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Abstract

This paper presents a system of autonomous intelligent software agents, based on a
cognitive architecture, capable of automated instantiation, visualisation and analysis
of multifaceted City Information Models in dynamic geospatial knowledge graphs.
Design of JPS Agent Framework and Routed Knowledge Graph Access components
was required in order to provide backbone infrastructure for an intelligent agent sys-
tem as well as technology-agnostic knowledge graph access enabling automation of
multi-domain data interoperability. Development of CityImportAgent, CityExportA-
gent and DistanceAgent showcased intelligent automation capabilities of the Cities
Knowledge Graph. The agents successfully created a semantic model of Berlin in
LOD 2, compliant with CityGML 2.0 standard and consisting of 419 909 661 triples
described using OntoCityGML. The system of agents also visualised and analysed
the model by autonomously tracking interactions with a web interface as well as en-
riched the model by adding new information to the knowledge graph. This way it was
possible to design a geospatial information system able to meet demands imposed by
Industry 4.0 and link it with the other multi-domain knowledge representations of
The World Avatar.

Highlights
• Industry 4.0 capabilities provided by means of sustainable digitisation prac-

tices.

• Cognitive Architecture of JPS Agent Framework and Routed Knowledge Graph
Access components.

• Automated City Information Model instantiation, visualisation and analysis by
Semantic 3D City Agents.
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1 Introduction

General context and problem space

Present needs for sustainable digitisation [53] of geospatial features [11] at the country
level are already recognised by Australia, Austria, Belgium, Canada, Estonia, Finland,
France, Germany, Ireland, Japan, Luxembourg, Netherlands, UK, USA, Poland, Singa-
pore, Switzerland [54], Turkey [5], Taiwan [12, 37], and Oman [2], amongst others. It has
also been realised that standards-based 3D city models, apart from aiding more traditional
urban planning efforts [52], could play an important role in multi factor optimisation sce-
narios [44]. Such complex simulations on interoperable data, spanning multiple domains
of interest, could be targeted to get closer to answering the set of problems regarded by
the United Nations as ‘the biggest threat ever faced by modern humanity as a whole’ [51].
Namely, the climate change, which could act as a crisis multiplier and, to countries like
Singapore, even poses an existential threat [36].

Cities Knowledge Graph (CKG) [13–15] is envisioned as a subsystem of The World
Avatar (TWA) - a general, all-encompassing dynamic knowledge graph, built in accor-
dance with semantic web standards and recommendations provided by the W3C, and
capable of multi-domain knowledge representation [1, 16–18, 20, 21, 32, 58, 59], which
is being developed as a collaborative research effort between Cambridge Centre for Ad-
vanced Research and Education in Singapore (CARES) and Singepore ETH Centre (SEC).
As a dynamic geospatial knowledge graph, based on the Semantic 3D City Database [11],
CKG is designed to produce and process multi dimensional representations of urban en-
vironments. Knowledge graph architecture allows to easily combine them with the J-Park
Simulator (JPS) [29, 39, 40, 56, 57, 60] - an agent-based subsystem, capable of simulat-
ing emissions dispersion from various types of air pollution sources as well as optimising
designs of Eco-Industrial Parks (EIPs) with respect to their carbon footprint, within TWA.
The Parallel World Framework [19], capable of complex scenario analysis and adding
time varying aspects to knowledge graphs, could be utilised as a basis for the above
mentioned multi factor optimisation scenarios that also take into account other domain
representations and further enrich insight scope.

Unlike endeavours such as TWA and CKG, presented in this paper, currently available
information systems that do not implement at least some of the elements of cognitive ar-
chitecture [33] encounter a number of problems due to their human-computer interaction
orientated design that are typical to the pre-fourth industrial revolution computer systems
architectures. Contrary to that, CKG would be able to close some of the gaps, commonly
found in today’s Geographic Information System (GIS) applications and infrastructure
that are more elaborated on in the next few paragraphs.

GIS and Industry 4.0

Smart Cities that make use of as well as provide interoperable sources of various types of
multi-domain data are one of the flagship Industry 4.0 applications [35]. While many of
the GIS available at the moment serve as means for creating digital twins of geospatialy
describable elements of cities, they generally lack of automation that is regarded as a sec-
ond most important characteristics of the information systems that are capable of meeting
demands imposed by the fourth industrial revolution [34]. Because of that, they very
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often do no longer meet modern needs for intelligent systems, capable of autonomously
analysing information and taking into account multiple domains [46]. Existing software
relies on human-computer interaction and very often there is more human than computer
involved in performing analytical tasks.

Creating and updating City Information Models (CIM [22]) via existing techniques relies
on time consuming and error prone manual data curating processes. Legacy GIS also
lack dynamics, as existing data formats and modelling techniques make models hard to
keep up to date. Such systems were designed to work with data spread over multitude
of various flat files. There is no easy way to learn lessons from such static models that
remove historical aspect and, because of that, do not allow to get insights about evolution,
stagnation or deterioration of cities. They commonly also do not allow to analyse CIM
changes without a complex process of importing and exporting multiple types of files for
an entire city.

