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Abstract

In this work, we develop a derived information framework to semantically annotate
how a piece of information can be obtained from others in a dynamic knowledge
graph. We encode this using the notion of a “derivation” and capture its metadata
with a lightweight ontology. We provide an agent template designed to monitor
derivations and to standardise agents performing this and related operations. We im-
plement both synchronous and asynchronous communication modes for agents inter-
acting with the knowledge graph. When occurring in conjunction, directed acyclic
graphs of derivations can arise, with changing data propagating through the knowl-
edge graph by means of agents’ actions. While the framework itself is domain-
agnostic, we apply it in the context of Smart Cities as part of the World Avatar
project and demonstrate that it is capable of handling sequential events across dif-
ferent timescales. Starting from source information, the framework automatically
populates derived data and ensures they remain up to date upon access for a potential
flood impact assessment use case.
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Highlights
• An ontology to represent derived information in a knowledge graph is devel-

oped.

• Generic agent templates for handling the derivation process are provided.

• The fully automated framework populates directed acyclic graphs of derived
information.

• Information updates propagate through the knowledge graph upon access.

• The framework is applied to assess the impact of a potential flooding event.
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1 Introduction

Inspired by Semantic Web technology, knowledge graphs are gaining popularity both in
enterprise applications [43] and research fields [30]. They are seen as a suitable approach
to integrating diverse information sources and fostering common understanding among
domain experts [27, 34]. Some renowned examples of static knowledge graphs are DB-
pedia [37] and Wikidata [45].

The dynamic aspect of knowledge graphs has recently been studied [1, 6], where they
are used as hubs for integrating complex systems of software agents, connecting different
domains in specific use cases. This allows for what-if scenario analysis and automated
decision-making that mimics human behaviour. This is a step towards the original vision
of the Semantic Web, which is a fully annotated web of machine-readable data that can
be processed autonomously by software agents [7, 29]. However, this also highlights the
need for robust methods to manage the changes and interdependencies in the complex
information network, especially in a data-rich world which is rife with misinformation.

A key enabling factor identified by the community is provenance [51], i.e. where a piece
of information originates from and how it came about. Provenance covers many aspects,
including published literature, the wider internet, or data directly acquired through a
measurement device. A number of provenance ontologies have been developed in the
literature, for example, PAV [10], W3C Provenance Ontology (PROV-O) [36], Dublin
Core Terms (DC Terms) [15], Bibliographic Ontology (BIBO) [14], and Open Prove-
nance Model Ontology (OPMO) [41]. For a comprehensive review of developments in
provenance data models, interested readers are referred to Sikos and Philp [47].

In dynamic knowledge graphs, one can consider a specific sub-problem of provenance,
namely when some pieces of information are directly calculated from, or derived from,
other pieces of information by software agents, all of which are already stored in the
knowledge graph. When multiple pieces of information depend on each other in a certain
way, the resulting cascade of information is progressed in time via a series of coordinated
agent communications, where the calculated values of one process are inputs for other
subsequent processes. To make the knowledge graph truly dynamic, the system should
also enable automated propagation of perturbations in source input data. This introduces
another point of view – caching. In addition to providing functions (agents) to calculate
a result, that result is stored, i.e. cached, in the knowledge graph. Many of the technical
challenges are similar, such as being able to detect when the cache is out of date, and
providing a function to update, refresh, or recalculate the cache.

Any approach to solving this problem can benefit from lessons learned in other fields. In
scientific computing, such a composition of computing tasks is referred to as workflow or
pipeline [17, 50]. Workflows are typically expressed as directed acyclic graphs (DAGs),
where the nodes represent tasks and edges represent data flows [38]. Each task can only
be started if all its precedent tasks are completed. There are many different workflow
management systems (WMSs) that can be used to orchestrate these tasks, ranging from
traditional paradigms like Pegasus [16, 18] and Kepler [4] to modern approaches like
Apache Airflow [48], Nextflow [22], and Lightning AI [24], to name a few. Some studies
have focused on adaptive workflows, where changes in the input data may be incorporated
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into computation on-the-fly to provide real-time responses to dynamic events [40]. How-
ever, these systems often rely on heterogeneous and unstructured data models without
semantic annotations [19], which can make it difficult to achieve interoperability across
different systems, impeding the unification of the workflow community [12].

Another area which we may learn from is microservice architecture [23]. It is a service-
oriented architecture (SOA) that emphasises loose coupling and high cohesion. It involves
having each service in the ecosystem be independently developed, deployed, and main-
tained by a small dedicated team. When an event occurs, which is a similar concept as an
execution instance of one pre-defined workflow, microservices are composed and coordi-
nated via message-passing. This architecture places no restrictions on developers regard-
ing the technology used to implement each microservice as long as a unified interface is
agreed upon. Nonetheless, it places significant demands on the network to ensure success-
ful communication. In this paradigm, Distributed Application Runtime (Dapr) [13] uses a
sidecar to simplify communication via direct or event-based publish/subscribe messaging,
unifying both modes of communication on the same platform.

Taking notes from these advents, we may summarise and suggest a knowledge-graph-
native solution. By design, data in the knowledge graph can be uniquely identified via
Internationalised Resource Identifiers (IRIs). All the active agents share the same world-
view once granted access privileges. Analogous to the message bus in the microservice
architecture, the communication between agents operating on the knowledge graph can be
delegated via serving the correct IRIs. This eliminates the necessity for large peer-to-peer
data transfer. It can be further combined with the idea learned in the scientific workflow to
model computation dependencies as DAGs in the knowledge graph. By encoding agents’
messages as provenance records, we remove the need for direct agent-to-agent communi-
cation and allow information to travel through the knowledge graph. This decouples the
system and allows for a distributed ecosystem of agents without the need for them to be
aware of each other’s existence.

