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Abstract

This account introduces the history, the core principles of KE, and its applications
within chemical research and engineering. In this regard, we first discuss how chem-
ical knowledge is formalised and how a chemist’s cognition can be emulated with
the help of reasoning algorithms. Following this, we discuss various applications
of knowledge graph and agent technology used to solve chemistry-related problems
related to molecular engineering, chemical mechanisms, multi-scale modelling, au-
tomation of calculations and experiments, and chemist-machine interactions. These
developments are discussed in the context of a universal and dynamic knowledge
ecosystem, referred to as The World Avatar (TWA).

Highlights

* Knowledge engineering (KE) is a branch of Artificial Intelligence (AI) that
emulates the decision-making process of a human expert.

* In a KE approach, instances of knowledge are semantically described with the
help of ontologies.

» Software agents are used to facilitate reasoning and execution of various oper-
ations.

* KE in chemistry covers many areas, such as rational design, multiscale mod-
elling, lab automation and others.

* Broad chemical knowledge ecosystems are developed through multidisciplinary
knowledge graphs.
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1 Introduction

Knowledge is the focal subject of philosophical disciplines such as epistemology and
metaphysics. When viewed from the perspective of information science, knowledge is de-
scribed hierarchically and relative to data, information and wisdom (see Figure 1.a) [50].
The “DIKW?” pyramid places data at the bottom of the hierarchy; thus, a data point such as
“206.285” can exist without the necessity of having a meaning. A data point that is given
relation can become meaningful and thus described as a piece of information. “206.285
g/mol” is a form of information that likely refers to some form of a molar mass. The
collection of information in a way that becomes useful is regarded as knowledge. Thus,
“ibuprofen” is a “drug” with formula “C;sH;30;,”, and molar mass of “206.285 g/mol”
would be a form of (minimal) knowledge. Making reasoned and educated judgments or
decisions based on knowledge is the basis of wisdom [50].

Knowledge of chemical processes has been documented since antiquity. However, most
of this knowledge throughout most of time in human history has remained esoteric, poorly
understood and shared among a tiny minority of people [7]. The scientific revolution in-
troduced reasoned structuring of knowledge, which in chemistry followed by the adoption
of common chemical representations (e.g. symbols, equations, structures), and standards
in reporting new chemistry, thus making the subject more widely understandable [7]. Fol-
lowing the second world war, a number of visionary ideas such as the Turing test [57],
general problem solvers [41], and universal constructors [26] appeared, that laid the foun-
dations of artificial intelligence (Al), whose further sophistication was realized to depend
not only on computing but also on advances in the understanding of human cognition [19].

Knowledge Engineering (KE) is one of the first and most successful branches of Al that
emerged in the 1960s. The original aim of KE is to emulate the decision-making process
of a human expert [56], consequently leading to the development of many commercialized
expert and knowledge management systems, commonly referred to as knowledge based
systems [23, 56]. A knowledge-based system is a fundamentally constructed knowledge
base which documents knowledge in a machine-readable way and a reasoning component
(i.e. an inference engine) that, following a request from a user, queries the knowledge
base and provides reasoned answers. The knowledge base is commonly maintained by
people with domain and knowledge engineering expertise (see Figure 1.b).

In the early days of KE, chemistry formulated problems that KE systems could address
and demonstrate potential (e.g. meaningful hypothesis generation [58]). However, the Al
winters in the 20th century and the general disinterest of the chemistry community in Al
systems disrupted the continued development of such systems for chemistry research [25].
However, more recent technological advances (e.g., inexpensive computational power,
free software, popularization of programming) reopened interest in this field. A major
game-changer was the conceptualization of the Semantic Web by Tim Berners-Lee in the
late 1990’s-early 2000s [6], which gradually transformed into a knowledge graph (KG)
approach [9, 24]. KGs based on the Semantic Web can interlink heterogeneous data and
make it accessible to (autonomous) software agents [56]. In addition to querying KGs,
these agents were conceptualized as performing different tasks that involve reasoning,
learning from humans, and operating on infrastructure to create new things (e.g. knowl-
edge, services, and physical items, including chemicals). Owing to these qualities, agents



have been respectively referred to as “intelligent agents” [6], “disciple agents” [56], and
“agents of creation” [1].