Examples of such CIMs are XML file based models describing various urban elements
in the CityGML standard, provided by the Open Geospatial Consortium (OGC) [23].
They are commonly used as a data exchange standard for city landscape management and
planning systems or even as a file-based data source for applications visualising 3D city
landscapes on the web. 3D City Database was developed at the Technische Universität
München (TUM) with intention of adding flexibility and scalability to the CityGML based
models by transforming XML into Relational Database Management System (RDBMS)
[55]. Better data interoperability is supported by implementation of domain specific ex-
tensions as well [50]. However, data transformation processes for CIM creation and vi-
sualisation utilise its Importer/Exporter tool application, making them manual and error
prone, especially when larger models are taken into consideration.

Synthesis

The Semantic 3D City Database [11], based on a semantic triple store back-end instead
of RDBMS, enabled dynamic geospatial knowledge graph capabilities in TWA. This in-
novation removed data interoperability limits of the original 3D City Database imposed
by the default Closed World Assumption (CWA) in relational databases [49]. The Se-
mantic 3D City Database’s adoption of the Open World Assumption (OWA) implies that
it can operate as a semantic knowledgebase, enabling reasoning and truth maintenance
capabilities via inference engines, together with OntoCityGML as its schema. Secondly,
it also added geospatial search features that allow to efficiently retrieve CIM data from
specific regions bounded by a set of coordinates [7]. However, in the proof of concept
described by Chadzynski et al. [11], data import as well as export still relied on the ap-
propriately augmented Importer/Exporter tool, and remained manual. While the manual
approach of the proof of concept stage allowed to successfully produce a semantic twin of
the Charlottenburg-Wilmersdorf district of Berlin based on a CityGML 2.0 LOD2 model,
the lack of automation of that approach became an issue while attempting to instantiate
the remaining eleven districts of Berlin in the knowledge graph, and link the instantiated
city data into other knowledge domains.

The purpose of this paper is to present elements of a cognitive architecture applied in
CKG that enable automated data processing tasks and automated analytical capabilities.
These functionalities are demonstrated by a set of software agents that automatically load
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and produce a semantic representation of the entire city of Berlin (all 12 districts) in
TWA, automatically visualise it using an adapted version of the 3D City Database’s web
map client, as well as automatically calculate and visualise various distances of interest
between particular city objects by tracking external interactions with the representation.
The most general elements of the architecture are discussed in section 2 describing the
JPS agent framework (section 2.1) and Routed Knowledge Graph Access (section 2.2) in
more detail. Concrete implementations of intelligent autonomous agents based on those
elements are presented in section 3, which discusses and demonstrates an automated CIM
creation workflow using the City Import Agent (section 3.1), dynamic visualisation ca-
pabilities in the CKG facilitated by the City Export Agent (section 3.2), and automated
distance-related analytical capabilities, deriving new knowledge based on external inter-
actions using the Distance Agent (section 3.3). Empirical evaluation of the Berlin CIM
autonomously instantiated, visualised and analysed by the Semantic 3D City Agents in
the CKG as well as potential research direction are described in the last section 4.

2 Cognitive Architecture in The World Avatar

Information system architecture of TWA is designed to fulfill the needs of a general
knowledge graph operated on by a system of intelligent autonomous agents. Such agents
typically consist of methods allowing them to intercept some inputs (sensors), programs
that perform information processing based on those inputs, as well as previously acquired
knowledge representing the external environment, and methods resulting in certain ac-
tions based on the outcomes of that information processing (actuators) [48]. According
to Langley et al. [33], a cognitive architecture includes aspects of a cognitive agent that
are constant over time and across different application domains. These typically include:

• the short-term and-long term memories that store content about the agent’s beliefs,
goals and knowledge;

• the representation of elements that are contained in these memories and their organ-
isation into larger-scale mental structures;

• the functional processes that operate on these structures.

The knowledge graph of TWA provides an infrastructure for intelligent autonomous agents
to store and retrieve memories built on representations of elements from multiple do-
mains. All knowledge is stored in a form of semantic triples, in accordance with semantic
web standards and recommendations by W3C. The JPS Agent Framework, together with
Routed Knowledge Graph Access components, provides interfaces for such agents to in-
tercept inputs and efficiently operate on a highly distributed multi-domain knowledge
representations, enabling them to perform certain actions that either augment previously
acquired knowledge or have an effect on the external environment. Therefore, such a
combination of a knowledge graph and an agent system forms a set of basic architectural
building blocks allowing TWA to replicate and automate, at least some of, the funda-
mental behaviours and functions found in other cognitive systems, including human-like
intelligence [31].
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2.1 JPS Agent Framework

Figure 1: A class diagram of fundamental building blocks of the cognitive architecture in
TWA. An abstract JPSAgent, based on Java HTTP Servlet technology, is a base
class for all the other agent classes. This includes AccessAgent facilitating
data store and retrieval functionality for the knowledge graph. This design
ensures maximum backwards compatibility with all the other JPS and TWA
infractructure as well as offers flexibility to integrate with plethora of existing
web APIs working over HTTP protocol.

The JPS Agent Framework is a result of generalisations of an agent system actively
worked on within The World Avatar (TWA) project under its J-Park Simulator (JPS) since
2014 [39]. It is a part of JPSBaseLib library, developed in the Java programming lan-
guage and widely used within TWA as a whole [28]. The agents as well as the library
have been designed around Microservices Architecture [41, 42] while following the Min-
imal Service Model [30, 43]. This approach to modularity ensures scalability of a highly
distributed system and improves change management. It also enables sustainable service
evolution [42] by extending system components to be reusable and replaceable at the same
time. Those architectural properties of the agent system in TWA make automated service
integration and composition [59] default for heterogeneous linked data interoperability.
Semantically encoded data corresponds to the elements contained in knowledge represen-
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tations of multiple domains and is worked on by its agents regarded as linked semantic
web services [43].