As a “digital twin” of the world that is realised as a dynamic knowledge graph [1], the
World Avatar is thought to be an appropriate candidate for evaluating the implementation
of this technology. As it stands, there is an interwoven network of concepts spanning
temporal and spatial scales, extending from molecule [26] and chemical mechanism [25]
to laboratory [6], cities [9], and even the national level [1]. The World Avatar is constantly
evolving as it is maintained by a network of active agents who regularly input new data
and update existing data. To effectively manage the actions of these agents and ensure
accurate tracking of their activities, an overarching architecture is required.

The purpose of this paper is to demonstrate a proof-of-concept for a technology-agnostic
implementation of a derived information framework for dynamic knowledge graphs. This
derivation framework is a realisation of such a knowledge-graph-native architecture. It
uses a lightweight ontology to mark up provenance, an agent template to standardise agent
operations, and an automated framework to propagate information changes in a dynamic
knowledge graph. The design aims to lower the entry barrier for researchers to model any
real-world cascading events with minimum effort by providing a user-friendly template.
In particular, we demonstrate this through a flood impact assessment use case within the
World Avatar project.
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The presentation of this paper is structured as follows. Section 2 situates the work by
summarising the lessons we learned through the development of a dynamic-knowledge-
graph-based digital twin of the world; section 3 provides the technical details on the com-
plete architecture; section 4 exemplifies the versatility of the framework via a use case in
the context of smart cities; and section 5 concludes the work.

2 The World Avatar
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Figure 1: Schematic of the World Avatar knowledge graph. Note that the figure is only
illustrative and does not reflect actual data.

In the World Avatar, the physical world we live in is captured and represented as the base
world. The hypothetical versions of the world in which certain variables or assumptions
are different are represented as parallel worlds. These alternative universes are managed
by software agents that can perform a variety of tasks. Importantly, the World Avatar
views these agents to be part of the knowledge graph, as depicted in Fig. 1. Using this
technology stack, the World Avatar is versatile in three aspects: (1) answering cross-
domain questions about the base world [3], (2) controlling real-world entities [6, 32], and
(3) supporting what-if scenario analysis with parallel worlds [2, 46].
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As the World Avatar project continues to evolve, it strives to more accurately represent
complex phenomena across spatio-temporal scales. This requires a tool for efficiently
coordinating the actions of agents that update and restructure the knowledge graph. Cur-
rently, software agents are represented similar to semantic web services [52], which are
invoked through HTTP requests. For time-consuming computations, an asynchronous
job watcher is available to delegate jobs to high-performance computing (HPC) facili-
ties. This was applied to assess the impact of quantum calculations on the air pollution
dispersion [42] and to automate the calibration of combustion mechanisms [5]. These ap-
proaches largely adhere to the static remote procedure call paradigm. To fully unlock the
potential of the dynamic world model, a more flexible and adaptive architecture that can
facilitate autonomous interaction between agents and the knowledge graph is preferred.

The derived information framework described in this work offers such a solution as a first
step towards revolutionising the agents’ operations in dynamic knowledge graphs.

3 Methodology

This section provides an overview of the technical aspects of the derived information
framework. We begin by introducing the ontology created for annotating the provenance
markup, then presenting the agent template that developers can use as a starting point
when developing new agents. Lastly, we discuss a client library, which can be used to
manage the derivation instances.

3.1 Derivation ontology

We refer to “derivation” as the record for a singular occurrence of the fact that some
pieces of information are derived or calculated from some other pieces of information.
The term “derivation subgraph” is used to describe the subgraph of all derivation-related
markup when a collection of interdependent processes is represented. Since the informa-
tion in a knowledge graph is captured in the format of Subject–Predicate–Object state-
ments (triples), storing the markup to capture this fact can be considered as a way of
attaching arbitrary metadata to triples [39]. For that, generic solutions have been devel-
oped or are currently in development, such as reification [28] and W3C’s RDF-star [49],
which at the time of writing is still at the draft stage. While some implementations exist,
e.g. Blazegraph’s Reification Done Right (RDR) [8, 28] or more recently GraphDB [44],
at present these are not sufficiently widely supported for a technology-agnostic way of
implementing the derivation framework, without tying ourselves to a particular product.
Therefore, we choose to state the required metadata explicitly as triples and introduce
OntoDerivation as a lightweight ontology to serve this purpose. The terminological com-
ponent (TBox) is explained first, followed by an example instantiation of the assertional
component (ABox). The connection between OntoDerivation and OntoAgent [52], an on-
tology used to define the capabilities of agents, is further demonstrated by how they may
be used in conjunction to govern agent actions.
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3.1.1 OntoDerivation TBox
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Figure 2: Concepts and relationships of the OntoDerivation ontology. All classes and
properties belong to the OntoDerivation namespace unless stated otherwise
(for namespace definitions see A.1).

Figure 2 depicts two types of derivation, namely Derivation and DerivationAsyn.
They are classified as synchronous (Derivation) and asynchronous (DerivationAsyn)
to accommodate situations that respond in different timescales when a request is received.
The synchronous mode communicates via the endpoint exposed by the software agent.
It is thus faster and hence intended for applications demanding real-time responses. The
asynchronous mode communicates exclusively through the knowledge graph. It has the
advantage of recording each stage of the operation in the knowledge graph, but it is slower
and hence better suited to relatively expensive jobs.