In this work, we first introduce the conceptual basics of KE: the formalization of chemical
knowledge, reasoning, and the route to knowledge systems engineering. We then discuss
the beginning of KE in chemistry through examples of legacy expert systems and pro-
ceed with the current implementations of a knowledge ecosystem where chemistry plays
a central role. The latter technological implementation is illustrated with many exam-
ples of navigation through reaction complexity, multiscale modelling, rational design of
self-assembled materials, and friendly interactions with chemical KG. Lastly, we outline
existing challenges in capturing knowledge dynamics and provide a perspective for future
developments.
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Figure 1: a) Schematic representation of the “DIKW pyramid” illustrating the meaning
of data, information, and knowledge in the chemical context; b) The minimal
components of a knowledge-based system.

2 Chemical Knowledge and Reasoning

How do KE systems emulate expert-like decision-making? To answer this question,
we first look into the meaning of chemical knowledge formalization and the navigation
through knowledge based on reasoning. Then we outline the main stages of KE project
development.



2.1 Formal Representation of Chemical Knowledge

In order to map knowledge, a machine needs to ascribe meaning to data and find a rela-
tionship between data points. Documenting data in a relational format, that is, through
many interconnected tables, is a straightforward but very restrictive format when it comes
to changes in the knowledge structure [44]. Knowledge graphs (KGs) are a different ap-
proach where a data point can act as a node that links to other entities in the graph via
well-defined relationships. New relations and data can be added to the KG without dis-
turbing the preexisting knowledge structure. Structured data consistency in the framework
of KGs is achieved using blueprint networks (i.e. schema) that describe how different con-
cepts and properties link to one another. These forms of schemas are commonly referred
to as ontologies, defining the terminological box (TBox) of a KG. Knowledge instantiated
based on an ontology represents the assertion component (ABox), and it is used in the ac-
tual population of the KG. As an ontology, like any directed graph, can be represented as
a collection of “triples”, that is, subject-predicate-object statements, a database hosting (a
part of) the KG is commonly referred to as a triple store. Although knowledge systems
can solve real-world problems, many concepts they embody may vary in abstraction. A
concept such as “chemical compound” has physical existence; however, “synthon” is a
concept that refers to the mental imagery of a compound fragment. In other words, a
synthon is not something one can purchase (see Figure 2). When using Semantic Web
technology, all concepts and data are linked via unique Internationalized Resource Iden-
tifiers (IRIs), making them unambiguously identifiable [6].
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Figure 2: Mapping the relationship between a molecule (chemical) and a synthon (ab-
stract) concepts, and illustrating them with instances. Description of an RDF

triple (top) and ontology stacking (left).



2.2 Evidence-based Reasoning

Humans typically apply three forms of reasoning [56], such as: 1) based on logic and fixed
premises (i.e. deductive); ii) derived from statistical or anecdotal reference (i.e. induc-
tive); iii) based on imagination and best guess (i.e. abductive) (see Figure 3.a). Abduction
remains broadly accepted as the most challenging to be implemented in Al systems. The
different forms of reasoning often manifest themselves in human cognition through men-
tal shortcuts called heuristics [20]. When heuristics are used as part of programming, their
utility is primarily to reveal a viable solution by disregarding unlikely solutions. In many
expert systems, heuristics have been implemented as deductive reasoners (i.e. rules). In
our view, this may not be the best practice as it blurs the line between a rule (i.e. guar-
anteed outcome) and a likely (i.e. not entirely certain) outcome. Consequently, “rules”,
especially those in the context of retrosynthetic analysis [53], risk becoming criticized for
any possible shortcoming of an expert system implementation.

Over the past decade, machine learning (ML) has increased its dominance in extracting
intelligence from chemical data [59]. However, this technique has been particularly suc-
cessful in domains where clean data is plentiful [38]. ML makes inferences based on
associations deriving from data; in principle, ML does not need knowledge or under-
standing of behaviour to make those associations. As associations are based on statistical
significance, ML may also be viewed as a practical implementation of inductive reason-
ing [45]. On the other hand, KE is developed based on the knowledge and experiences of
a domain expert. Thus, algorithms in KE do not need to be pre-trained with data, which is
a way forward for cases where data is scarce. Our recent work in metal-organic polyhedra
(MOPs) vividly illustrates this as the key algorithm embodies inductive reasoning through
set operations, effectively deriving new and rational self-assemblies [31].