As depicted in Fig. 1, JPSAgents in TWA inherit from standard Java HttpServlet class [26].
This makes HTTP a default inter-agent communication protocol that allows for syn-
chronous and asynchronous information exchange using common serialisation formats,
like XML or JSON, on the same machine, local network, or over the Internet. Such scal-
ability makes it easier to implement TWA agent system in a highly distributed form as
well as leaves it open to a smooth integration with a plethora of external web services
available on the web. The JPS Agent Framework makes agent programs independent
of the inter-agent communication protocol by extracting HTTP request parameters into
a JSON format that is passed to the agent as the input. In other words, agents built on
the framework intercept symbolic inputs [33] via their virtual sensors. Following such
separation of concerns during design makes agents’ programs relatively easily portable
to frameworks that use other protocols for messaging. Agents that work with physical
sensor devices, measuring parameters such as temperature, humidity or the amount of
light, receive symbolic inputs in the same manner by intercepting requests coming from
appropriate middleware.

The framework’s JPS Agent Interface requires all agents to perform syntactic input vali-
dation in the next step after receiving their inputs. Accordingly to the cybersecurity best
practices and recommendations, this step is performed to ensure that only properly formed
data is entering the workflow in an information system, preventing malformed data from
persisting in the knowledge graph and triggering malfunction of various downstream com-
ponents [38]. This way, inputs such as the sentence "All swans are white.", the number
11235813, or the IRI "http://www.some.com/input/" are accordingly evaluated as a valid
string, a valid integer, and a valid IRI, regardless of whether the sentence is true, the num-
ber represents the beginning of the Fibonacci Sequence and the IRI is actually resolvable
to an existing resource, etc. The agents’ programs, in turn, include various functional
processes that operate on representations of elements from multiple domains and perform
semantic validation of the symbolic inputs by comparing them with existing knowledge
and the agent system’s beliefs stored in the knowledge graph. An agent could thus re-
spectively check the knowledge graph for an existing instance of an animal that is a bird
with black feathers belonging to the family Anatidae within the genus Cygnus, an existing
mechanism that allows to detect mathematical patterns in sequences of numbers, and an
existence of the knowledge routing graph entry matching a certain resource, in order to
semantically validate its inputs before performing any further information processing or
including them in the knowledgebase.

The JPS Agent Framework allows for flexibility in developing agents’ programs and does
not require further conformance to any specific interfaces. This way, agents process their
inputs by comparing them against existing memories and knowledge, transform these in-
puts via code included in various libraries, execute any specialised software required to
perform more sophisticated operations, and contact other agents as well as existing web
APIs via the inter-agent communication protocol. Agents’ virtual actuators either contact
other agents, external APIs or physical actuators’ middleware concurrently with augment-
ing existing knowledge, or add new elements to the knowledge graph in separate sets of
tasks. Existing memories are retrieved by agents for such processing purposes, as well
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as stored in the knowledge graph by the means of technology agnostic routed knowledge
graph access mechanisms, described in the next subsection. Appropriate methods to do so
are included in the interface that all the JPS Agents conform to by default. The knowledge
graph made available via this mechanism provides agents with messaging context that is
needed in order to guide the semantics so that congruence about the semantics can be
achieved between the sender and receiver and to enable an agent to orient the semantics
to a specific application or circumstance [45].

2.2 Routed Knowledge Graph Access

The routed knowledge graph access is a set of TWA components that allow agents to
navigate through resources in its distributed multidomain knowledge graph. It consists
of the StoreRouter and StoreClients that provide a storage technology agnostic way of
information management to the other agents. Those components are integrated into the
AccessAgent that acts as a knowledge graph entry point to them. They contact it whenever
the representations of certain elements are needed for their own purposes and are not
concerned with the storage technologies used to persist those representations within the
knowledge graph.

The StoreRouter in tandem with the StoreClients are able to locate a data store by a re-
source identifier as well as retrieve, insert, update or delete corresponding representations
upon an agent’s request, regardless of whether the representations are recorded in a form
of a flat file, a relational database table or a graph in a semantic triple store. It makes JPS
Agents’ designs independent of the underlying TWA knowledge graph storage layer and
allows for the parallel evolution of those layers within the system as a whole. It also au-
tomates inter-agent data interoperability by making representations of multiple domains
accessible via an uniform interface to the all-encompassing TWA knowledge graph, when
looked at from the point of view of all agents.

2.2.1 Knowledge Graph Routing via OntoKGRouter

To enable agents to operate on classes, properties, instances and data collated from multi-
ple domains and represented in TWA that is distributed over several servers with the pos-
sibility of migrating to newly setup servers due to ever-increasing demand of improved
performance and storage capacity, a server agnostic approach is required in accessing the
knowledge-graph. To this end, a StoreRouter is built with the instantiation of an ontol-
ogy called OntoKGRouter developed for describing routing information in the form of
triples in a routing table consisting of subject, predicate and object columns, where the
subject refers to the relative IRI of a domain, the object refers to the absolute IRI, and the
predicate links the subject and object.