The information dependencies of a derivation are consistently marked regardless of the
communication protocol, with the derived information (outputs) belongsTo the deriva-
tion, which itself isDerivedFrom some source information (inputs) and isDerivedUsing
an agent defined in OntoAgent [52]. It is worth noting that there is no limit on the num-
ber of inputs or outputs for a derivation, but one output entity cannot belongsTo more
than one derivation instance. Both source and derived information are abstracted us-
ing owl:Thing, so it is also possible for an input of a derivation to be part of another
derivation instance, meaning that the input is a piece of derived information itself and
belongsTo another derivation.
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To support asynchronous operation, the concept Status is introduced to mark the state
of an asynchronous derivation with the available options of Requested, InProgress,
Finished and Error. The data property retrievedInputsAt records the timestamp
when the inputs for the derivation were read in order to start the computation, which
will later be used to update the timestamp for the derivation instance. The data property
uuidLock uniquely identifies the agent thread that is processing the derivation and pre-
vents any amendment from other threads that do not hold the correct key. This ensures
thread-safe operations when multiple threads are employed to boost the throughput of
derivation processing. A specific object property called hasNewDerivedIRI is used at
the Finished status to temporarily link any newly derived information. These output
entities will eventually be reconnected to the derivation instance after the agents clean up
the status. Like the final outputs, there is no limit on the number of new entities that can
be connected through hasNewDerivedIRI for each derivation instance.

A description logic representation of OntoDerivation ontology is provided in A.2.

3.1.2 OntoDerivation ABox
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Figure 3: An example derivation instance fully annotated with metadata and its simpli-
fied representation, which will be used throughout the rest of this paper. All
properties belong to the OntoDerivation namespace unless stated otherwise
(for namespace definitions see A.1).
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Figure 3 exemplifies an instantiated derivation instance and its simplified representation.
Upon initialisation, each derivation is annotated with a timestamp following the W3C
standard [11]. In the rest of this paper, simple integers will be used instead of the actual
(Unix) timestamp for readability. Over the lifecycle of a derivation, this timestamp is
used to assess whether it is out-of-date. In this example, as the timestamp of derivation is
smaller than that of its source information, i.e. 1 < 36, we conclude that this derivation
is outdated and that, hence, an update of the derived information is required. It should be
noted, however, that the timeliness of the derived information is reflected by the timestamp
of the derivation instance it belongsTo, and hence does not contain a timestamp itself.
As a result, additional criteria for determining whether a derivation is out-of-date should
be used when any of its inputs is part of another derivation instance, meaning the existence
of a derivation subgraph comprised of several connected derivations. More information
on its implementation is provided in section 3.3.

d1 i1

a1

i3

i5 d3

a3

i2
i4

d2

a2
d0 i0

a0

i1i2 d1

a1

Chain

Polyt ree

d1
i1

a1

i3

i5 d3

a3

i2i4
d2

a2 d0 i0

a0

Direct ed Acycl ic 
Graph (DAG)

Information Flow

Information Flow

Information Flow

Figure 4: Derivation subgraph structures as directed acyclic graphs (DAGs) of varying
generality. The arrows between instances indicate the markup for data depen-
dencies. The “information” flows in the opposite direction, i.e. from right to
left.

Figure 4 illustrates three levels of generality in a derivation subgraph, from basic linear
chain to non-linear polytree to generic directed acyclic graph. Unlike in scientific work-
flows, where the arrows often point in the same direction as the data flow, the markup in
the knowledge graph denotes the data dependencies and points to the source of the in-
formation. The changes in the source information travel in the opposite direction within
the knowledge graph, as illustrated by “information flow”. In this context, we define ‘up-
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stream’ and ‘downstream’ to refer to the relative location of a derivation instance within
that flow. A key feature of the design is that only relevant downstream information is
updated when accessed, which will be discussed in more detail in section 3.3.

We emphasise that the primary intent of the derivation framework is to represent logi-
cal dependencies as such, as a historical record, rather than consider them as ‘steps’ in
a workflow or algorithm. This implies that, in contrast to workflows [35], cyclic depen-
dencies are not permitted in the derivation framework, as they would amount to logical
contradictions. Nonetheless, the framework can of course be used to record the depen-
dencies of pieces of information that were obtained from algorithms containing loops and
other circular constructs.

OntoDerivation ontology is designed in a way that is easy to use and easy to query. Tools
are provided to automatically generate derivation markup for all three types, and validate
the generated derivation subgraph. An example SPARQL query to retrieve all derivations
in a given knowledge graph is provided in Query 1.

3.1.3 Connection with OntoAgent

In the World Avatar, OntoAgent [52] is used to mark up the input/output (I/O) signature
of agents to facilitate agent discovery. This markup points to concepts in domain ontolo-
gies and indicates the agent’s capabilities. By contrast, OntoDerivation focuses on the
instance level, i.e. actual data digested and produced by the agents corresponding to each
occurrence of computation, revealing the opportunity for employing both ontologies to
regulate agent operations.
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Figure 5: The instantiation that connects OntoDerivation and OntoAgent. The linkage
between derivation instances and agent instances is used to regulate agent op-
erations. All object properties belong to the OntoDerivation namespace unless
stated otherwise (for namespace definitions see A.1).
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Figure 5 provides an example of instantiation using both OntoDerivation and OntoAgent,
where inputs and derived outputs of the derivation instance are both instantiated from
the concepts pointed to by the OntoAgent instance. For a given derivation instance, the
inputs can be classified into key-value pairs, with the IRI of each concept as the key
and the list of instances as the value. For example, the value of the pair with the key
DomainOntology_1:ExampleConcept_1 will be input_1_1 and input_1_2. This design
connects the conceptual capability of the agents with the concrete tasks that they are
assigned to execute. Following this practice, the development of agents can be focused on
the concept level, simplifying the implementation.