2.3 Stages in KE project development

A KE project starts with a genuine problem that a person or a team would like to solve
and undergoes three general stages: specification, conceptualization, and implementation
(see Figure 3.b) [35]. In the specification stage, the experts do what we would refer to
as “epistemological reflection”, formulating what they know and how they know it. The
team then defines a list of competency questions that the desired KE system is meant to
realistically solve. These two aspects effectively narrow down the main focus and goal of
the KE system, and they lay the foundations for the conceptualization stage where con-
cept maps are first formulated [52]. A concept map enables a semi-formal representation
of knowledge and provides a preliminary insight into the type and number of involved
entities. Experts may define or design an algorithm suitable for making inferences and
tackling one or more competency questions in conjunction with the concept map [51].

During the implementation stage, the entities of the concept map are ontologized. Ex-
perts clean information and instantiate knowledge based on the ontological format. This
completes the assertion component that populates the KG. Finally, based on the designed
algorithm, an agent capable of traversing the KG and making inferences is programmed.
The overall system is then tested and placed in use. Multiple iterations across the three
stages are not uncommon, and they often contribute toward better project outcomes [51].
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Figure 3: a) The three main types of reasoning, illustrated with general case scenarios in
chemistry. b) The three main stages in KE project development.

3 Legacy Expert Systems

During the 1960s, two major legacy expert systems essentially pioneered KE. The Den-
dral project started in 1965 and was developed in the context of NASA’s Mars exploration,
where real-time molecule detection and elucidation systems were needed. This inspired a
group of leading scientists at Stanford University, such as Carl Djerassi, Edward Feigen-
baum, and Joshua Lederberg, to automate mass spectrometric species elucidation [34].
Regarding software architecture, Dendral was subdivided into Heuristic Dendral — a com-
ponent that elucidates species, and Metadendral — a component that learns new rules on
how species are fragmented [8]. The two components were envisioned to work in a way
that ensures continuous learning. For the development of the Heuristic Dendral, the team
developed a general workflow, integrating multiple algorithms for combinatorial explo-
ration of the chemical space and a knowledge base of mass spectrometry fragmentation
rules (see Figure 4.a). However, the development of Metadendral has remained chal-
lenging. One reason may be that the team attempted to tackle the problem of dynamic
knowledge before practical implementation on how to achieve that could be possible.

In 1967, Elias Corey (Harvard University) conceptualized and structured retrosynthesis
in the form of five general strategies [10]. In 1969 Corey and Wipke developed the first
organic synthesis planning expert system [12] that later became better known as “Logic
and Heuristics Applied to Synthetic Analysis” (LHASA) [48]. Over the past decades,
LHASA boasted several design strategies and encoded group-protection information, and
generally, it served as a blueprint for how to build retrosynthetic expert systems [53]. In
1990, Corey was awarded the Nobel Prize in Chemistry “for his development of the theory
and methodology of organic synthesis”, with the developments and usage of LHASA



playing an essential role in his Nobel Lecture (see Figure 4.b) [11].

These legacy expert systems in chemistry were followed by many other examples, beau-
tifully discussed and illustrated in the books of Judson [25] and Hammer [23]. The expert
systems also placed a technical necessity for finding efficient ways to store and share
chemical information, which consequently laid a genuine purpose for developing chem-
informatics [61]. Although not broadly acknowledged, some scientists, such as Corey
himself, also appreciated the value of KE beyond its implementation. On a deeper level,
KE requires chemists to think more generally about their subject and occasionally find
more efficient ways to structure chemical knowledge [25, 48].
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Figure 4: a) The workflow of Heuristic Dendral; b) Deriving a retrosynthetic pathway to
aphidicolin (an antibiotic) using LHASA as illustrated by Corey in his Nobel
Lecture [11]

4 The World Avatar — A Universal Word Model

Not long after conceptualizing the Semantic Web [6], leading cheminformatics researchers
realized how beneficial this technology could be to chemists [40, 55]. However, how we
can make the broader community benefit from the semantic instantiation of chemistry was
envisioned by us in 2010 [32]. In this regard, we outlined the necessity for semantic in-
stantiating of the chemical industry complex and the environmental impact from combus-
tion as two very relevant subjects able to bridge molecular-scale chemistry to real-world
macroscale phenomena with socioeconomic, environmental and health impacts. Our early
vision was practically implemented as part of our effort to digitalize eco-friendly chem-
ical industry parks [46, 47], such as the one located on Jurong Island (Singapore). The
latter attempt initially led to the foundations of the “J-Park Simulator” (JPS) [46, 47]. JPS



embodied many aspects beyond chemical engineering affecting productivity and environ-
ment, such as logistics, infrastructure, energy usage, and waste among others [14, 63, 64].
By building digital tools to represent these aspects, it was realized that they are more
widely applicable than just to chemical parks but more broadly to the world at large, lead-
ing to the extension and transition of the JPS to the ongoing “The World Avatar” project
(TWA), an effort to create an all encompassing universal world model [2, 15]. Although
TWA (see Figure 5) at first sight may appear as a bold and over-ambitious project, recently
more leading figures in computer science and environmental studies have embraced the
world-centric idea as a necessity for the progression of contemporary Al [5, 62].
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Figure 5: The three layers of TWA (www.theworldavatar.com) digital twin of the real
world.

