Semantic 3D City Database [18], Cognitive Agents
System Architecture [20], and GeoWeb interfaces [19], is a working prototype of such
information systems. It is capable of storing city-related knowledge, spanning multiple
domains of interest [76] and relating to each other, analysing it and discovering new facts
as well as providing collaborative interfaces [36] that allow to blend human and artificial
intelligence [42], amongst others.

As a part of The World Avatar (TWA) [52], a more general dynamic knowledge graph
designed for multi-domain representation of knowledge related to the entire world, the
system can take advantage of existing tools and frameworks as well as reuse knowledge
of the micro-scale structures [90] that could be found as subsystems of cities. For instance,
one of the critical TWA components, the J-Park Simulator (JPS) [27], is designed to work
with representations of built environments to simulate emissions dispersion from various
types of air pollution sources. It was already used for research on optimising designs of
Eco-Industrial Parks (EIPs) [89] with respect to their carbon footprint [57], optimal site
selection of modular nuclear power plants [26], simulations of chemical kinetic reaction
mechanisms [29], quantum chemistry calculations [49] and combustion chemistry simu-
lations [30]. A Parallel World Framework of TWA [28], designed for complex scenario
analysis, could be utilised for multi-domain optimisation simulations. In summary, tools
providing functionalities of analysis, simulation, and presentation [14] as well as the over-
all design orientation towards providing a semantic representation of anything that could
be conceptualised, allow calling such an information system a Universal Digital Twin
(UDT) [73].

Gaps in the current system architectures

Augmentation of existing CityGML [35] data transformation tools [88] allowed to base
TWA on a dynamic data source - Semantic 3D City Database. Apart from improving data
interoperability [81] further than relational database management systems [77] and en-
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abling CityGML models for concurrency, this architectural component allows to perform
simulations on City Information Models (CIMs) [32] and adds flexibly to hot swap certain
information in city object representations. The addition of a layer of autonomous agents
[72] implemented upon cognitive architecture principles [51] of JPS Agent Framework
solved problems of large CIM creation, analysis, and visualisation [3], that were mostly
manual and error-prone in more traditional information systems adopting this modelling
standard [16]. GeoWeb interfaces [71] that allow for collaborative blending of artificial
and human intelligence move TWA even further away from traditional GIS [31]. At the
same time, semantic foundations of the overall architecture minimise risks of deliberate
misinformation on geospatial web systems [34] that are very often used for modelling
critical infrastructures.

Although the Semantic 3D City Database, built on Blazegraph™ [7], has already inher-
ited support for the automated inference engine [8], there are limits on its capabilities in
the case of DGKGs. First, the Blazegraph’s™ engine does not support inferences with
knowledge structures utilising named graphs [37]. Being able to store knowledge about
separate objects in named graphs is essential for large knowledge bases because of the
possibility to easily limit query scopes only to the objects of interest and improve perfor-
mance [5]. Named graphs are also required to work with Object Graph Mapper (OGM)
engine [19] - an Object Relational Mapper (ORM) [53] equivalent for graph databases
that allows to automate the instantiation of objects stored in the knowledge base into Java
objects as well as automation of data persistence related routines, like inserts, updates
and deletes. Moreover, the existing inference engine materialises all the newly inferred
statements as new triples. That leads to growing the knowledge base quickly [1] and,
without any invalidation mechanisms in place, may lead to incorrect inferences in case of
ontology changes [40]. Lastly, the off-the-shelf engine is limited to RDFS+ [2] inferences
and does not support graph inference algorithms.

HermiT reasoner [33] supports Web Ontology Language (OWL) 2 [38] ontologies and
was identified as a good candidate for the replacement of the default inference engine
within TWA. It is based on a novel hypertableau reasoning algorithm and outperforms
other reasoning engines in taxonomic reasoning tasks on benchmarks [13]. However, the
reasoner was originally designed to work with static files via OWLAPI interfaces [86]. In
its publicly available codebase [39], there are no examples of how to make it work with
RDF triple stores and, in this way, use it as an inference engine in more novel types of
semantic web system architectures. Therefore additional tools development is required to
use it in such cases. Moreover, HermiT also does not support graph inference algorithms
that are one of the knowledge graph algorithms [82] needed for DGKGs to provide full
coverage of different types of inference techniques. However, it can be complemented by
a set of separate inference algorithms integrated into one engine accessible via uniform
interfaces. Results of gap analysis of existing semantic web knowledge graph systems
show that it is possible to design a modern semantic web system as capable of providing a
variety of known inference algorithms via a uniform interface by integration of ontology
inference engines and graph inference specific software libraries to even enhance novelty
of existing reference architectures, like the one presented by Allemang and Hendler [1].
Identifying such gaps in system integration is worthwhile as it can be regarded as one of
the ways of measuring costs in the form of the lost opportunity of not doing integration
[65].
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The purpose of this paper is to present a revised novel reference architecture for DGKGs
that integrates existing software components capable of applying known inference algo-
rithms via a uniform interface. Implementation of this layer in TWA required the design
and development of new software components that are also presented in this paper. This
revised inference layer is also portable to a wider range of dynamic knowledge graphs
based on semantic web standards, including those without geospatial capabilities. Pre-
sented reference architecture and new integration components aim to close the gaps in
currently known semantic web-based knowledge graph systems and DGKGs in particu-
lar.

A general description of DGKGs and their main components is presented in Section 2.
The components needed to support above mentioned capabilities in the revised novel
reference architecture are presented in Section 3. Subsection 3.1 includes a more de-
tailed explanation of currently known classes of knowledge graph algorithms. Subsec-
tion 3.2 presents an Inference Agent designed and developed to support inferences via
two broad classes of currently known algorithms. Agent’s tasks that implement sample
graph-based inference algorithms are presented in subsection 3.2.1 whereas taxonomic
reasoning-specific tasks are presented in subsection 3.2.2. The final section (Section 4)
includes closing remarks and future research outlooks.

2 Dynamic Geospatial Knowledge Graphs

At present, there are no well-established and widely agreed upon definitions of Dynamic
Geospatial Knowledge Graphs (DGKGs). For the purpose of this paper, Knowledge
Graphs (KGs) are defined as knowledge bases [4] of a graph structure. Geospatial Knowl-
edge Graphs (GKGs) are KGs with built-in interfaces that can store geospatial information
and search for any objects described in terms of geospatial coordinates within certain re-
gions [48]. Dynamic Knowledge Graphs (DKGs) are KGs with dynamic data storage that
allows for concurrent adding, retrieving, updating and deleting of represented knowledge
[43]. DGKGs are KGs that are GKGs and DKGs at the same time. An additional ad-
vantage of DGKGs that contain knowledge about objects described in terms of existing
standards is they can provide comparability without additional middleware and, because
of that, improved data interoperability. In general, there are two classes of standards that
are applicable to the content of DGKGs: geospatial standards and knowledge representa-
tion standards.