As depicted in Fig. 2, when the StoreRouter receives a request from an agent with the
relative IRI of a triple store or the absolute IRI of an RDF/OWL file to establish access
to the domain of interest, it validates the request and detects the corresponding store type
of domain. Any request targeting a triple store or an RDF/OWL file invokes the query
builder to form a query to retrieve the available, absolute IRI of the triple store endpoint
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Figure 2: An activity diagram of the knowledge-graph router built with the instantiation
of an OntoKGRouter ontology developed for describing routing information in
the form of semantic triples. The routing table consists of subject, predicate
and object columns, where the subject refers to the relative IRI of a domain,
the object refers to the absolute IRI, and the predicate links the subject and
object. StoreRouter that receives a request from an agent with the relative IRI
of a store validates the request and detects the corresponding store type for a
domain.
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or base IRI of the file store from the KG routing table. By combining the base IRI and
the absolute IRI of a file, the absolute file path is formulated, which is indispensable to
execute update operations on a file.

Finally, the StoreRouter instantiates a StoreClient object of the StoreClientInterface type
and returns it to the requesting agent for querying or updating the target resource within
the knowledge graph. An agent can issue multiple requests to set up combined access to
different domains stored either in triple stores or files or both.

2.2.2 Technology-Agnostic Knowledge Graph Access via Store Clients

Storage technology agnostic access to the knowledge graph is provided by the Remote-
StoreClient and FileBasedStoreClient. Both StoreClients implement the StoreClientIn-
terface, which defines abstract methods to retrieve, insert, SPARQL query and SPARQL
update data stored in the knowledge graph. Abstraction of the clients through the Store-
ClientInterface allows to decouple the knowledge storage technology from JPS Agents,
which are concerned only with representations of respective domains, regardless of the
technology. This design allows JPS Agents to access knowledge about multiple domains,
for which different storage technologies are most suitable and make it interoperable via
uniform interface. All JPS Agents utilise this design to retrieve and store required repre-
sentations from multiple namespaces of the CKG, which separate information about built
environments described in separate coordinate systems.

The RemoteStoreClient, presented in Fig. 3, is agnostic to the technology behind the re-
mote SPARQL endpoint. It uses Jena JDBC SPARQL over the JDBC framework that is
also utilised by the CityImportAgent and CityExportAgent, making the knowledge stor-
age and retrieval interfaces uniform across all the JPS Agents. The FileBasedStoreClient
allows access to RDF data stored in a flat file format using Jena RDFConnection, which
provides a unified set of operations for working on RDF data loaded from file-based stor-
age into a Jena dataset. Instantiation of a RemoteStoreClient or FileBasedStoreClient is
handled by the StoreRouter.

3 Semantic 3D City Agents

Semantic 3D City Agents that are part of the CKG, a knowledge graph dedicated to repre-
sentations of built environments in the TWA, are based on the components and principles
of the cognitive architecture described in the previous section. They demonstrate applica-
tion of the architecture and potential for intelligent automation applied to city modelling:

• Import process from CityGML 2.0 into CKG model does not require a person oper-
ating desktop software anymore. Instead, CityImportAgent performs data validation
and city objects instantiation in the knowledge graph as soon as it finds a .gml file
in a hard drive directory which it was instructed to watch for the appearance of such
files

• KML export process for visualisation also does not require anyone operating export

10



Figure 3: An activity diagram of an agent using a RemoteStoreClient to perform a
SPARQL query on a remote triple store. The RemoteStoreClient, an in-
stance of the StoreClientInterface type, is agnostic to the technology behind
the SPARQL endpoint. Instantiation of the RemoteStoreClient is performed by
the StoreRouter.
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application manually. Instead, CityExportAgent creates visualisation data either for
the whole model or a part of it automatically upon receiving a request to do so. It is
also capable of updating KML for individual city objects, which adds truly dynamic
visualisation capabilities to the city modelling software.

• DistanceAgent demonstrates potential for intelligent analytical capabilities of city
modelling software. It autonomously calculates distances of city objects, which
were interacted with on the web map client and displays this information whenever
it is ready. There is no manual process involved in the analytics, which occurs
independently of the interaction process. It is possible to extend this design pattern
to support more advanced analytical features.

3.1 City Import Agent

Figure 4: CityImportAgent automates instantiation of city models in TWA, by listening
on two IRIs. Upon receiving a request on the Listen IRI, it calls JPS Asyn-
chronous Watcher Service and instructs it to watch for appearance of new
GML files in a directory specified by the request, in a separate thread. Upon
receiving a request on the Action IRI, it splits the file to smaller and more
manageable chunks before importing each chunk using four tasks running in
separate threads: BlazegraphServerTask, ImporterTask, NquadsExporterTask
and NquadsUploaderTask. This way it incrementally creates semantic repre-
sentations for the whole cities.

The CityImportAgent automates creation of semantic representations of cities that are
used by all the other CKG agents. As depicted in Fig. 4, it instantiates elements of cities
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in a form of Semantic 3D City database [11] using OntoCityGML as a schema for linked
data structure spread across multiple named graphs [10] that store CityGML 2.0 features
in different levels of detail. The agent operates in two modes, depending on which of the
two IRIs it intercepts the request at. Upon receiving a request on the Listen IRI it gets
activated in the filesystem observation mode by the means of the Asynchronous Watcher
Service code capable to watch for appearance of new GML files in a directory specified
by the request, in a separate thread. Upon receiving a request on the Action IRI, it creates
instances of the city model elements, found in a GML file using the listening mode, by the
means of augmented 3D City Database Importer/Exporter tool [11], originally developed
at TUM. Prior to that the agent splits the file to smaller and more manageable chunks be-
fore importing each chunk using four tasks running in separate threads. Detailed activity
diagram is available in appendix A.