Digital twins are an emerging technology that provides a real-time representation of real-
world phenomena, assisting decision-making by exploration of what-if scenarios [54].
In this regard, TWA (see Figure 5) has been conceptualized as a universal digital twin
based on the Semantic Web, where a universal KG maps the real world. TWA follows
the FAIR principles of linked data, that is, all stored knowledge is findable, accessible,
interoperable and reusable [60]. On the “top” of the knowledge layer, TWA integrates
a layer of active agents that operate on it [64]. These agents differ from the classical
inference engines employed in expert systems, and they have a number of different tasks
such as 1) implementing information pipelines; i1) sending signals back to the real world;
ii1) providing an interface to computational models; iv) restructuring the KG by adding
instances, concepts and relationships; v) discovering, combining, and composing new
agents capable of performing new and on-demand tasks [2, 64]. At the same time, agents
are also represented through concepts, instances and properties in the knowledge graph.
The latter feature makes agents findable and enables the possibility of solving complex


www.theworldavatar.com

tasks through inter-agent communication and collaboration [64].

5 Chemistry as Part of a Knowledge Ecosystem

Currently, a number of high-tech companies, Google, IBM, Microsoft, Facebook, and
eBay, have been implementing KGs on an industrial scale [42]. In the context of the
pharmaceutical industry, AstraZeneca is a company that openly leads the way on KGs as
part of their drug discovery [21]. This section discusses the development of a chemistry
KG and related agents as part of TWA knowledge ecosystem [ 14, 15].

5.1 Chemical Species

OntoSpecies is an ontology that describes unique chemical species and their chemical
properties in TWA. In TWA, species are assigned IRIs, allowing their unique identifica-
tion [17]. OntoSpecies plays a central role, enabling the linking of species to instances
and concepts deriving from other ontologies in TWA KG (see Figure 6.a). A chemical
species in OntoSpecies has a recorded molecular formula, charge, molecular weight, and
spin multiplicity. Species that are based on different isotopes, charges, and spin states are
treated as different chemical species. By assigning different IRIs to species, OntoSpecies
becomes relevant for the digital representation of isotope labelling experiments, redox and
electrochemically driven processes, and photochemistry. Considering reactor simulations,
OntoSpecies records standard enthalpy of formation along with its contextual information
such as reference temperature, state and provenance [17].
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Figure 6: a) Connection of OntoSpecies to other segments of TWA KG; b) Key On-
toSpecies (black) and external (blue) concepts, along with a number of proper-
ties (green) used to describe chemical species in TWA KG.

In addition to the IRIs, chemical species in TWA are labelled with common cheminfor-
matic identifiers [37], such as InChl, InChIKey, CAS registry number, PubChemCID, and
SMILES (see Figure 6.b). These labelling identifiers facilitate searching for additional

10



information on external resources. OntoSpecies also records the molecular geometry of
different species semantically, meaning that every bond and atom is uniquely identified
with an IRI. The information on molecular geometry can be used as an initial guess of
the geometry for quantum chemical calculations, while unique identification of bonds and
atoms is used for the identification of geometric changes between calculations. For many
organics, the geometric information can be automatically generated by translation from
InChI or SMILES identifiers using OpenBabel [43] and by pre-optimization using force
fields. However, the latter approach is not always suitable for inorganics and thus, storing
a pre-curated geometry can be an advantage.

5.2 Navigating Reaction Complexity

In chemistry, many reactions and self-assembly processes starting with simple molecular
precursors often lead to a rich variety of chemical species and (meta-stable) intermediates.
The speciation of molecular metal oxides in solution [28], or the formation of nanopartic-
ulate carbonaceous materials [36] are examples of such chemistries. Understanding and
modelling these chemistries require a grasp of kinetic and thermodynamic factors. Moti-
vated to model these factors semantically on chemical species, our group developed and
interlinked the OntoKin [16] and OntoCompChem [33] ontologies (see Figure 7.a).