TWA is a working prototype of DGKG that contains knowledge representations adhering
to both classes of standards. It is a KG adhering to the Resource Description Framework
(RDF) standard [67], at the most fundamental level. All knowledge is stored in the form
of Subject-Predicate-Object (SPO) statements that link to one another, forming a graph of
Linked Data [9]. OWL 2, that is fully representable in RDF [59], is used as a more specific
knowledge representation standard. Both standards were originally conceptualised when
dynamic RDF graph stores were unavailable, and the most commonly used data storage
and exchange format was a static file. As a data exchange format, it is inefficient as any
change to such a knowledge base requires the transfer, replacement and reload of the
whole file any time such change occurs within it. It is also unsuitable in distributed and
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collaborative environments because it is impossible to open and change such a knowledge
base concurrently [64].

In terms of the history of science and scientific knowledge representation, KGs founded
upon static files would be most suitable to store knowledge about Platonic ideas. In an-
cient times mathematics and logic were given the highest status and were regarded as
pretty much complete and thought to be treating of a realm of eternal and ideal objects
accessible intellectually. Plato regarded everyday phenomena as a mere illusion and re-
flection of those ideal objects in his famous Allegory of the Cave [63]. They seemed not
to belong to science, which was meant to be concerned only with that what is true and not
with ephemeral illusions. More modern times witnessed the marriage between science
and engineering, forming closer ties between theory and practice. Scientists started to be
motivated by solving practical problems of their time, and mathematical methods were re-
garded as most suitable to describe everyday phenomena and discover the laws governing
them behind the scenes [25]. Ancient views on the nature of mathematics did not change
until the early 20th century when Kurt Gödel famously proved that mathematical knowl-
edge is incomplete in essence [41]. Moreover, more recent theories of science started to
emphasise the revolutionary and non-accumulative nature of scientific discoveries as op-
posed to views that newer and better theories are discovered by better generalising more
and more new observations that give more comprehensive evidence. Change from geo-
centric to heliocentric theories, for instance, is described by Thomas Kuhn as a paradigm
shift that results in waking up to an entirely new world [50].

KGs designed to aid scientists with solving problems of the present time using com-
putational tools and methods also need to consider those new discoveries. Fortunately,
progress in computer systems design and engineering has been fast enough since the ini-
tial RDF and OWL conceptualisation to allow to base TWA on a dynamic RDF store that
already supports concurrency and transactions. Evaluation of triple stores conducted by
Chadzynski et al. [18] resulted in choosing Blazegraph™ as a data store for TWA. It is
an active open-source project, released under a GPL-2.0 License, and a triple store that
is W3C compliant. It is also used at Fortune 500 companies such as EMC, Autodesk as
well as Wikimedia Foundation’s Wikidata Query Service. Scale-out and High Availability
features are available in Enterprise editions of Blazegraph™, which also supports GPU
query optimisation, amongst many other features. Transactions, high concurrency, and
high aggregate I/O rates are supported in all of its editions. Blazegraph™ supports par-
titioning data into namespaces for parallel query optimisation [10]. Using named graphs
for different parts of namespaces allows querying smaller graphs independently, ensuring
the efficiency of larger knowledge bases [17]. This design makes TWA a DKG capable of
dynamically storing empirical scientific knowledge.

Moreover, Blazegraph™ provides interfaces for geospatial search via SPARQL queries
and updates and, in this way, a full set of Create, Read, Update, Delete (CRUD) operations
on objects with associated geospatial coordinates [11]. This capability of TWA’s backend
allows it to operate on empirical knowledge about geospatially located objects of the real
world as a GKG. As an innovative platform designed to provide means to computationally
aid understanding and planing of cities, TWA contains components, interfaces and meth-
ods to describe all city objects in terms of CityGML standard by OGC. OntoCityGML
is an improved and logically validated version of CityGML ontology [23] that provides a
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vocabulary to describe those objects in a way compliant with CityGML 2.0 standard [35]
and serialised in OWL 2. Triple statements concerning city objects described in OntoCi-
tyGML form a graph-structured equivalent of 3D CityDB [21] by Technische Universität
München (TUM) - Semantic 3D City Database that is capable of storing city objects in
Levels Of Detail (LOD) from 0 to 4 as well as link them to objects described in terms
of other ontologies, and in this way, connect knowledge about cities to knowledge about
other domains. The process of creating a Semantic 3D City Database is automated via
City Import Agent, designed within JPS Agent Framework. The cognitive agent includes
a full set of operations necessary to instantiate city objects via an augmented TUM Im-
porter/Exporter tool, originally developed to manually create 3D CityDB from CityGML
2.0 models serialised in static XML files [81].

The TWA system architecture described above has been used to create two proof of con-
cept city models: one for Berlin and another for Singapore. The city model of Berlin
buildings in LOD2 showcases the scalability of the platform and its capabilities to han-
dle the so-called five V problems in smart city data management [3]. Using this system
architecture, it was possible to create semantic web standards compliant representation
of buildings in OntoCityGML that contains 419 909 661 Subject-Predicate-Object triples
in total, partitioned into named graphs that separate from and link to each other 3 475
683 city objects consisting of 9 558 218 geolocated surface geometries, described in
EPSG:25833 coordinate reference system equivalent to the original CityGML 2.0 model.
The Singapore city model demonstrates how the TWA architecture enables enriching
CityGML objects with further information. First, master planning data by the Singa-
pore Urban Redevelopment Authority (URA) was loaded in the knowledge graph. Each
plot was represented as a generic city object with an associated geolocated shape and
additional attributes such as the plot’s zoning type. Then, another graph based on the On-
toZoning [76] ontology was added, containing information on what land uses each zoning
type allows. The ontology represents relationships between zoning types, land uses and
programmes that are more specific types of land uses to aid common tasks in urban plan-
ning and urban development processes. This description made it possible to query not
only the zoning type of plots but the land uses allowed on each plot and connect those two
different aspects in one graph.

OntoCityGML and OntoZoning were designed using the Protégé ontology editor that was
also used for their evaluation [56]. The editor is designed to store ontologies as static files
and does not contain built-in interfaces that can store them in dynamic data sources. OWL
ontologies can be viewed as consisting of at least two distinguishable parts, referred to as
TBox and ABox, that are names for concepts borrowed from description logics [4]. The
TBox part is what could be regarded as a schema containing vocabulary and descriptions
of relations between vocabulary items. It corresponds to scientific theories with well-
defined sets of concepts and relations between those concepts, written in a form of SPO
triples. Because of the web 1.0 legacies in the default design of the web of data, this
theoretical part is meant to be shareable as a document. Although in principle, there
isn’t anything to stop this document from being dynamically generated, existing tools are
designed under the assumption that such a document is a file. At the same time, converting
OWL 2 TBox into RDF using existing tools is a process that leads to some information
loss, which is elaborated more on in the next three paragraphs. However, from the history
of science as well as theories of scientific progress, it is known that scientific theories
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change while describing the same sets of facts. Therefore, even if the presented DGKG
architecture is able to store a large ABox that contains empirical facts described within
terms of existing theories, those theories could not be uploaded into it without a loss of
linkage between concept descriptions. To make this architecture fully dynamic, in terms
of TBox and ABox dynamism, an additional software component, replacing blank nodes
with links, was required. Without making use of this component, and storing concept and
property definitions in OWL 2 files by default, KG are only partially dynamic because
they comprise two types of linked graphs - a static TBox RDF graph and a dynamic ABox
RDF graph.