3.2 Derivation agent

The use of ontological markup to record each step in the process of updating derived in-
formation largely restricts the communication an agent needs to perform to the knowledge
graph itself, rather than with other agents. We provide an agent template to support this
in both synchronous and asynchronous modes. The template makes use of data container
classes to host agents’ inputs and outputs. These classes are key-value pairs that may be
mapped using query 2. Developers are supplied with utility functions to access/validate
the mapped inputs and to construct outputs. The agent logic that computes outputs from
the inputs is the only code required from the developer. We made the template available
in both Java and Python to increase accessibility and depict its unified modeling language
(UML) activity diagram in Fig. 6. The essential design elements are elaborated on below.

3.2.1 Synchronous communication mode

The synchronous communication mode is realised through direct agent requests/responses.
Upon receiving a request for a normal Derivation, the agent serialises the request con-
tent to an instance of the container class. The time instant is recorded immediately before
passing the inputs to be processed by the developers’ code. This instant is considered as
the timestamp when inputs were read. Once the outputs are constructed, an update opera-
tion will be formulated and executed by the agent to update the knowledge graph. If there
is no error, the derivation update is considered successful and a response will be returned
that includes the produced derived information and the recorded timestamp.

3.2.2 Asynchronous communication mode

In the asynchronous communication mode, agents monitor the status of derivations in the
knowledge graph and perform any requested tasks. When an agent detects a derivation
with the status Requested, it first checks if all the data dependencies for that derivation
are satisfied using Query 3. If the requirements are met, the agent retrieves the inputs
from the knowledge graph, records the current timestamp, and changes the status of the
derivation to InProgress. The inputs are then passed to the method provided by the
developer and transformed into outputs. At this point, the status of the derivation will
be changed to Finished and the newly derived outputs are temporarily connected to it.
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This status refers to a distinction made between a task that has been completed but still
requires post-processing or cleaning-up, and a task that is complete in the sense that it
requires no further action. It is used to prevent multiple agents from trying to perform the
same cleaning-up tasks simultaneously and is removed when the derivation subgraph is
tidied up during the next scheduled monitoring period. The cleaning-up process includes
deleting the old instances, connecting the new instances with the original derivation and
any downstream derivations that exist, removing all the status information, and finally
updating the timestamp of the derivation to keep the derivation subgraph current. The
monitoring is performed at a scheduled time interval and its frequency can be user-defined.
If an error occurs during any operation, the agent changes the status of the derivation to
Error and records the exception trace.

3.2.3 Concurrency and multi-threading

Being a decentralised system by design, the World Avatar contains many agents that are
operating on the knowledge graph simultaneously. In situations where multiple agents
request updates to the same derivation, the corresponding agent must handle concurrent
requests correctly and efficiently. For example, such a situation arises when instance i1
and i2 illustrated in the generic form of DAG in Fig. 4 are accessed at the same time. In
synchronous communication mode, the current implementation ensures that no duplicated
information is added to the knowledge graph through the use of the SPARQL update de-
tailed in Query 4. In asynchronous communication mode, the agent uses the data property
uuidLock to identify and lock the thread currently handling a derivation, avoiding du-
plicated execution. These measures ensure that concurrency is handled correctly without
sacrificing the high throughput of multithreading, paving the way for distributed agent
deployment.

3.3 Derivation client

Having established the ontology to capture the derivation process and the agent template
to perform the derivation update, we introduce here the derivation client capable of man-
aging the derivation subgraphs. This involves determining if a derivation is out-of-date
and, if so, requesting an update. This section discusses three cases in which updates to the
derivation subgraph are handled using different communication modes, namely: purely
synchronous, purely asynchronous, and mixed-type. For each case, we first present the
general algorithm and then provide examples to describe the intended outcome.

3.3.1 Purely synchronous update

Determining the timeliness of each derivation and performing the necessary updates in
a derivation subgraph is a recursive process. Given any derivation instance where the
accessed information is derived from, the framework treats it as root, traverses upstream
all the way to the derivation that is derived from source information, i.e., all inputs of
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whom are not derived from anything, and finally updates derivations backwards. This
may be described as a depth-first search (DFS) algorithm, presented in Algorithm 1.

Algorithm 1: updateSyncDerivation(rootDerivationIRI)
Input: IRI of the root derivation instance
Result: The root derivation and all its upstream derivations are updated if deemed

outdated
Create an empty directed acyclic graph G;
Cache root derivation d and all its upstream derivations recursively in G;
updateSyncDerivation(d, G);

Function updateSyncDerivation(d, G):
U ← d.upstreams() ; /* get immediate upstream derivations */

if vertex d ̸∈ G.vertices then
Add d as vertex in G;

end
for u ∈U do

if vertex u ̸∈ G.vertices then
visitedu← f alse;
Add u as vertex in G;

else
visitedu← true;

end
if edge (d,u) ̸∈ G.edges then

traversedd,u← f alse;
Add (d,u) as edge in G ; /* will throw error if circular

dependency detected */

else
traversedd,u← true;

end
if visitedu == f alse and traversedd,u == f alse then

updateSyncDerivation(u, G);
end

end
Fire request to update d if it is deemed outdated;
Update outputs of d in cache;
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when updating the derivation subgraph. The derivation instances are treated
as vertices and their connections as edges. Depending on the root derivation
chosen, different DAGs can be generated.