OntoKin is an ontology that represents reaction mechanisms in alignment with nomencla-
ture standards used in computer-aided process design [16]. In a chemical process, a reac-
tion mechanism constitutes a set of stochiometric reactions involving different chemical
species. In OntoKin, a reaction is described through products and reactants that are further
described through different thermodynamic and transport model concepts and identified
via OntoSpecies IRIs. Depending on where the reaction occurs, OntoKin introduces fur-
ther specifications (e.g. in gas, on the surface, efc.). The reaction rate of each reaction
is presented based on Arrhenius-type rate models, which are used to compute rate coeffi-
cients. As a single reaction mechanism may consist of many different reactions, OntoKin,
in conjunction with OntoSpecies, can provide a facile and unambiguous comparison be-
tween other kinetic, thermodynamic, or transport models reported in the literature [18].

The OntoCompChem ontology represents the input and output of density functional the-
ory (DFT), currently mainly focused on molecular systems [33]. OntoCompChem has
been developed based on the semantic concepts specified in the CompChem convention
of Chemical Markup Language (CML) [49]. A calculation in OntoCompChem is de-
scribed in terms of a) its objective (e.g. single point calculation, geometry optimization,
or a frequency calculation); b) the software it uses (e.g. Gaussian16); c) the employed the-
oretical level in terms of functional and basis set (e.g. B3LYP, 6-31G(d)); d) the overall
charge, and spin polarization. The ontology also represents the calculated frontier orbitals
and the final converged self-consistent field (SCF) energy. For geometry optimizations,
the final optimized geometry is represented, while for frequency calculations, it stores the
zero-point energy correction and a full list of the computed vibrational frequencies linking
back to the stationary geometry and calculation it corresponds to.

A linking agent automates the creation of links between reactions, species, and DFT cal-
culations [17]. Such an agent is needed because a reaction mechanism in OntoKin can
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easily involve thousands of species and tens of thousands of reactions [18]. The linking
allows zooming into a mechanism, its reactions, and involved species. An example may
be the combustion of clean hydrogen fuel used as a rocket propellant, which involves 10
species and 40 elementary reactions, one of which is 2H, + O, = H,O (see Figure 7.a).
For existing DFT calculations, a Thermo agent instantiates enthalpy, heat capacity, and
entropy factors back to the involved species and 7-coefficient NASA polynomials to the
reaction. If experimental data is provided as a concept, reaction mechanisms can be linked
to it, and agents wrapping our custom-made software can do sensitivity analysis and cal-
ibration, providing a quantitative explanation of experimental phenomena [3]. Finally, a
workflow of agents (see Figure 7.b) that perform: i) DFT calculations; ii) thermodynamic
data analysis; iii) stochastic model calculations predicting particle formation from fuels
in engines; iv) atmospheric dispersion modelling based on real-time weather data, and
graphical output based on physical infrastructure are showcased to predict the dispersion
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of particle pollution in urban areas [39]. The relevance of such systems is in digital urban
planning.

5.3 Automating Rational Design of Self-Assembled Materials

Metal-organic polyhedra (MOPs) are assemblies made of organic and metal-based chem-
ical building units (CBUs) resembling the shape of regular polyhedra [22]. MOPs and
other cage-like structures are rationally designed by domain experts. To design new
MOPs, an expert requires the consideration of both chemical and spatial complemen-
tarity factors. Insights from didactical research with toys have shown that children do not
need any formal foreknowledge on geometric aspects to build polyhedral models [29, 30],
which implied that some form of mental imagery is involved as part of the overall rea-
soning. These considerations inspired the conceptualization of assembly models (AMs)
and generic building units (GBUs) as mental blueprints involved in the rational design of
MOPs from sets of available CBUs [31]. The latter concepts were encoded in the Onto-
MOPs ontology, where the CBUs were further instantiated as species based on the On-
toSpecies ontology. The MOP discovery agent was based on an algorithm that performs
set operations revealing which CBUs can be meaningfully combined without causing un-
desired strains. The study involved 151 experimentally reported MOPs built from 137
unique CBUs, which were effectively clustered in 18 AMs and 7 GBUs, respectively. The
MOP discovery agent showed that up to 1418 new MOP instances could be rationally
designed, some of which are confirmed by domain experts. The latter aspect is a consid-
erable advantage as it allows more focused and efficient exploration of chemical spaces
through calculations and experiments [31]. The rational projection estimate is a signifi-
cant reduction in the combinatorial chemical space, which in this case amounts to about
80 000 possibilities [31].