OWL 2 provides a relatively rich and flexible set of lexical and logical means used in con-
cept definitions. In OntoZoning, some of those features were utilised to create definitions
of land uses that allow or may allow certain programmes that, in turn, group concepts
describing potential functional utilisation of land. An example of AirportUse definition
from OntoZoning, showing a relatively complex concept definition as a result of saving it
to OWL in RDF/XML syntax [60] using Protégé ontology editor, is included in the listing
1. Structural properties of XML, like tag nesting etc., allow to easily represent the order
of relations between concepts in such definition.

1

2 <owl:Class rdf:about="/OZ.owl#AirportUse">
3 <rdfs:subClassOf rdf:resource="/OZ.owl#LandUse"/>
4 <rdfs:subClassOf>
5 <owl:Restriction>
6 <owl:onProperty rdf:resource="/OZ.owl#

allowsProgramme"/>
7 <owl:allValuesFrom>
8 <owl:Class>
9 <owl:unionOf rdf:parseType="Collection">

10 <rdf:Description rdf:about="/OZ.owl#
AirportFacility"/>

11 <rdf:Description rdf:about="/OZ.owl#
AirportTerminal"/>

12 <rdf:Description rdf:about="/OZ.owl#
LandingSite"/>

13 </owl:unionOf>
14 </owl:Class>
15 </owl:allValuesFrom>
16 </owl:Restriction>
17 </rdfs:subClassOf>
18 <rdfs:subClassOf>
19 <owl:Restriction>
20 <owl:onProperty rdf:resource="/OZ.owl#

mayAllowProgramme"/>
21 <owl:allValuesFrom rdf:resource="/OZ.owl#

AircraftTakeoff,Landing,Taxiing,Parking"/>
22 </owl:Restriction>
23 </rdfs:subClassOf>

8



24 </owl:Class>

Listing 1: Definition of AirportUse land use with allowed programmes and additional
programmes allowed under certain conditions as OWL restrictions in
RDF/XML syntax.

OWL 2 specification also defines the language as fully representable in an SPO RDF
graph. Although existing conversion tools produce an SPO graph after converting the
definition included in the listing 1 into a definition expressed in N-Triples syntax [69],
such definition and a resulting RDF graph, that are included in the listing 2, are less precise
and less informative because of replacements in XML nesting structure with blank nodes
made during conversion. Although some of the existing implementations use blank node
identifiers, those identifiers are always locally scoped, not persistent and not portable
[68]. In SPARQL, those labels cannot be used as references to specific blank nodes in
the data being queried [78] and cannot be understood as identifying nodes in the active
graph of the dataset [79]. Therefore, it is no longer possible to read such definitions in
an intended order while attempting to retrieve them from an RDF store using SPARQL as
a query language. This loss of linkage results in a less complete and more vague TBox
graph while attempting to store scientific theories expressed in OWL 2 and produced with
existing tools in DKGs.

1

2 </OZ.owl#AirportFacility> <rdf:type> <owl:Class> .
3 </OZ.owl#allowsProgramme> <rdf:type> <owl:ObjectProperty> .
4 _:blank <rdf:rest> _:blank .
5 _:blank <rdf:first> </OZ.owl#AirportTerminal> .
6 </OZ.owl#LandingSite> <rdf:type> <owl:Class> .
7 _:blank <rdf:rest> _:blank .
8 _:blank <rdf:first> </OZ.owl#AirportFacility> .
9 _:blank <owl:unionOf> _:blank .

10 _:blank <rdf:type> <owl:Class> .
11 _:blank <owl:allValuesFrom> </OZ.owl#AircraftTakeoff,Landing

,Taxiing,Parking> .
12 _:blank <owl:onProperty> </OZ.owl#mayAllowProgramme> .
13 _:blank <rdf:type> <owl:Restriction> .
14 </OZ.owl#AirportTerminal> <rdf:type> <owl:Class> .
15 </OZ.owl#mayAllowProgramme> <rdf:type> <owl:ObjectProperty>

.
16 _:blank <rdf:type> <owl:Ontology> .
17 _:blank <rdf:rest> <rdf:nil> .
18 _:blank <rdf:first> </OZ.owl#LandingSite> .
19 </OZ.owl#AirportUse> <rdfs:subClassOf> _:blank .
20 </OZ.owl#AirportUse> <rdfs:subClassOf> _:blank .
21 </OZ.owl#AirportUse> <rdfs:subClassOf> </OZ.owl#LandUse> .
22 </OZ.owl#AirportUse> <rdf:type> <owl:Class> .
23 </OZ.owl#LandUse> <rdf:type> <owl:Class> .
24 _:blank <owl:allValuesFrom> _:blank .
25 _:blank <owl:onProperty> </OZ.owl#allowsProgramme> .
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26 _:blank <rdf:type> <owl:Restriction> .
27 </OZ.owl#AircraftTakeoff,Landing,Taxiing,Parking> <rdf:type>

<owl:Class> .

Listing 2: Definition of AirportUse land use with allowed programmes and additional
programmes allowed under certain conditions as OWL restrictions in N-Triples
syntax produced from 1 using existing tools.

Therefore, a tool that can store complex OWL 2 definitions without information loss in
DKGs has been developed as a part of the proof of concept described in this paper. The
owlconverter tool uses a skolemization technique that traces blank nodes during conver-
sion between OWL serialisation formats and replaces them with unique IRIs [70]. This
way of converting can preserve the intended order of concepts in such definitions and
results in dynamic TBox RDF graphs without information loss that are linked to corre-
sponding dynamic ABox RDF graphs by concept definitions and factual statements utilis-
ing defined concepts. Additionally, the tool can store the TBox in a separate named graph
uploaded to a SPARQL endpoint, exposing a dynamic data source on the web.

According to Pollock and Hodgson [65], "semantic interoperability is a dynamic enter-
prise capability derived from the application of special software technologies (such as rea-
soners, inference engines, ontologies, and models) that infer, relate, interpret, and classify
the implicit meanings of digital content without human involvement, which in turn drive
adaptive business processes, enterprise knowledge, business rules, and enterprise applica-
tion interoperability". Blazegraph™ is equipped with an inference engine [12]. However,
it does not support full OWL. Moreover, the built-in inference engine materialises all the
inferred triples, which may lead to growing KG quickly and negatively impact the perfor-
mance of it in return. Without any inference invalidation mechanisms in place, knowledge
stored in the KG could also become inconsistent when TBox changes. Such invalidation
mechanisms or inference provenance tracking that would invalidate obsolete statements
do not exist within Blazegraph™. The existing engine also does not provide means to in-
fer new knowledge using graph inference algorithms. Improvements to the TWA system
design and the DGKG reference architecture, presented in this paper, require revision of
existing novel inference architecture presented by Allemang and Hendler [1] to provide
even better support for semantic interoperability and automated inference capabilities via
a variety of existing KG inference algorithms. This revised reference architecture is pre-
sented in Figure 1. A proof of concept showcasing those new capabilities is described in
more detail in the next section.