JPS Asynchronous Watcher Service [4] is a self contained Java library that could be either
imported by other agents and called by their programs directly or run as a standalone web
service on an embedded Apache Tomcat [3] server. The service is designed to listen to
watch requests pointing it into specific filesystem directories and types of files. It also
requires callback URL parameter in order to work in an asynchronous manner. Upon in-
put validation the service immediately responds to a calling agent with either information
about bad request, in case of invalid input, or creation of file watcher Java object ob-
serving a directory specified in the request for appearance of new files of certain type or
modifications to the existing files. This way the calling agent does not have to wait until
such file-system event occurs but it could be performing other tasks while waiting to be
contacted on the callback URL or simply stay dormant until it receives a request on that
URL. The CityImportAgent makes use of the service as a library called directly from his
program while operating in the listen mode. The agent creates filesystem watcher objects
by the means of this code and instructs them to call itself back on the Action IRI whenever
an event of new GML file appearing in an import directory occurs. Although it makes the
import agent asynchronously self referential, any of the watcher tasks terminates as soon
as such filesystem event occurs and just after issuing successful callback request. This
avoids infinite self reference loops.

Interception of the callback request on the Action IRI triggers the CityImportAgent to
attempt automated data validation and processing of the GML file in order to instanti-
ate a new CIM in the Cities Knowledge Graph. The agent uses four tasks running in a
separate threads to accomplish this goal. It also uses two BlockingQueues form Java Col-
lections Framework [24] in order to facilitate concurrent information exchange between
the tasks. They inform each other about completion of a particular piece of work on a
given data chunk and signal start and termination of a task dedicated to that chunk so it
could be picked up by other tasks before it is finally sent over to TWA knowledge graph
in a semantic form. All tasks implement Java Runnable [25] interface extended by adding
methods that allow to detect whether the task is currently running as well as to stop it.

BlazegraphServerTask creates local instances of the NanoSparqlServer and puts them on a
BlockingQueue to be picked up by the ImporterTask. At first it creates Blazegraph config-
uration file with a name corresponding to a given data chunk. Next it copies the file from
a template as well as updates its content with the Blazegraph journal name containing
data chunk sequence number. It also sets up all the required system properties and server
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properties with appropriate configuration file, created at the first step, before starting Stan-
daloneNanoSparqlServer [8]. It places the server at the queue and keeps observing the
server for its termination until it stops itself as well when such an event is detected.

ImporterTask at first keeps observing the queue for appearance of NanoSparqlServer in-
stances. Whenever a new instance appears in the queue, the task takes it out of there and
sets up 3D City Database Importer/Exporter tool’s project.xml file by updating server de-
tails and import namespace variables accordingly to the given data chunk number. After
that it calls the importer’s main entry point method with chunk and project configuration
file paths for a given chunk as arguments. When the import process is finished it stops
the server, which also signals the previous task to terminate. Then the task creates new
empty n-quads file indicating that the data imported into the Blazegraph journal could be
exported before being sent over to the remote location. After the server is stopped and the
file is created the task terminates itself.

NquadsExporterTask uses the ExportKB Blazegraph [6] code to create n-quads file con-
taining data transformed by the importer to the semantic form. Local IRIs are replaced
with TWA IRIs at this point. The server, host and port information for IRIs is taken from
the project file used for importing the given chunk with the same sequence number as the
n-quads file prepared by the task. After the IRI replacement the task removes all helper
files generated by the previous tasks processing the given data chunk and puts the file on
the queue before terminating itself.

NquadsUploaderTask reads the updated n-quads file that it finds in the queue and uploads
it to the BulkDataLoad endpoint of TWA. When the upload request finishes the task ter-
minates itself. In case of a given n-quads file corresponds to the last chunk of the data
to be imported, it creates a timestamped audit trail archive for the whole dataset import
process.

This work shows potential of a complex task automation by an agent based on the JPS
Agent Framework that results in creation of multifaceted CIMs in the CKG. The City-
ImportAgent was used to transform 14.9GB Berlin LOD2 building data from GML into
semantic form uploaded into TWA without anyone manually operating the original TUM
tool. The whole semantic representation contains 419 909 661 Subject-Predicate-Object
triples in total, partitioned into named graphs that separate from and link to each other:

• 3 475 683 City Objects

• 15 258 678 Generic Attributes of City Objects

• 539 274 Buildings

• 587 109 Addresses

• 540 660 External References

• 2 936 408 Thematic Surfaces

• 9 558 218 Surface Geometries
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As it is demonstrated in the next two subsections, such large-scale mental structures en-
coded in a semantic form provide knowledgebase open to analysis and augmentation as
well as linking to and comparing with other domain representations by all the other TWA
agents. In terms of cognitive architecture, the agent demonstrates following capabilities:
recognition, decision making, choice, monitoring, execution, action, interaction, commu-
nication as well as acquisition, representation, refinement and organisation of knowledge.
When evaluated, it also proves to be: efficient, scalable, reactive, persistent, autonomous
and improvable [33].

3.2 City Export Agent

Figure 5: The City Export Agent automates the export of the city model data needed for
visualisation. The data could be exported for the whole model, different areas
found via geospatial search, as well as individual city object members. The
original 3DCityDB Importer/Exporter SQL queries are translated to SPARQL
using the SQL2SPARQL transformer when the agent is connected to the Seman-
tic 3D City Database. After the execution of the queries and the post-processing
of returned results by the GeoSpatialProcessor, a KML file is generated for vi-
sualisation of the city model.