Metal Organic Polyhedron (MOP) Assembly Model (AM) N Rationally Designed MOPs
151 Instances 18 instances : New 1418 Instances

has CBU |

has CBU has GBU has GBU

as \
g Vﬁ ——— functionsas —p : \ MOP Discovery
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Chemical Building Unit (CBU) Generic Building Unit (GBU)
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Figure 8: Key concepts in OntoMOPs (left) and examples of newly rationally designed
MOPs (right).
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5.4 Marie — Enabling User-friendly Interaction with TWA KG

Querying a KG requires the use of a query language (e.g. SPARQL) and awareness of
how the knowledge has been structured in that KG. These factors make exploration of
the KG less convenient for users who lack the foreknowledge; thus, a more user-friendly
interface with the KG is desired. In the context of chemistry within TWA, “Marie” is
a question-answering interface that is aimed at allowing users to type their questions in
their natural language, which are then translated behind the scenes into machine readable
queries [65, 66]. To achieve this, Marie implements natural language processing (NLP),
and a network of agents that can identify the topic, the type of question and the entities
the user is asking about. Once clarified, the agents pass the information to an ontology
lookup agent that passes the information to a SPARQL construction agent, which then
queries the KG and returns information to the user [65]. A typical example is when a user
asks Marie to show models of aromatic hydrocarbons (see Figure 9) [65].
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Figure 9: Marie’s back-end operations involved in querying information that is in TWA
KG and one that it is generated through agent operation.

As it is challenging to store all knowledge, while much knowledge can be indirectly in-
ferred or calculated, Marie takes a different circuit when the answer is not found in the
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KG. In this case, an agent that discovers agents is activated, who then allocates an appro-
priate agent for the task. The appropriate agent can then query the graph and calculate
information. An example would be a question to display the heat capacity of CO,, where
the Thermo agent can calculate it from instances in OntoCompChem.

6 Real-time Knowledge Dynamics

Many discoveries or outcomes in chemical research depend on other outcomes in the field
or, more generally, from the real world. For instance, when a chemist plans the synthesis
and the characterization of a new chemical, what instrumental infrastructure will be used
is dependent on the nature of the chemical target. Further on, the discovery of new self-
assembled material may depend on the discovery of a suitable building block precursor.
Navigating dependencies is a complex and challenging task; however, its successful em-
ulation provides an opportunity to realize autonomous laboratory systems [4], and even
future Al Scientists [27].

The dynamic data-driven applications systems (DDDAS) [13], which originated from
control systems, is a research paradigm focused on tackling this challenge. It seeks to
provide data context to improve decision-making in dynamic and complex environments.
Using the KE approach, our group has worked on a derived information framework as a
knowledge-graph-native solution to represent how pieces of information depend on others
in a dynamic knowledge graph. The framework represents complex and interconnected
phenomena as a directed graph of computational or physical activities, with agents serv-
ing as executable knowledge components. Once dependencies between objects are cre-
ated, the framework propagates the effects induced by changes in the source information.
We envisage this framework providing solutions to the aforementioned difficulties in the
chemistry domain.

7 Summary and Outlook

In this account article, we have summarised the developments of KE in chemical research.
From its beginnings, KE in chemistry has been going through a very challenging path and
generally has retained its relevance through the engineering of expert and knowledge man-
agement systems [25]. The beginning of the Semantic Web opened a new paradigm for
KE, effectively removing any boundary in terms of knowledge representation and rea-
soning. By building a KG that includes agents, a new ecosystem for chemical knowledge
creation and exploitation has been enabled, allowing the implementation of inductive and,
hopefully, over time, abductive reasoning algorithms as well. These aspects have been re-
cently showcased to scale up discoveries [31], and likely are a path forward to chemical
intelligence amplification.

Through multiple examples of our work, we see that a KG with its agents can combine
complex decision-making processes with the generation of new knowledge from calcu-
lations, external sources, and in the near future, autonomous experiments [4]. Based on
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this, it is not difficult to envision more sophisticated combinations of agents involved in
the conceptualisation and creation of new molecules and materials in near future. Making
chemical knowledge part of a single knowledge ecosystem enables efficient inferencing
across disciplines, scales, and depths in terms of chemical space exploration. In this re-
gard, KE can be a true enabler of systems-level research frontiers such as materiomics
and systems chemistry. Much of the success in the latter will be critically dependent on
the wisdom of the human experts in structuring knowledge and their capability of devel-
oping rational agents. Finally, we expect that the enormous progress in machine learning
combined with ideas of KE will further expand the knowledge space.
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