3 Multi-domain Reasoning on Dynamic Geospatial Knowl-
edge Graphs

DGKGs, based on the revised novel system architecture discussed in Section 2, are capa-
ble of storing, retrieving, updating and removing knowledge about complex and geospa-
tially located objects. Moreover, thanks to being capable of inferring new knowledge
from the existing one, they are equipped with tools allowing for the automatic enrichment
of knowledge concerning such objects without the necessity of painstaking data collec-
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Figure 1: Component diagram of revised novel system architecture for inferencing in
DGKG. TBox and ABox graphs are both contained within a dynamic RDF store
with enabled geospatial features and queries facilitated by its integrated query
engine. The materialisation of triples contained in both graphs is supported
by necessary data passers and converters. The inference agent, also described
within the DGKG, plays the role of an inference engine capable of deriving new
statements via ontology and graph inference algorithms. The backend allows
to build applications utilising inferred and explicitly stated knowledge.
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tion and examination. TWA is a working prototype of DGKG with inference capabilities
implemented as a proof of concept showcasing the potential of such system architectures
while staying open to extensions, improvements and other types of modifications and in-
tegrations. TWA provides means to link complex object descriptions in terms of domain-
specific ontologies into physical locations on the surface of the Earth. In this way, it is
possible to arrive at a dynamic and holistic representation of a real-life object by linking
representations of different aspects of such an object together in a form of SPO statements
resulting in an RDF graph.

A query engine built into Blazegraph™ allows for knowledge access and for perform-
ing knowledge persistence routines via SPARQL query and update languages designed
to work with RDF graphs. The newly designed Inference Agent (IA) presented in this
paper provides KG inference capabilities over HTTP. The cognitive agent, like all other
agents built upon the JPS Agent Framework, listens to HTTP requests as an input and
responds with HTTP responses as an output. Request payloads sent as inputs to the IA
are extracted, validated and processed by the agent’s tasks before being sent back to the
party that initiated communication with the agent. The agent responds with new knowl-
edge that is not explicitly stated in the KG to the requests that specify a type and object
of desired new insights. The agent can produce responses by choosing an appropriate
task to a desired type that implements one of the currently known types of inference al-
gorithms, described in the next subsection 3.1. Because of this design, the agent could
also be regarded as an extended inference engine component that is capable of not only
performing ontology inferences, as it was in the unmodified novel reference architecture
but also inferences based on currently known graph inference algorithms.

3.1 Knowledge Graph Inference Algorithms

Inference algorithms allow to reliably make new conclusions from existing knowledge. In
the revised novel system architecture for DGKGs, the query engine provides interfaces for
knowledge retrieval and the IA, playing a role of an inference engine, provides interfaces
for reliably arriving at new insights that are not explicitly stated in the RDF store. The reli-
ability and validity of those conclusions are ensured by utilising existing and well-known
inference algorithms by the agent’s tasks. The agent demonstrates the implementation of
two broad classes of inference algorithms. Due to the graph structure of the linked SPO
statements, it is possible to apply graph inference algorithms. This class of algorithms
was not included in the unmodified novel reference system architecture. In general, this
class of algorithms is usually omitted in the literature devoted to inferences on the seman-
tic web that focuses on the ontology inference algorithms, which is the second broad class
of algorithms supported by the agent’s tasks dedicated to making new conclusions from
existing knowledge.

When graph inference algorithms are applied to get new insights, semantics are disre-
garded, and only the graph structure, i.e. number and depth of branches of each node,
is taken into account to complete this task. In this way, they are more general than on-
tology inference algorithms because they do not take into account any interpretation of
the statements that form a particular graph structure. Therefore the same set of conclu-
sions, arrived at by using this class of algorithms, would be applicable to all isomorphic
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KGs with the same numbers of nodes and relations between those nodes but representing
knowledge about heterogeneous domains. From the point of view of this class of algo-
rithms, such KGs are, in fact, one and the same KG, regardless of whether statements that
form those graphs refer to different objects, similar objects or the same objects described
from different points of view.

Graph inference algorithms can be grouped into three classes of algorithms, focused on
different aspects of the relationship between nodes in the graph. Community detection
algorithms find groups of nodes that are most similar to each other in terms of how they
are related to all the other nodes within a graph. Centrality detection algorithms analyse
the roles of nodes of a graph. Here belong algorithms that weigh nodes by their influence
on the overall graph structure in terms of how they are related to them within a graph.
Path-finding algorithms measure distances within a graph and score paths between nodes
depending on how many other nodes are on those paths. The proof of concept presented in
this paper describes an application of sample algorithms belonging to each class of graph
inference algorithms. The DGKG inference capabilities could be extended beyond this
proof of concept by implementing more of the known algorithms for each class.

Due to the usage of semantic web standards for knowledge representation within DGKGs,
apart from algorithms applicable to all graphs in general, it is also possible to utilise
ontology inference algorithms for deriving new knowledge from existing and explicitly
stated knowledge. OWL 2 ontologies provide means to group individual objects of a
given universe of discourse into named sets, denoted as classes. Such classes are arranged
within hierarchies that express relationships of individual objects as belonging to larger or
smaller groups of objects or subsets of larger sets, denoted as subclasses of superclasses.
In other words, such ontologies create taxonomies. Individuals that belong to a certain
named set are said to be instances of a class in terms of OWL 2. Apart from the ability to
express such unary relationships of individuals, it is possible to express binary relation-
ships between individuals belonging to those named sets while adopting this knowledge
representation standard. Binary relations between individuals correspond to named sets of
ordered pairs of individuals, denoted as object properties. This level of language expres-
sivity makes it possible to utilise two classes of ontology-based reasoning known from the
broader discipline of logic. Namely, it is possible to apply taxonomic reasoning as well as
rule-based reasoning to arrive at new knowledge based on existing knowledge represented
in OWL 2. Due to the fact that there are more convenient semantic web standards and lan-
guages of expressing rules than those provided by raw OWL 2 that could be utilised while
working with existing reasoning engines, only taxonomic reasoning capabilities have been
included in the proof of concept presented in this paper. This makes IA capable of check-
ing for consistency, class membership, class specialisation, class disjointness, value and
property restriction, as well as cardinality restriction on classes defined in the ontology.

3.2 Cognitive Capabilities of Inference Agent

IA, capable of answering with new insights to requests specifying objects described within
the KG and types of desired reasoning methods, is built upon the cognitive architecture of
the JPS Agent Framework introduced by Chadzynski et al. [20]. Within this architecture,
a dynamic RDF store provides means of storing long- and short-term memories about
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objects organised into larger mental structures described in a form of OWL 2 compliant
SPO statements. Above described extended novel reference architecture places long-term
knowledge corresponding to scientific theories (TBox), as well as knowledge about facts
described in terms of those theories (ABox), in a dynamic store that allows for concurrent
access and modifications to any functional processes that may operate on those structures
by intelligent autonomous agents. This dynamism makes it close to what actually hap-
pens during a cognitive process. It reflects on a constant interplay between general and
particular or between longer-term theories and an influx of new facts that eventually leads
to modifications of theories and makes cognitive subjects ‘seeing certain things in a new
light’ [44].