The CityExportAgent exports the semantically encoded geospatial representation of city
objects stored in the Semantic 3D City Database of CKG for CIM visualisation and ex-
ternal interactions in an automated manner. This process is depicted in Fig. 5. The data
could be exported for the whole model, different areas found via geospatial search, as well
as individual city object members stored in the the knowledge graph. Similar to the City-
ImportAgent, it also makes use of the augmented TUM Importer/Exporter tool (ImpExp),
that offers a Command Line Interface (CLI) to facilitate automatic execution of various
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tasks via commands and parameters.

The CityExportAgent starts operating when a request is intercepted at a pre-defined IRI.
The export operation performed by the ImpExp requires certain program arguments as
inputs, such as the gml IDs of the city objects to be exported, the output destination of the
generated KML file, and the location of configuration file for the tool. When an export
activity is required, a HTTP POST request with the required parameters, presented in a
JSON format, is sent to the CityExportAgent. After a successful validation, the parameters
are added to the configuration file, which also contains the database connection informa-
tion for the export activity. As the agent is designed to operate in a automated manner,
the output destination of the KML file and the path to the configuration file are considered
predefined parameters and read from a Java property file.

Figure 6: Different views of a Charlottenburg-Wilmersdorf dataset visualised using KML
files exported by the CityExportAgent from the Semantic 3D City Database of
the Cities Knowledge Graph. The KML files contain the city model in LOD2 in
extruded footprint display form.

Once all the program parameters are in place, the execution of the exporter task is trig-
gered by the agent that chooses one of the three options: export a single object, export
multiple objects, and export the whole database (denoted with “*” as input). Each input
variant leads to different combinations of queries used to retrieve the geometry informa-
tion of the city objects in the database via SPARQL.

The original TUM Importer/Exporter tool is designed to work with relational databases
like PostGIS and Oracle using SQL queries. In this augmented version of the tool, the
KML export process (KmlExporter) has been extended to export the city model by ex-
ecuting SPARQL statements using the OntoCityGML schema against the Semantic 3D
City Database of the CKG [11]. The connectivity to the respective database has been
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implemented using Jena JDBC, a SPARQL-over-JDBC driver framework [27]. In order
to maximise the re-usability of the existing code and preserve the initial functionalities,
two main components are implemented for the export operation against semantic graph
databases: the SQL2SPARQL Transformer and the GeoSpatial Processor.

The SQL2SPARQL Transformer has been implemented to translate SQL statements to
equivalent SPARQL statements that use the OntoCityGML schema when the tool is con-
nected to the semantic graph database. The second component, the GeoSpatial Proces-
sor, has been introduced specifically to enable the system to provide the same information
when generating KML files as PostGIS provides when making use of built-in functions.
Particular SQL statements make use of built-in geospatial functions provided by PostGIS
and Oracle databases, but these are not present in the current version of Blazegraph, the
graph database used as the backend for the Semantic 3D City Database of the CKG. For
example, geospatial funtions like ST_Transform, ST_Area, ST_IsValid are embedded in
original SQL statements and evaluated directly by the database engine. Such functions
are predominantly used to filter intermediate query results. The GeoSpatial Processor has
been implemented to provide similar geospatial functionalities to post-process the query
results. By means of this system component, the translated complex SPARQL statements
are broken down into multiple simple SPARQL statements and sent to the database in
such a way that the returned intermediate results are filtered by it as well as used for the
next query statement. The outcome of this process provides identical information for the
KML generation process as the original PostGIS. A detailed flow of activities is presented
in the UML diagram included in appendix B.

These two components of the CityExportAgent address problems that arise upon attempt-
ing to manage CIMs larger than a single city. For example, Buyukdemircioglu and Ko-
caman [9], who worked on a model of Turkey, stated that: ‘Currently, the main issue in
web-based visualization of 3D city models using open-source software is the model up-
dating. Since the visualized model is static and not directly visualized from a database
or a similar dynamic source, the whole model must be generated again every time there
is an update on the model. Serving a city model with topography directly from a spatial
database management system (DBMS) to the web interface would eliminate this problem.
Efficient geospatial database solutions should be developed for high-performance visual-
ization of city and terrain models, which is of great importance for updating such models.’
The Semantic 3D City Database [11] provides such dynamic spatial management system
in the CKG, and the CityExportAgent automates data management for the visualisation
of such dynamic geospatial models. It is hence possible to trigger an automated KML
export by the agent whenever there is a change in the underlying knowledge graph, and
dynamically reflect that change in the visualisation layer. Figure 6 provides an illustration
of the visualisations exported by the CityExportAgent.

In terms of cognitive architecture, the agent demonstrates following capabilities: recog-
nition, decision making, choice, monitoring, execution, action, interaction, and commu-
nication. When evaluated, it also proves to be: efficient, scalable, reactive, persistent,
autonomous and improvable [33].
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Figure 7: The DistanceAgent automatically calculates distances between city object rep-
resentations, which were interacted with on the web map client. It dynamically
manifests the acquired knowledge by displaying the learned information about
spatial relationships through connection lines and distance values whenever it
is ready.