Figure 7 illustrates a notable detail of Algorithm 1 that uses the DAG G to track the
traversing of the graph. To do this, the algorithm adds derivation instances as vertices and
connections between them as directed edges to G. Depending on the root derivation, the
DFS algorithm can result in two versions of G, leaving out irrelevant parallel branches.
The update is carried out only for the derivations in the resulting graph during the DFS al-
gorithm’s backtracking. It should also be noted that, the computation only proceeds when
both node and edge are previously unseen. For example, regardless of which branch is
traversed first (derivation d1 or d2) in the upper resulting graph, derivation d0 is only vis-
ited the first time when branching. This design ensures the relevant upstream information
are only visited once to avoid duplication of work.
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Figure 8: The process of updating a single synchronous derivation.

Figure 8 illustrates the simplest form of derivation update, i.e., updating one synchronous
derivation. For demonstration, we take the simplified representation of derivation ex-
pressed in Fig. 3 at timestamp 36 as a starting point. As aforementioned, this derivation
is deemed outdated when comparing its timestamp with that of its inputs. Assuming the
output information is accessed at 60, the framework fires an update request to the agent
associated with the derivation instance. Upon receiving the update request, the agent starts
a calculation immediately and updates the output entity in the knowledge graph with the
newly derived information. The derivation instance is thus up-to-date and the results are
returned.
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Figure 9: The process of updating a derivation DAG consisting of only synchronous
derivations.

To expand this example to a slightly more complex situation, we consider accessing in-
formation i2 in a linear chain of two synchronous derivations, as represented in Fig. 9.
In this example, the input information of derivation d1 belongs to derivation d0, there-
fore, the timeliness of d1 is determined by comparing it with the derivation d0. However,
just comparing the timestamps of these two will lead to an incorrect conclusion that d1 is
up-to-date. On the contrary, d1 should be considered as outdated as it depends on an out-
dated derivation. Therefore, in the situation of assessing the timeliness of derivations that
depend on derived information, the framework determines the timeliness of the upstream
derivation (d0) first before performing any action to the downstream derivation (d1). For
the presented example, assuming that information i2 is accessed at time 80, the framework
updates d0 first, then d1 immediately afterwards. With the new outputs connected in the
knowledge graph, both derivations will be seen as up-to-date.

3.3.2 Purely asynchronous update

In the scientific computing domain for example, it is common to have situations where
lengthy calculations from source input data are requested, requiring minutes or hours of
wall time before the outputs are available. The asynchronous update suitable for such situ-
ations is discussed in this section, as described in Algorithm 2. It is similar to Algorithm 1,
except that the algorithm for asynchronous derivations does not cache the derivation sub-
graph. Rather, the immediate upstream derivations are queried on-the-fly and hence their
timeliness is determined purely based on real-time queries of the knowledge graph. The
purpose of this design is to account for the fact that, due to the relatively long time scales
involved, any information in the subgraph of asynchronous derivations can change while
the process of carrying out an update is taking place.
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Algorithm 2: updateAsyncDerivation(rootDerivationIRI)
Input: IRI of the root derivation instance
Result: The root derivation and all its upstream derivations are requested for update

if deemed outdated
Create an empty directed acyclic graph G;
Query derivation instance d from the KG using the given rootDerivationIRI;
updateAsyncDerivation(d, G);

Function updateAsyncDerivation(d, G):
Query the list U of all immediate upstream derivations of d;
if vertex d ̸∈ G.vertices then

Add d as vertex in G;
end
for u ∈U do

if vertex u ̸∈ G.vertices then
visitedu← f alse;
Add u as vertex in G;

else
visitedu← true;

end
if edge (d,u) ̸∈ G.edges then

traversedd,u← f alse;
Add (d,u) as edge in G ; /* will throw error if circular

dependency detected */

else
traversedd,u← true;

end
if visitedu == f alse and traversedd,u == f alse then

updateAsyncDerivation(u, G);
end

end
Mark d as Requested if it is deemed outdated;
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Figure 10: The process of updating a single asynchronous derivation. The integers at-
tached to the derivation instances via the dashed arrows denote the times-
tamps recorded by the data property retrievedInputsAt.

As depicted by Fig. 10, we start from the point in time when the derivation is just in-
stantiated, i.e. the asynchronous derivation is initialised with the status as Requested
and a timestamp of 0, with no output computed. The actual update of an asynchronous
derivation will be dealt with by the derivation agent and is not concurrent with the request
for that update. As the agent periodically checks the status of derivations that are derived
using itself, the requested derivation will be turned into InProgress at the next trigger
and the timestamp when the inputs were read will be recorded. The successful comple-
tion of the job will be reflected in its status Finished. The agent will then connect the
generated output to the derivation instance, update the timestamp and lastly remove the
status altogether. The update process is similar to that of the initial computation. The only
difference is that the agent will perform instance matching when reconnecting the newly
derived information to existing downstream derivations in the derivation subgraph.
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Figure 11: The process of updating a derivation DAG consisting of only asyn-
chronous derivations. The integers attached to the derivation instances via
the dashed arrows denote the timestamps recorded by the data property
retrievedInputsAt.