The proof of concept presented in this paper expands on the cognitive capabilities of
JPS Agents by introducing an ontology that encodes a taxonomy of existing inference
algorithms as well as particular cognitive agent’s tasks that contain functions allowing
the agent to apply those algorithms on the other knowledge structures stored within the
KG. Newly developed for this purpose OntoInfer ontology contains all of the classes
and sub-classes of previously mentioned inference algorithms. It also contains object
properties that relate those classes to tasks implemented by the IA. In this way, the agent
reads knowledge about relations between algorithms and its own tasks from the KG and
makes intelligent choices based on this knowledge about which task to operate in order
to satisfy certain requests, instead of having this ‘choice logic’ implemented in a form of
programming language code. It opens a possibility for an agent to make more dynamic,
context-based choices and extends the flexibility of the overall autonomous intelligent
agents system architecture.

Figure 2: Class diagram of Inference Agent designed as an abstract class in Java that
groups common inference agent logic and subclasses into Graph Inference
Agent and Ontology Inference Agent that contain operations specific to two
types of inference algorithms within DGKG.
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Because the two classes of the inference algorithms utilised by the agent operate on differ-
ent parts of the knowledge base, the agent is implemented as an abstract class in Java that
groups common functionality required to make all inferences. This abstract class could
not be instantiated as a Java object. However, instances of its concrete subclasses, namely
Graph Inference Agent and Ontology Inference Agent, listen to and intercept requests
pointing to either the whole graphs or into identifiers of classes and individuals within a
graph, accordingly. Knowledge about different parts of the globe, which are geospatially
described within separate and widely adopted Coordinate Reference Systems (CRS), is
stored in separate namespaces within TWA. Every namespace has got automatically as-
signed a unique International Resource Identifier (IRI). Different parts of namespaces are
separated into named graphs that describe distinct aspects of geospatial objects. Graph
inference algorithms are provided with IRIs of named graphs containing knowledge in a
form of TBox and ABox as an input for analysis. Ontology inference algorithms operate
on IRIs of classes, individuals or both to analyse their relationships within the knowledge
base. The only exception is consistency checking which, similarly to the graph inference
algorithms, requires whole graphs as an input. The relationship between IA and its two
incarnations responsible for applying different classes of inference algorithms is depicted
in Figure 2.

Autonomous agents based on the JPS Agent Framework are deployed as microservices
[61] that listen to HTTP requests and produce HTTP responses after processing request
parameters. Input validation is compulsory for every agent at the very first step after
request interception to stay in accordance with cybersecurity best practices and to prevent
agents from processing potentially corrupted information, causing system malfunctions
further downstream [58]. Input for the IA consists of request payload in JSON format
that contains one or more KG object IRIs that resolve to either whole graphs, classes or
individuals as well as an IRI of a particular inference algorithm, described in OntoInfer,
to be applied to those objects. The ontology axioms and assertions used by the agent are
included in the Appendix B.

Upon successful input request payload validation, the agent queries for the information
stored in the KG for which of its tasks are suitable to perform the operations allowing
it to apply the requested algorithm. This agent’s long-term knowledge is dynamic and
allows for further extensions of the agent, making it able to make more sophisticated
choices depending on the operational context. For instance, the agent could potentially
choose between ontology inference and graph inference tasks while being asked for class
specialisation checking, if there were many threads of any of those tasks currently busy
with calculating other answers. In this way, if the ontology inference thread pool was
already exhausted and the number of questions on the queue was exceeding a certain
threshold, the agent could check what is the shortest path between the two classes. If it
turned out that there is a shortest path with no nodes in between, that would mean that the
two given classes form a subclass-superclass relationship. By choosing between different
algorithms to find the same answer, depending on the context and self-observation, the
agent would demonstrate a certain degree of cognitive flexibility with regard to achieving
a given goal by its currently available means. This design also can change the agent’s
knowledge dynamically and vary it independently of the core agent’s code that requires
recompilation and the agent’s redeployment every time any change occurs within it.
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After the agent’s decision about the most appropriate task for the requested algorithm is
made, the agent queries the KG for knowledge about objects to which the algorithm is
going to be applied. Upon retrieval of it from the KG, the agent places it on a data queue
in a form of a map that associates an agent’s task IRI with the fetched data. All agent’s
tasks run in separate threads and extend Java Runnable interface [46]. This allows the
tasks to work independently of the main agent’s thread while observing the queue for
new data processing maps, as well as putting the results of their operations back on the
queue for the agent to pick up and return as its output. The agent executes tasks that
wait until any data appears on the queue. If there is data associated with a particular
task, a task applies an algorithm that is dedicated to handling it via an inference engine.
In the case of graph inference-specific tasks that operate on the whole graphs and may
require even a few hours to complete large graph analysis on modern hardware, tasks
insert results of applied inference algorithms in separate named graphs in the KG. This
allows for faster retrieval of new knowledge as well as the use of inferred knowledge
for further inferences, comparisons and analyses. Moreover, this design also provides a
simple invalidation mechanism for inferred knowledge that could be easily identified and
removed from the KG by graph drop operation [80] in case of DGKG changes requiring
reapplication of an inference algorithm. Regardless of that whether a task caches any
inferred knowledge this way in the KG or not, it puts the inferred knowledge on a data
queue from which it is picked up by the IA, encapsulated in JSON response payload
and returned back to the party that initiated the request to the agent. A detailed activity
diagram illustrating described information flow is included in the Appendix A.

3.2.1 Graph Based Inferences

To demonstrate community detection capabilities of the IA on multi-domain knowledge
representations as a proof of concept, the Edge Betweenness Clusterer from Jena Jung
[47] library was integrated into an agent’s task. The algorithm was applied to the se-
mantic representation of land plot data of Singapore, where geolocated plot shapes were
described in terms of OntoCityGML and plot zones and associated land use information
in terms of OntoZoning. The graph was compressed before being passed onto the algo-
rithm for clustering. The initial RDF graph fetched from the TWA was mapped to a Jena
Jung Undirected Sparse Graph of integers, where each subject, predicate and object was
mapped to a uniquely identifying numerical value. This operation reduced the overall
graph memory footprint and significantly shortened the computing time required to com-
plete cluster detection by the algorithm. The mapping information was stored by the task
in the internal class member variable for the purpose of remapping clustered integers back
to the original subjects, predicates and objects and restoring the original RDF graph with
each plot assigned to a certain cluster discovered by the algorithm. The results of apply-
ing the clustering algorithm that contained the information about the cluster number of
each plot as assigned by the algorithm were stored in the TWA as a separate named graph
within the same namespace and allowed the visualisation of the distribution of geolocated
plot clusters and their shapes on a map of Singapore included in the Figure 3.

The algorithm correctly assigns most of the plots to clusters that correspond to each zoning
type and match the subjects and objects of appropriate PlotIRI hasZone ZoningTypeIRI
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Figure 3: The result of applying the community detection algorithm on a TWA subgraph
consisting of Singapore plots data described as generic city objects using the
OntoCityGML ontology and functionally described as land plots with zones
using the OntoZoning ontology. Plots of the same colour belong to the same
cluster. The colour gradient represents sequential numbers, with clusters hav-
ing the lowest sequential number in light yellow and the highest sequential
number in dark brown.
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SPO statements stored in the TWA before applying the algorithm, where PlotIRI is a city
object IRI described in the OntoCityGML and ZoningTypeIRI is an IRI of an instance of
a concept defined within OntoZoning ontology. The clustering algorithm detects which
plots are linked to the same zoning type and allocates these plots to the same cluster.
Relating the city objects to more complex data, such as nodes representing city citizens’
visits to the areas within plots, would allow for clustering plots based on the number of
visits that took place in each plot. Applying the algorithm to find clusters that correspond
to how frequently each plot is visited could also find new insights, as the knowledge graph
does not contain this information stated explicitly.