3.3 Distance Agent

The DistanceAgent is an example of an autonomous agent that operates on semantic struc-
tures found in representations of elements of a built environment - it automatically com-
putes physical distances between city objects stored in the Semantic 3D City Database
of the CKG. The agent design is based on the cognitive information architecture of TWA
(section 2) and contains methods to locate a data store by means of a resource, allowing
it to retrieve or insert relevant information using StoreRouter and RemoteStoreClient. The
agent also contains methods and interfaces for information processing. All methods are
presented in the UML diagram included in appendix C.

The agent makes sense of the represented environment that it operates on by indepen-
dently tracking information about events occurring on the 3DCityDB-Web-Map-Client.
When triggered by an interaction event, the DistanceAgent receives a HTTP POST re-
quest with the request parameters - city object IRIs - in JSON format. Upon successful
request validation, the agent checks whether the corresponding distance information al-
ready exists in the CKG, which it does by invoking the query builder to form a query to
retrieve that particular distance. If the executed query does not return any distance in-
formation, the following set of tasks are performed by the agent in order to compute the
distance.

The DistanceAgent executes query statements with the OntoCityGML schema against the
CKG and retrieves the city object envelopes linked to IRIs in the HTTP request. As the
envelope essentially defines a bounding box for any type of geospatial CityGML2.0 object
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– 1D points, 2D polygons or 3D objects – the agent handles heterogeneous spatial data
universally. Envelopes are used to extract city objects’ centroids, between which distances
are computed. Using envelopes with only four unique coordinates, reduces the centroid
computation effort when original geometries are complex or when the triple store contains
heterogeneous geospatial data. Additionally, to ensure accurate results, a query statement
is executed to retrieve the native namespace’s Coordinate Reference System (CRS) and set
the centroids to a uniform (Cartesian) target CRS. When computing the distance, the agent
also considers Z coordinate values, further improving the accuracy, as well as broadening
the potential scope of an application. The returned distance values between city object
pairs are formalised and described in terms of Units of Measure Ontology (OM) [47] and,
by executing SPARQL statements, added to the CKG in a separate named graph.

The DistanceAgent can compute distances for city objects spread across multiple named
graphs in separate namespaces, as a city object TWA IRI structure carries the necessary
information, such as namespace and graph name, to retrieve its precise location in the
triple store. It also works independently from the Importer/Exporter tool (i.e. the se-
mantically augmented version utilised by the CityImportAgent and the CityExportAgent),
as it directly tracks interactions occurring on the 3DCityDB-Web-Map-Client. It mani-
fests the acquired knowledge (i.e. visualises distances) by highlighting the elements of
the city objects’ representation between which distances are computed, as well as learned
information about relationships between them (Fig. 7).

In principle, it is possible to extend the design pattern of the DistanceAgent to support
more advanced analytical features in the future. For example, it could analyse topologi-
cal relationships between representations of elements found in a built environment based
on distances, or analyse the prevalence of computed distances for an object over time
as a proxy for interest in that object. Nevertheless, when its cognitive architecture is
taken into account, the agent already demonstrates the following capabilities: recogni-
tion, decision making, choice, monitoring, execution, action, interaction, communication
as well as acquisition, representation, refinement and organisation of knowledge. When
evaluated, it also proves to be: efficient, scalable, reactive, persistent, autonomous and
improvable [33].

4 Conclusions and Future Work

A system of intelligent autonomous agents, such as above described Semantic 3D City
Agents, in combination with a knowledge graph, such as CKG, provide a suite of solu-
tions to address common gaps in current geospatial information systems that make them
unsuitable to meet demands imposed by the fourth industrial revolution. However, adher-
ing to the existing standards as well as reusing, adapting and integrating existing compo-
nents of such systems stays in accordance with the sustainable digitisation practices. This
paper presented one of the ways of achieving such goal.

Cognitive architecture of the JPS Agent Framework, elaborated on in section 2, provides
a backbone for flexible creation of intelligent autonomous agents, compliant with exist-
ing web standards, in TWA. Routed Knowledge Graph Access components described in
subsection 2.2, namely the Store Router (subsection 2.2.1) and the Store Clients (sub-
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Table 1: City planning related questions answered by the live CKG subsystem of TWA.

Query Question No. of Elapsed
No. Solutions Time
1. Ask if a certain building function exists in the dataset. 1 31 ms.
2. Ask if a certain street name exists in the dataset. 1 141 ms.
3. Return all data about a building in a specified address. 117 4063 ms.
4. Return all distinct generic attribute names found in the

dataset.
56 19141 ms.

5. Return all distinct building function codes in the
dataset.

208 3828 ms.

6. Return all generic attribute names and their values
found in the dataset.

56 58296 ms.

7. Return specified generic attribute “Qualitaet” with all
its values found in the dataset and order solutions by
the value in descending order.

74919 91145 ms.

8. Return all distinct street names found in the dataset.
Count the number of buildings in every street.

8874 4063 ms.

9. Return all distinct street names that have building
function code “1134” in it. Count how many times
that function occurred and order streets by the num-
ber of function occurrence in descending order.

67 3703 ms.

10. Return all distinct street names that have building
function code “1444” in it. Count the ratio of the spec-
ified function in each street. Order results by the ratio
in descending order.