The same example can be expanded to a linear chain of two asynchronous derivations
instantiated with only one piece of input data, as illustrated in Fig. 11. In this case, as
none of the outputs are computed, the downstream derivation d1 is directly marked as
isDerivedFrom its upstream derivation d0. The agent responsible for d0 will operate in
the same way as aforementioned, the only difference being that the agent will reconnect
the new derived instance i1 as input to derivation d1 and remove the direct connection
between the two derivations. Similar to scientific workflow, the agent that manages the
downstream derivation d1 can begin its execution only after its predecessors have fin-
ished successfully. Therefore, block 1 to 7 of Fig. 11 showcases one desired usage of
the derivation framework to automatically complete a predefined workflow given input
data. Once all derived instances are computed, we illustrate the steps for updating the
derivations in block 8 to 15, where the source input data is updated. Upon request, the
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algorithm traverses the derivation chain and determines the timeliness of the derivations.
Unlike synchronous update, the algorithm only marks derivations as Requested, leaving
the actual update to individual agents in the same way as aforementioned.

3.3.3 Mixed-type update

The final example we provide is a derivation subgraph consisting of mixed-type deriva-
tions. Specifically, asynchronous derivations depend on synchronous derivations, i.e., the
lengthy calculation relies on results from fast computations. It is worth noting that the
other way would lead to a purely asynchronous scenario. If a synchronous derivation is
dependent on an asynchronous one, the synchronous derivation automatically becomes
asynchronous due to the need to wait a long time for the response. For that reason, the
case of asynchronous derivations depending on synchronous ones is the only mixed case
that needs to be considered, without loss of generality.

As previously shown, we need to determine if a derivation is out-of-date and perform/re-
quest an update. These two parts are combined and executed in a recursive algorithm for
derivation subgraphs that only consist of synchronous derivations. However, to save com-
putation resources for updating mixed-type derivation subgraphs, we would like to design
the framework to work in a way that the update of upstream synchronous derivations is
only computed when the agent updates the asynchronous derivation. Therefore, when the
algorithm recursively determines the timeliness of the asynchronous derivations, markup
is needed in the knowledge graph to indicate that the downstream asynchronous derivation
is in fact out-of-date and, hence, should be marked as Requested.
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Figure 12: The process of updating a derivation DAG consisting of asynchronous deriva-
tions that are dependent on synchronous derivations.

A unified method is provided as a wrapper function of the two algorithms previously
introduced. Depending on the instantiated type of root derivation, the function chooses
a different entry algorithm. Figure 12 demonstrates the lifecycle of such an example.
Synchronous derivation sd0 will be marked as Requested when the algorithm traverses,
which serves as a signal when the algorithm determines the timeliness of downstream
asynchronous derivation ad2. The agent monitoring ad2 will request an update for sd0
and start its execution after it confirmed that all its immediate upstream asynchronous
derivations are up-to-date.

So far we have introduced three parts for the derived information framework: the deriva-
tion ontology, the derivation agent, and the derivation client. These components work
together in a cohesive fashion and we have included test cases to cover their key features
and functionalities. There also exist minimal working examples in both Java and Python
as tutorials for newcomers. For these resources, please refer to GitHub.
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4 Use Case

In order to demonstrate the derivation framework, we apply it to evaluate the potential
effects of a flooding event. The objective is to assess the number of buildings and the total
property value that are potentially at risk. The details of the domain ontologies and agent
logic can be found in [33]. Here, we focus on how the derivation framework is used for
this UK-based use case with a simplified example, including the coverage of the derivation
subgraph and the processes that occur as information is cascaded over time. The results
for the actual data are presented using the Digital Twin Visualisation Framework (DTVF)
that is part of the World Avatar.

4.1 Automated population and update of the derivation subgraph

The flood impact assessment uses data from various sources, including application pro-
gramming interfaces (APIs) such as the Environment Agency Real Time Flood-Monitoring
API [20], Energy Performance Certificates (EPC) [21], and HM Land Registry Open
Data [31]. These data are instantiated and updated in the World Avatar knowledge graph
regularly by input agents. Using the source information, the impact assessment involves
various derivation agents that work together to populate a derivation subgraph. This pro-
cess encompasses two types of actions on the derivation subgraph: creating newly derived
information, such as the impact of a newly issued flood warning, and updating existing
information, such as the updated impact of an existing flood warning when some of the
source information is updated.

One of these derivation agents, the Flood Assessment Agent, calculates the flood impact
by identifying the buildings located within the affected area and determining the total
market value of the properties at risk. The property value of each building is estimated by
either scaling its most recent transaction record based on the local property price index or
by multiplying its floor area by the average square metre price for its postal code. This
representative average price can be computed by the Average Square Metre Price Agent
considering all of the most recent transaction records in the area.

Figure 13 illustrates progresses in the derivation subgraph when evaluating the potential
impact of an issued flood warning. As denoted by the red dashed arrow, the flood warning
instance is instantiated by the Flood Instantiation Agent. It specifies information about
the expected severity of a flood event and the specific geospatial extent that is at risk. In
this simplified example, the geospatial polygon is assumed to cover a postal code that
includes two buildings, each with data about its floor area and its most recent transaction
record. Additionally, the UK property price index which captures changes in the value of
residential properties is updated on a monthly basis.

Once the derivation agents are deployed, the population of derived information starts with
marking up the average square metre price derivation for all postcodes within the region
of interest. Next, the property value estimation derivation is marked up for all buildings.
Since these computations are relatively fast, they are marked up as synchronous deriva-
tions to obtain instantaneous responses. The flood assessment derivation is marked up
upon the instantiation of the flood warning instance. In practice, a flood warning can
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cover more than a dozen postal codes with hundreds of buildings. Its computation can
take some time and is thus marked up as an asynchronous derivation.