Figure 4: The result of applying the centrality detection algorithm on a TWA subgraph
consisting of Singapore plots data described as generic city objects using the
OntoCityGML ontology and functionally described as land plots with zones
using the OntoZoning ontology. The colour gradient represents the PageRank
score of their zones, with plots having the lowest PageRank score of their zones
in light yellow and the highest PageRank score of their zones in dark brown.

An implementation of a centrality detection algorithm found in Jena Jung was also in-
tegrated into an IA’s task to demonstrate the agent’s capabilities related to this subclass
of graph inference algorithms. The implementation of the Page Rank algorithm from this
library was computationally efficient enough to not require graph remapping on the same
dataset. Straightforward RDF graph conversion to Jena Jung graph implementation al-
lowed to apply the algorithm and score each graph element accordingly to its transitive
influence on the whole graph. The information about what rank each plot was assigned by
the algorithm was stored in the TWA as a separate named graph within the same names-
pace and allowed to visualise the distribution of geolocated zoning types’ ranks on plots
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belonging to those zoning types with their shapes on a map of Singapore included in the
Figure 4.

The page rank algorithm results in 33 distinct ranks for all the plots. Each rank corre-
sponds to one zoning type, with the exception of one rank that contains plots with ‘Light
rapid transit’ and ‘Mass rapid transit’ zoning types. Plots with higher ranks have more
common zoning types. This is because plots with the same zoning type are all linked to
each other with one node (the zoning type) in between, and hence plots with a common
zoning type are more closely linked to many nodes than plots with a rare zoning type.
This example again shows how graph inferencing algorithms can provide meaningful and
interpretable results. With more complex data in the knowledge graph (and more links
between plots and other nodes), it would be possible to come up with more surprising
findings.

Path finding capabilities of the IA in this proof of concept were demonstrated by the
means of integrating Unweighted Shortest Path algorithm implementation from the Jena
Jung library. Similarly, for community detection, this task required graph compression
to be computationally efficient enough on the Singapore plot dataset described in terms
of OntoCityGML and OntoZoning ontologies. The same technique of mapping RDF
statement parts into integers was reused between those two tasks. The inferred knowledge
was also stored in a form of SPO statements in a separate named graph within the same
namespace to eliminate the necessity of repeating this computationally intensive process
every time the agent is asked to compute the distance between the exact same set of
nodes on an unchanged graph. The named graph storing the inferred statements could
be deleted or versioned and archived in case of KG changes that may affect previously
computed paths. The agent was able to answer correctly when asked about epistemic
distances between objects described in the following subgraph of the TWA:

Agriculture ⊑ ZoningType
Business ⊑ ZoningType

Agriculture : Agriculture
Business : Business

(plotA,Agriculture) : hasZone
(plotB,Agriculture) : hasZone
(plotC,Business) : hasZone.

It identified the distance between plotA and plotB as having a value of 1 because both plots
are related to the same instance of the Agriculture class via hasZone object property. The
agent also answered with the correct value of the epistemic distance between the plotA and
the plotC and the same value between the plotB and the plotC. The shortest path between
both plots to the plotC contains 2 nodes as they are related to instances of ZoningType
class via its subclasses by the hasZone object property, namely the Business instance of
the Business class, in case of the plotC and the Agriculture instance of the Agriculture
class, in case of the plotB and the plotA.

19



3.2.2 Taxonomic Reasoning

For the purpose of demonstrating taxonomic reasoning capabilities of the IA, an abstract
Taxonomic Reasoning task was created to group all methods required to work with a
dedicated reasoning engine. All other subtypes of taxonomic reasoning are handled by
separate concrete task classes that extend the abstract task. The HermiT reasoner engine
was integrated to those tasks as a well tested and outperforming other engines of this type
on benchmarks. It is based on the well known version of the tableau algorithm with im-
provements, namely novel hypertableau algorithm. The reasoner is capable of working
with OWL 2 knowledge bases. However there are no examples of using it with DKGs in
its public codebase. Therefore the Taxonomic Reasoning task required methods of con-
verting JSON SPARQL query results that were returned while fetching TBox and ABox
from the dynamic RDF store to the N-Triples format that could be parsed by OWL API
library and used with HermiT. This process also required a method reverse to the skolem-
ization technique used to upload TBoxes into the RDF store with the newly developed
owlconverter tool. Without it, the OWL API was not able to correctly restore more com-
plex concept definitions that contained restrictions and caused HermiT to respond with
incorrect answers.

Both OntoCityGML and OntoZoning were previously evaluated for the consistency and
the IA confirmed results of the evaluation. Additional consistency checks were done with
OntoBuildableSpace ontology that makes use of OntoZoning and Units of Measure ontol-
ogy to represent measurable characteristics of buildable spaces on plots in Singapore. As
the ontology consists of more complex class definitions and property relationships than
OntoZoning ontology, it served as a good base to illustrate IA Class Disjointness Check-
ing, Value Restriction Checking, Property Restriction Cardinality Restriction Checking
assertion tasks. The Consistency Checking task was separately tested to ensure that it
also works correctly on inconsistent knowledge bases. A unit test developed for the task
correctly asserted consistency of the following knowledge base:

(A,Class) : type
(B,Class) : type
(C,Class) : type

(C,B) : dis jointWith
A ⊑ B
A ⊑C

It also correctly detected the inconsistency of a knowledge base obtained from it by adding
the following two more statements:

(a,NamedIndividual) : type
a : A

because it is not possible for an individual a to be an instance of two disjoint classes.
Similar unit tests were developed for all other tasks dedicated to work with all the other
methods of taxonomic reasoning to ensure that the IA is able to handle them correctly.
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The task handling Class Membership Checking, given the following TWA fragment:

(CityOb jectA,NamedIndividual) : type
(CityOb jectA,CommercialZone) : hasZoningType

(hasZoningType,Plot) : domain
(hasZoningType,ZoningType) : range

is able to infer the following statements that were not explicitly stated in the KG:

(CityOb jectA,Plot) : type
(CommercialZone,ZoningType) : type.

It is also possible to assert the truthfulness of the following statements:

SideSetback ⊑ Length
FrontSetback ⊑ Distance,

that are not explicitly stated in the following fragment of the TWA:

FrontSetback ⊑ Setback
SideSetback ⊑ Setback

Setback ⊑ Distance
Distance ⊑ Length

via the Class Specialisation Checking task of the IA.

The task dedicated to the Class Disjointness Checking is able infer the following state-
ment:

(FrontSetback,AbsoluteHeight) : dis jointWith

not explicitly stated in the following fragment of the TWA:

FrontSetback ⊑ Setback
(Setback,AbsoluteHeight) : dis jointWith.