799 23314 ms.

section 2.2.2), provide means to navigate through elements that represent objects span-
ning multiple domains of knowledge encoded in a form compliant with the semantic
web standards and recommendations by the W3C. Section 3 demonstrated capabilities
of the a system of Semantic 3D City Agents based on the framework that make use of
the access components. The CityImportAgent (subsection 3.1) demonstrated capability
of fully automated creation of multifaceted CIMs in an ontological form, compliant with
the CityGML 2.0 standard at the same time. The model of Berlin, autonomously cre-
ated by the agent, consists of 419 909 661 triples and shows satisfactory performance
on the set of sample city planning questions presented in Tables 1 and 2. The CityEx-
portAgent, described next (subsection 3.2), shows possibility of data management for
visualisation of the CIMs stored in dynamic geospatial knowledge graphs on the fly and
autonomously reflecting changes in them on the web map client. The DistanceAgent (sub-
section 3.3) demonstrates example autonomous analytical capabilities for such semantic
CIMs by independently tracking interactions with their elements on the web visualisation.
The agent’s virtual sensors capture symbolic inputs that correspond to those interactions
in the background while its programs enrich the underlying CIMs with the newly derived
knowledge, stored in the dynamic geospatial knowledge graph of the CKG, and presented
back on the web map client autonomously by sending the symbolic outputs to it via virtual

20



actuators.

Table 2: City planning questions answered by the live CKG subsystem of TWA. (continued
from Table 1)

Query Question No. of Elapsed
No. Solutions Time
11. Return all street names that have building function

code “1171” in it. Return other existing functions in
those streets. Count and order other functions by their
occurrence in descending order.

1574 29520 ms.

12. Return the average height of each function code found
in the dataset and order functions by average height in
descending order.

208 3875 ms.

13 Return all distinct street names found in the dataset.
Count average, minimum and maximum height of
each street. Order solutions by average height a de-
scending order."

8211 8829 ms.

14. Return all distinct streets found in the dataset. Order
solutions by the number of buildings in the street and
by the average height in ascending order.

8211 8874 ms.

15. Return all distinct street names that have at least one
of the specified function codes. Order solutions by
the number of matched function codes in descending
order and by the average street height in ascending
order.

604 4375 ms.

16. Return all addresses of buildings with function code
“2921” found in the dataset. Order results by street
name and number in ascending order.

2226 3969 ms.

17. Return all addresses and envelope coordinates of
buildings with function code “2921” found in the
dataset.

2215 4250 ms.

18. Count all city object Ids found within a given bound-
ary.

1 16 ms.

19. Return all building footprints found within a bound-
ary.

258 31 ms.

20. Count all city objects found in the dataset based on
its type: GroundSurface, RoofSurface, WallSurface,
BuildingPart, Building and CityObjectGroup.

6 3125 ms.

Apart from reusing existing components this work required design and development of
the following novel elements:

• JPS Agent Framework that generalised upon the past agent development in the J-
Park Simulator and provided a set of uniform interfaces to all TWA agents allowing
them to implement cognitive capabilities as well.
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• Routed Knowledge Graph Access components that allow the JPS Agents to navi-
gate TWA knowledge graph by consulting routing information encoded in the On-
toKGRouter ontology, introduced for this purpose, and access the heterogenous
multi-domain data in a technology agnostic manner.

• Semantic 3D City Agents that demonstrate intelligent automation for dynamic geospa-
tial knowledge graphs and adhere to the sustainable digitalisation practices as well
as allow to adapt existing geospatial information systems’ components into appli-
cations that meet the needs imposed by Industry 4.0.

Automated CIM instantiation, dynamic visualisation and autonomous analytics solely are
not sufficient to conduct complex multi-factor optimisations, that would allow to assist
with solving the most pressing problems faced by the countries across the globe at the
present time, even when such datasets are combined with other domain data within TWA.
In order to get closer to some of the answers, its Parallel World Framework needs to be
adapted to work with large scale simulations combining the CIM data with other datasets
representing different domains. To achieve this, agents and mechanisms need to be de-
veloped that allow efficient modification of the CIM as well as elimination of some of
its components. Although it is currently possible to simply override existing models with
new data, the efficient update and delete capabilities are not yet present in the TWA. Such
large scale simulations would result in the increased demand for data storage. In order
to minimise the impact of it, improved agent communication in a form of ontology that
provides vocabularies necessary for the agents to perform forms of inferencing while ex-
changing symbolic inputs could be developed as well. This would form a basis of an
agent communication language allowing JPS Agents to organise the underlying datasets,
required to perform such large scale simulations. This future work could be also regarded
as a next brick on paving the road towards self-sustainable knowledge graphs.
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A City Import Agent – UML Activity Diagram
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B City Export Agent – UML Activity Diagram
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EIP Eco-Industrial Park
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HTTP Hypertext Transfer Protocol
URL Uniform Resource Locator
URI Uniform Resource Identifier
IRI Internationalized Resource Identifier
JPS J-Park Simulator
JSON JavaScript Object Notation
OWL Web Ontology Language
RDF Resource Description Framework
TUM Technische Universität München
RDBMS Relational Database Management System
SQL Structured Query Language
SPARQL SPARQL Protocol and RDF Query Language
W3C World Wide Web Consortium
XML Extensible Markup Language
GML Geography Markup Language
JDBC Java Database Connectivity
TWA The World Avatar
OWA Open World Assumption
CWA Closed World Assumption
DL Description Logic
OBDA Ontology-Based Data Access
OGC Open Geospatial Consortium
WKT Well-Known Text
CKG Cities Knowledge Graph
CARES Centre for Advanced Research and Education in Singapore
SEC Singapore-ETH Centre
LOD2 Level Of Detail 2
CIM City Information Model
DT Digital Twin
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