As each input agent operates at different frequencies, the impact of a flood can alter when
the source information is updated while the warning is still active. For example, the prop-
erty price indices for all administrative districts in the UK are updated monthly, and the
geospatial extent of an active flood warning can also change, both of which can result in
outdated flood impact assessments. Upon an update request, the Flood Assessment Agent
calls the Average Square Metre Price Agent and Property Value Estimation Agent in se-
quence to update the relevant derived information and creates an up-to-date flood impact
estimate. Hence, this use case demonstrates both communication modes of the derived
information framework by utilising both synchronous and asynchronous derivations.
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4.2 Visualisation of potential flood impact

Following the simplified example, we present the visualisation of the impact assessment
using real data. The derivation markup was created for a flood warning covering 34 postal
codes and 289 buildings altogether.

Figure 14: Web page visualising a flood impact assessment with layers for buildings and
flood warnings. The blue region denotes a potential flooding area. The colour
and size of the dots in this region reflect estimated property values. Buildings
outside of the region are considered unaffected and are thus marked with black
dots.

Figure 14 visualises the estimated impact of a potential flooding event. The representation
separates different data into distinct layers, including buildings and the geospatial area
affected by the active flood warning. By overlaying the flood boundary on the map, it is
possible to identify which properties are at risk. The buildings within the flooded region
are colour-coded with their estimated property values, while the other buildings in the
administrative district are included only with their location information.

Figure 15 presents two scenarios that are available to be selected on the plot: the estimated
flood impact in August and September 2022. Between these two scenarios, an update of
the district’s property price index has been factored into calculating the total property
value at risk. When clicking on the flooding area in different scenarios, the estimated
impact and the detailed description of the flooding event are queried by the DTVF on-
the-fly and displayed on the side panel. As the derivation agents manage the knowledge
graph, the visualisation will be automatically updated.
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(a) Scenario 1: Impact assessment of a newly issued flood warning.

(b) Scenario 2: Impact update of an existing flood warning after property price index has increased.

Figure 15: Automated flood impact assessment and update using the derived information
framework. The side panel displays information about the clicked feature that
has been dynamically retrieved from the knowledge graph.
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5 Conclusions

In this work, we developed a derived information framework as a knowledge-graph-native
solution for tracking provenance and managing information within dynamic knowledge
graphs. It expands previous capabilities and further abstracts complexity away from the
developers of individual agents. The architecture includes a lightweight ontology for
marking up agent communication as provenance records in the knowledge graph, an agent
template that standardises the operation of agents in both synchronous and asynchronous
communication modes, and a client library that offers functions for managing the deriva-
tion subgraph. The framework is technology-agnostic and is made available in both Java
and Python.

To showcase the accessibility of the framework, it was applied to a flood impact assess-
ment use case within the World Avatar project. The use case involves several derivation
agents developed using the agent template. Once the source information is gathered by in-
put agents from different APIs, the derivation subgraph is populated by creating derivation
markups as requests for derivation agents to generate the derived information required in
the impact assessment. If the input information is refreshed, the framework automatically
updates the derived information when accessed. The results were visualised and can be
deployed as a regular service if needed.

Future work includes expanding the framework to physical experimentation, implement-
ing automated fault recovery for computations, evaluating the performance of different
agents that can perform the same task, and incorporating automated service discovery for
derivation markup generation.

Research data

All the codes developed are available on The World Avatar GitHub repository
https://github.com/cambridge-cares/TheWorldAvatar. The OntoDerivation TBox is avail-
able at file JPS_Ontology/ontology/ontoderivation/OntoDerivation.owl.
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A Appendix

A.1 Namespaces

om: <http://www.ontology-of-units-of-measure.org/resource/om-2/>
owl: <http://www.w3.org/2002/07/owl#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
xsd: <http://www.w3.org/2001/XMLSchema#>
time: <http://www.w3.org/2006/time#>
OntoDerivation: <https://www.theworldavatar.com/kg/ontoderivation/>
OntoAgent: <http://www.theworldavatar.com/ontology/ontoagent/MSM.owl#>

A.2 Description Logic representation of OntoDerivation

Classes:

Derivation ⊑⊤
DerivationWithTimeSeries ⊑⊤
DerivationAsyn ⊑⊤
Status ⊑⊤
Requested ⊑ Status
InProgress ⊑ Status
Finished ⊑ Status
Error ⊑ Status

Object Properties:

Derivation ⊑ isDerivedFrom.owl:Thing
Derivation ⊑ isDerivedUsing.OntoAgent:Service
DerivationWithTimeSeries ⊑ isDerivedFrom.owl:Thing
DerivationWithTimeSeries ⊑ isDerivedUsing.OntoAgent:Service
DerivationAsyn ⊑ isDerivedFrom.owl:Thing
DerivationAsyn ⊑ isDerivedUsing.OntoAgent:Service
DerivationAsyn ⊑ hasStatus.Status
owl:Thing ⊑ belongsTo.Derivation
owl:Thing ⊑ belongsTo.DerivationWithTimeSeries
owl:Thing ⊑ belongsTo.DerivationAsyn
Finished ⊑ hasNewDerivedIRI.owl:Thing

Data Properties:

∃ retrievedInputsAt.⊤ ⊑ DerivationAsyn
⊤ ⊑ ∀ retrievedInputsAt.xsd:Decimal
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∃ uuidLock.⊤ ⊑ DerivationAsyn
⊤ ⊑ ∀ uuidLock.xsd:String

A.3 Example queries

Query 1: SPARQL query to obtain all derivation instances in the knowledge graph.