The Value Restriction Checking task of the IA asserts if two classes with a given IRIs are
bound as domain and range of an object property with another IRI. Using the following
fragment of the TWA:

(hasBuildableSpace,Ob jectProperty) : type
(hasRequiredSetback,Ob jectProperty) : type

(hasSource,Ob jectProperty) : type
(hasRequiredSetback,BuildableSpace) : domain

(hasBuildableSpace,BuildableSpace) : range
(hasSource,Setback) : domain

(hasRequiredSetback,Setback) : range
(BuildableSpace,Class) : type

(Setback,Class) : type
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it is possible to assert that the following statements, not explicitly included in the KG, are
always false:

(Setback,Setback) : hasRequiredSetback
(Setback,BuildableSpace) : hasRequiredSetback

(BuildableSpace,BuildableSpace) : hasBuildableSpace
(Setback,BuildableSpace) : hasSource.

Using the Property Checking task it is possible to assert if two individuals with given
IRIs are bound in a relationship by an object property with another IRI. Given the follow-
ing fragment of the TWA:

(FrontSetback,Class) : type
(BuildableSpace,Class) : type

(Setback1,NamedIndividual) : type
(Setback1,FrontSetback) : type

(BuildableSpace1,NamedIndividual) : type
(requiresSetback,Ob jectProperty) : type

(requiresSetback,BuildableSpace) : domain
(requiresSetback,FrontSetback) : range

(BuildableSpace1,Setback1) : requiresSetback
FrontSetback ⊑ Setback

Setback ⊑ Distance
Distance ⊑ Quantity

and the assertion of the truthfulness of the following explicitly stated statement by the
task:

(BuildableSpace1,Setback1) : requiresSetback

it is possible to infer new knowledge about inheritance by combining these tasks with
Class Specialisation Checking and to conclude that the following statements:

(Setback1,FrontSetback) : type
(Setback1,Setback) : type
(Setback1,Distance) : type
(Setback1,Quantity) : type

are true within this knowledge base.

Lastly, the Cardinality Restriction Checking task allows to infer that a BuildableSpace
can have StoreyAggregate with no more than 5 Storeys, given the following fragment of
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the TWA:

(StoreyAggregate,Class) : type
(Storey,Class) : type

(containsStorey,Ob jectProperty) : type
(containsStorey,StoreyAggregate) : domain

(containsStorey,Storey) : range
(CardinalityRestriction,Restriction) : type

(CardinalityRestriction,containsStorey) : onProperty
(CardinalityRestriction,Storey) : onClass

(CardinalityRestriction,5) : maxQuali f iedCardinality.

4 Research Summary and Future Work

DGKGs adhering to geospatial standards have the potential to open existing data silos to
one another and, by increasing comparability, improve geographical data interoperabil-
ity. By turning data into knowledge, DGKGs based on semantic web standards are also
capable of deriving new and not explicitly stated knowledge from such multi-domain de-
scriptions by applying inference algorithms. The resulting graph nature of the underlying
RDF knowledge representations in such KGs encourages the design of an inference engine
capable of automatically producing new statements by examining structural relationships
using graph inference algorithms alongside taxonomic reasoning algorithms. The linked
data approach enables information systems to arrive at such knowledge inflexions easier
way than before. The dynamic graph stores allow to collaborate and work with knowledge
concurrently and also by blending human and artificial intelligence of autonomous cogni-
tive agents. Such systems could be utilised to automatically discover new structural and
taxonomic relationships by linking various classes of city objects to each other together
with multi-domain descriptions that were not considered by anyone before. Thus, the
revised architecture and inference agent could support efficient urban data management
practices and land use allocation [74] by providing novel semantic and structural methods
for evaluating cities’ land use and built form regulatory data, as illustrated by the exam-
ples (see section 3). On a larger scale, those capabilities taken together could enable a
better understanding of cities and aid their future planning in ways that take into account
current threats faced by humanity as a whole, like those imposed by climate change to
which cities, taken as macro structures, are one of the most significant contributors.

Integrated building blocks at the maturity level of the research prototype for the above
capabilities have been described in this paper on the example of TWA. The main forces
driving the need for those capabilities, namely the present lack of information systems ca-
pable of facilitating highly interoperable and dynamic representations of cities that would
allow for complex analysis and inferences to support better planning to mitigate risks of
multiplying crises imposed by the external environmental factors, are presented in the
Section 1. Apart from that, the section contains a brief description of current systems’
gap analysis and challenges that could be overcome by the extended novel architecture
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containing uniform interfaces that allow for working with fully dynamic graph represen-
tation by an inference engine capable of applying different classes of known inference
algorithms. A working definition of DGKG has been introduced in Section 2. It was fol-
lowed by a more detailed description of the gaps in existing information systems of this
type and an explanation of the disadvantages of partially static KGs as they are unable
to reflect on the non-accumulative and dynamic nature of scientific knowledge that those
types of KGs are aiming to utilise to better understand geographical objects, and cities
in particular. Those gaps were illustrated in the example of the building blocks of TWA
introduced before including components presented in this paper and believed to be com-
monly found in similar KGs built on publicly available open-source software. The section
also includes a description of owlconverter tool designed and developed for the purpose
of producing fully dynamic knowledge representations in such systems without any in-
formation loss that would otherwise occur if more complex definitions were included in
ontologies. The high level overview of the extended novel reference architecture for infer-
ences is presented in the Section 3 together with a more detailed description of supported
classes of KG inference algorithms discussed in Subsection 3.1. It is followed by an ex-
planation of that how inferences are facilitated by an intelligent autonomous agent with
extended cognitive capabilities of choice based on its long term memories encoded in the
newly introduced for this purpose OntoInfer ontology in the Subsection 3.2. Examples
of multidomain reasoning using three broad classes of graph inference algorithms are in-
cluded in Subsection 3.2.1 that is followed by the Subsection 3.2.2 including examples of
taxonomic reasoning on such multidomain descriptions that include concepts of OntoCi-
tyGML, OntoZoning and OntoBuildableSpace within TWA.

Apart from reusing existing components, this work required design and development of
the following novel elements:

• A reference architecture for inferences that extends novel architecture previously
presented by Allemang and Hendler [1] that consists of the following additions:

– owlconverter that allows to produce fully dynamic knowledge graphs compli-
ant with semantic web standards by W3C and OWL 2 without information loss
that otherwise occurs while attempting to store complex concept definitions in
existing open source dynamic RDF stores;

– Inference Agent (IA) - an autonomous intelligent agent with extended cogni-
tive capabilities of making informed choices supported by long term knowl-
edge stored in the KG that acts as an extended inference engine supporting all
currently known classes of KG inference algorithms;

– OntoInfer ontology that encodes taxonomy of existing KG reasoning algo-
rithms linked to instances of IA tasks allowing the agent to make choices based
on the knowledge stored in the KG;

– 10 agent’s tasks designed to work as independently executed threads imple-
menting examples of known inference algorithms using existing libraries and
reasoning engines (Jena Jung and HermiT) and opening an agent for cogni-
tive flexibility while choosing between different implementations in order to
achieve a set goal depending on self observation about its thread and compu-
tational resources availability.
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DGKGs open for collaborative interfaces and citizen science knowledge acquisition and
inferencing by neogeographers [31] are also part of cities and similar considerations apply
towards their impact on the external environment as it is in case of any other city objects.
As it was discussed before, cognitive capabilities of the IA could be extended even further
and beyond capabilities of making informed choices based on long term knowledge stored
in the TWA. It would be possible for the agent to consider energy usage minimisation fac-
tors while choosing between different tasks in a cognitively flexible way to achieve its
inference goals. The current inferencing capabilities could be extended by implementa-
tion of many more algorithms of the discussed classes as well. This would expand agent’s
pool of choices and extend flexibility by allowing to compare their respective results on
larger scales. This future work could be regarded as a next brick on paving the road to-
wards self-sustainable knowledge graphs that are conceptualised as city objects capable of
modelling and understanding their operational environment forming cognitive cities [24].
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List of abbreviations

RDF Resource Description Framework
OWL Web Ontology Language
UN United Nations
SWT Semantic Web Technology
KG Knowledge Graph
GKG Geospatial Knowledge Graph
DKG Dynamic Knowledge Graph
DGKG Dynamic Geospatial Knowledge Graph
CKG Cities Knowledge Graph
TWA The World Avatar
JPS J-Park Simulator
EIP Eco-Industrial Park
UDT Universal Digital Twin
CIM City Information Model
GIS Geographic Information System
OGM Object Graph Mapper
ORM Object Relational Mapper
RDFS Resource Description Framework Schema
SPO Subject-Predicate-Object
GPU Graphics Processing Unit
I/O Input/Output
SPARQL SPARQL Protocol and RDF Query Language
CRUD Create, Read, Update, Delete
OGC Open Geospatial Consortium
TUM Technische Universität München
XML Extensible Markup Language
GML Geography Markup Language
W3C World Wide Web Consortium
LOD2 Level Of Detail 2
IRI Internationalized Resource Identifier
HTTP Hypertext Transfer Protocol
IA Inference Agent
CRS Coordinate Reference System
JSON JavaScript Object Notation
UML Unified Modeling Language
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A Inference Agent - UML Activity Diagram
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B OntoInfer ontology expressed in a DL syntax

Classes:

KnowledgeGraph ⊑ owl : T hing
Agent ⊑ KnowledgeGraph

GraphStore ⊑ KnowledgeGraph
GraphStore ≡ Namespace

In f erence ⊑ KnowledgeGraph
Task ⊑ Agent

Graph ⊑ GraphStore
Algorithm ⊑ In f erence

Triple ⊑ Graph
OntologyBased ⊑ Algorithm

GraphBased ⊑ Algorithm
Sub ject ⊑ Triple

Predicate ⊑ Triple
Ob ject ⊑ Triple

CentralityDetection ⊑ GraphBased
CommunityDetection ⊑ GraphBased

PathFinding ⊑ GraphBased
Evaluation ⊑ OntologyBased
RuleBased ⊑ OntologyBased

TaxonomicReasoning ⊑ OntologyBased
CardinalityConsraint ⊑ TaxonomicReasoning

ClassDe f inition ⊑ TaxonomicReasoning
ClassDis jointness ⊑ TaxonomicReasoning
ClassMembership ⊑ TaxonomicReasoning

ClassSpecialisation ⊑ TaxonomicReasoning
Inheritance ⊑ TaxonomicReasoning

NumberConstraint ⊑ TaxonomicReasoning
ValueRestriction ⊑ TaxonomicReasoning
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Properties:

(applicableTo,Ob jectProperty) : type
(applicableTo,Algorithm) : domain
(applicableTo,Namespace) : range
(appliedBy,Ob jectProperty) : type

(appliedBy,Algorithm) : domain
(appliedBy,Task) : range

(per f ormedBy,Ob jectProperty) : type
(per f ormedBy,Task) : domain
(per f ormedBy,Agent) : range

(hasIn f erenceAlgorithm,Ob jectProperty) : type
(hasIn f erenceOb ject,Ob jectProperty) : type

(hasIn f erredValue,DataProperty) : type
(hasIn f erredValue,xsd : double) : range

Assertions:

singaporeEPSG4326 : Namespace
OntologyIn f erenceAgent : Agent

GraphIn f erenceAgent : Agent
ClassDis jointnessCheckingAlgorithm : ClassDis jointness

ClassDis jointnessCheckingTask : Task
(ClassDis jointnessCheckingAlgorithm,ClassDis jointnessCheckingTask) : appliedBy

(ClassDis jointnessCheckingTask,OntologyIn f erenceAgent) : per f ormedBy
ClassMembershipCheckingAlgorithm : ClassMembership

ClassMembershipCheckingTask : Task
(ClassMembershipCheckingAlgorithm,ClassMembershipCheckingTask) : appliedBy

(ClassMembershipCheckingTask,OntologyIn f erenceAgent) : per f ormedBy
ClassSpecialisationCheckingAlgorithm : ClassSpecialisation

ClassSpecialisationCheckingTask : Task
(ClassMembershipCheckingAlgorithm,ClassSpecialisationCheckingTask) : appliedBy

(ClassSpecialisationCheckingTask,OntologyIn f erenceAgent) : per f ormedBy
ConsistencyCheckingAlgorithm : Evaluation

ConsistencyCheckingTask : Task
(ConsistencyCheckingAlgorithm,ConsistencyCheckingTask) : appliedBy

(ConsistencyCheckingTask,OntologyIn f erenceAgent) : per f ormedBy
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Assertions (continue):

PropertyCheckingAlgorithm : TaxonomicReasoning
PropertyCheckingTask : Task

(PropertyCheckingAlgorithm,PropertyCheckingTask) : appliedBy
(PropertyCheckingTask,OntologyIn f erenceAgent) : per f ormedBy

ValueRestrictionCheckingAlgorithm : ValueRestriction
ValueRestrictionCheckingTask : Task

(ValueRestrictionCheckingAlgorithm,ValueRestrictionCheckingTask) : appliedBy
(ValueRestrictionCheckingTask,OntologyIn f erenceAgent) : per f ormedBy

InheritanceChckingAlgorithm : Inheritance
(InheritanceChckingAlgorithm,ClassMembershipCheckingTask) : appliedBy

(InheritanceChckingAlgorithm,PropertyCheckingTask) : appliedBy
EdgeBetweennessAlgorithm : CommunityDetection

ConsistencyCheckingTask : Task
(EdgeBetweennessAlgorithm,EdgeBetweennessTask) : appliedBy
(EdgeBetweennessTask,GraphIn f erenceAgent) : per f ormedBy

PageRankAlgorithm : CentralityDetection
PageRankTask : Task

(PageRankAlgorithm,PageRankTask) : appliedBy
(PageRankTask,GraphIn f erenceAgent) : per f ormedBy

UnweightedShortestPathAlgorithm : PathFinding
UnweightedShortestPathTask : Task

(UnweightedShortestPathAlgorithm,UnweightedShortestPathTask) : appliedBy
(UnweightedShortestPathTask,GraphIn f erenceAgent) : per f ormedBy
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