PREFIX OntoDerivation: <https://www.theworldavatar.com/kg/ontoderivation/>

PREFIX time: <http://www.w3.org/2006/time#>

SELECT ?derivation ?devTime ?inputTime ?status ?status_type

WHERE {

VALUES ?derivationType {

OntoDerivation:DerivationAsyn

OntoDerivation:Derivation

OntoDerivation:DerivationWithTimeSeries

}

?derivation a ?derivationType;

time:hasTime/time:inTimePosition/time:numericPosition ?devTime.

OPTIONAL {

?derivation OntoDerivation:isDerivedFrom ?upstream.

?upstream time:hasTime/time:inTimePosition/time:numericPosition ?inputTime.

}

OPTIONAL {

?derivation OntoDerivation:hasStatus ?status.

?status a ?status_type.

}

}

Query 2: SPARQL query to map the derivation inputs to agent I/O signature.

PREFIX OntoDerivation: <https://www.theworldavatar.com/kg/ontoderivation/>

PREFIX OntoAgent: <http://www.theworldavatar.com/ontology/ontoagent/MSM.owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?input ?type

WHERE {

<agentIRI> OntoAgent:hasOperation/OntoAgent:hasInput/

OntoAgent:hasMandatoryPart/OntoAgent:hasType ?type .

<derivationIRI> OntoDerivation:isDerivedFrom ?input .

?input a*/rdfs:subClassOf* ?type .

}

29



Query 3: SPARQL query to determine the immediate upstream derivations that requires
an update.

PREFIX OntoDerivation: <https://www.theworldavatar.com/kg/ontoderivation/>

PREFIX time: <http://www.w3.org/2006/time#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?upstreamDerivation ?upstreamDerivationType

WHERE {

{

<derivationIRI> OntoDerivation:isDerivedFrom/

OntoDerivation:belongsTo? ?upstreamDerivation .

?upstreamDerivation a ?upstreamDerivationType .

VALUES ?upstreamDerivationType {

OntoDerivation:Derivation

OntoDerivation:DerivationWithTimeSeries

OntoDerivation:DerivationAsyn

}

}

?upstreamDerivation time:hasTime/time:inTimePosition/

time:numericPosition ?upstreamDerivationTimestamp .

OPTIONAL {

?upstreamDerivation OntoDerivation:hasStatus ?status .

{

?status a ?statusType .

FILTER (?statusType != owl:Thing && ?statusType != owl:NamedIndividual)

}

}

OPTIONAL {

?upstreamDerivation OntoDerivation:isDerivedFrom/time:hasTime/

time:inTimePosition/time:numericPosition ?pureInputTimestamp .

}

OPTIONAL {

?upstreamDerivation OntoDerivation:isDerivedFrom/OntoDerivation:belongsTo/

time:hasTime/time:inTimePosition/time:numericPosition

?inputsBelongingToDerivationTimestamp .

}

FILTER (?upstreamDerivationTimestamp < ?pureInputTimestamp ||

?upstreamDerivationTimestamp < ?inputsBelongingToDerivationTimestamp ||

?statusType = OntoDerivation:Requested ||

?statusType = OntoDerivation:InProgress ||

?statusType = OntoDerivation:Finished ||

?statusType = OntoDerivation:Error)

}
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Query 4: SPARQL query to update the derivation in the knowledge graph.

PREFIX OntoDerivation: <https://www.theworldavatar.com/kg/ontoderivation/>

PREFIX time: <http://www.w3.org/2006/time#>

DELETE {

?e ?p1 ?o .

?s ?p2 ?e .

?d OntoDerivation:hasStatus ?status .

?status a ?statusType .

?timeIRI time:numericPosition ?dTs .

}

INSERT {

<newInstance1> a <rdfTypeOfNewInstance1> .

<newInstance2> a <rdfTypeOfNewInstance2> .

<newInstance3> a <rdfTypeOfNewInstance3> .

<newInstance3> OntoDerivation:belongsTo <derivationIRI> .

<newInstance1> OntoDerivation:belongsTo <derivationIRI> .

<downstreamDerivation1> OntoDerivation:isDerivedFrom <newInstance1> .

<downstreamDerivation2> OntoDerivation:isDerivedFrom <newInstance1> .

<newInstance2> OntoDerivation:belongsTo <derivationIRI> .

<downstreamDerivation3> OntoDerivation:isDerivedFrom <newInstance2> .

?timeIRI time:numericPosition 1659981343 .

}

WHERE {

{

SELECT ?d ?timeIRI ?dTs ?status ?statusType ?e ?p1 ?o ?s ?p2

WHERE {

{

VALUES ?d {<derivationIRI> }

?d time:hasTime/time:inTimePosition ?timeIRI .

?timeIRI time:numericPosition ?dTs .

?d OntoDerivation:isDerivedFrom/OntoDerivation:belongsTo? ?ups .

?ups time:hasTime/time:inTimePosition/time:numericPosition ?upsTs .

FILTER (?dTs < ?upsTs)

}

{

?e OntoDerivation:belongsTo ?d .

?e ?p1 ?o .

OPTIONAL { ?s ?p2 ?e . }

}

OPTIONAL {

?d OntoDerivation:hasStatus ?status .

?status a ?statusType .

}

}

}

}
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