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Abstract

This paper presents a dynamic geospatial knowledge graph as part of The World
Avatar project, with an underlying ontology based on CityGML 2.0 for three-dimensional
geometrical city objects. We comprehensively evaluated, repaired and refined an ex-
isting CityGML ontology to produce an improved version that could pass the neces-
sary tests and complete unit test development. A corresponding data transformation
tool, originally designed to work alongside CityGML, was extended. This allowed
for the transformation of original data into a form of semantic triples. We compared
various scalable technologies for this semantic data storage and chose Blazegraph™
as it provided the required geospatial search functionality. We also evaluated scal-
able hardware data solutions and file systems using the publicly available CityGML
2.0 data of Charlottenburg in Berlin, Germany as a working example. The struc-
tural isomorphism of the CityGML schemas and the OntoCityGML Tbox allowed
the data to be transformed without loss of information. Efficient geospatial search
algorithms allowed us to retrieve building data from any point in a city using coor-
dinates. The use of named graphs and namespaces for data partitioning ensured the
system performance stayed well below its capacity limits. This was achieved by us-
ing scalable and dedicated data storage hardware capable of hosting expansible file
systems, which strengthened the architectural foundations of the target system.

Highlights

• OntoCityGML based on CityGML 2.0 and W3C standards.

• Architecture definition for a dynamic geospatial knowledge graph enabled by
the Semantic 3D City Database.

• Data interoperability capabilities provided by means of sustainable digitisation
practices.
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1 Introduction

General context of the paper - problem space

Development of sustainable digitisation practices is widely recognised as an important
part of roadmaps at organisational, industry [60], national [3] as well as international lev-
els [31]. Radermacher [50] points to the fact that global governing bodies, such as the UN,
G20 and the World Bank, all agree on the importance of adopting digitisation standards
for achieving international comparability. Despite the complexity of existing standards
and the time-consuming adoption and implementation of information systems into a dig-
ital form, those bodies agree that the benefits greatly outweigh the costs. Radermacher
[50] also notices that a scientific approach and adherence to such standards ensures trust
based on evidence. Moreover, it also positively impacts accountability, transparency and
control of execution at all levels. Undoubtedly, roadmaps strengthening comparability in-
clude technological solutions designed with intention to support systems interoperability
as well [51].

The World Avatar (TWA) is an all-encompassing dynamic knowledge graph. It is built on
agent-based system [3, 52] architectural principles. Within it, intelligent agents operate on
a knowledge graph built in accordance with semantic web standards and recommendations
provided by the W3C. Therefore, the system can be regarded as an example of a general
knowledge graph, capable of multi-domain knowledge representation [3, 17, 18, 20, 22,
23, 41, 64, 65]. Answering to inter-domain interoperability problems is at its core. The
target system is a digital representation of the world. Representations of different domains
must also adhere to applicable standards.

Designed as one of the critical TWA components, the J-Park Simulator (JPS) [35, 47, 48,
62, 63, 66] includes representations of built environments and agent-based subsystems
capable of simulating emissions dispersion from various types of air pollution sources
as well as optimising designs of Eco-Industrial Parks (EIPs) with respect to their carbon
footprint [21].

The system architecture for the Semantic 3D City Database proposed in this paper aims at
closing some of the gaps, particularly related to current built environment representation
within JPS and TWA. Basing it on reusable Open Source components and standardised
interfaces encourages wider adoption throughout other information systems that require
scalable and interoperable three-dimensional representation of such environments.

Cities and geospatial information

Existing City Information Models (CIM) already integrate large urban datasets in order
to represent multiple aspects of cities such as the built environment, energy management,
transport, etc [26]. Linking across domains and securing scalability are key challenges
to developing urban Digital Twins (DT) [53]. Representing cities as three-dimensional
models of built environments is a crucial step to add more urban data and knowledge [59]
to representing urban environments that are developed and planned.

One of the common ways of 3D modelling for built environments in various information
systems is to use the CityGML standard, provided by the Open Geospatial Consortium
(OGC) [28]. This can be used as a data exchange standard for city landscape management
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and planning systems or even as a file-based data source for applications visualising 3D
city landscapes on the web. It is possible to encode information about different domains
within this format through domain-specific extensions as well as combine purely geospa-
tial concerns with any others in order to analyse or support decisions regarding digitised
urban design blueprints. A digital twin of the Manchester landscape in CityGML 2.0, with
solar irradiation projected on the roofs of the buildings [43], is just one of the plethora of
examples currently available on the web. However, developing applications built on static
files lacks flexibility. Apart from compliance with standards, flexibility is a key ingredient
to achieving interoperability [51]. It also keeps standard based systems open to future
innovation. Dynamism of the stored data is required to be able to perform simulations
under various conditions and hot swap certain information in representations on demand.
Moreover, dynamic representation allows the gaps in static city models arising from the
constant evolution of the entities within built environments to be addressed.

The open source 3D City Database, developed at the Technische Universität München
(TUM), was meant to close some of those gaps [57]. 3D City Database is a suite of tools
to transform data encoded in flat CityGML 2.0 files into a more flexible database for-
mat and to store and visualise 3D city landscapes. It has been under development since
2003 [61]. The flagship examples, which showcase how to store and visualise city data
with the help of those tools, are models of Berlin and New York in Level Of Detail 2
(LOD2). This approach demonstrates a possibility of storing city data and adhering to
the CityGML 2.0 standard in a different way than by using static XML files. However,
relational database backends of this solution, limit implementation of semantic data inter-
operability. While some authors have reported on first attempts to use graph databases for
geospatial data [2], discussions contain predominantly general ideas and partial results
[46]. Adopting a semantic data store allows for turning a bare 3D City Database into
a knowledge base [52] with inference, truth maintenance and reasoning engines. This
makes the resulting Semantic 3D City Database an enabler for the dynamic geospatial
knowledge graph in TWA.

Synthesis

Research at the University of Geneva focused on the other side of the problem spectrum
led to producing CityGML ontology. It turned out to be possible to generate an ontology,
with one to one matching between concepts, by applying XLST transformations into orig-
inal CityGML 2.0 schemas. The ontology produced by applying those techniques could
be regarded as a step towards bringing the standard and applications providing semantic
interoperability together. However, closer examination of the available ontology reveals
a number of issues concerning its quality and, because of that, suitability to be used as a
Tbox (an ontology schema) for reliable applications adhering to semantic web standards
and recommendations. Apart from that, there is also a lack of data transformation tools
which would allow population of the ontology with data and produce instances for an
Abox. Schema and instances are equally needed to build any application able to oper-
ate a three-dimensional geospatial data. Such applications also need to provide reliable
geospatial search functionality with acceptable data retrieval times [38]. Although there
are semantic triple stores implementing geospatial search, there is a lack of examples of
semantic web applications operating on the multitude of geometries required to represent
entire cities. Any software application satisfying such requirements needs appropriate
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hardware to facilitate this specific functionality. Fully semantic 3D city database architec-
ture definitions, bringing together all the above specified components in order to provide
foundations for semantic applications operating on dynamic city models, are not currently
available.

The purpose of this paper is to present such an architecture definition as well as the steps
necessary to produce proof of concept solutions that address the mentioned problems.
The ontology refinement process and its evaluation with regard to quality and correctness,
required to ensure Tbox reliability, are elaborated on in the following Section 2. Next,
the use of refined ontology concepts in the process of augmenting data transformation
tools is presented, based on existing open source solutions (Section 3). Evaluation of
existing semantic data stores, carried on before producing an Abox by utilising terms of
the refined ontology, is described in Section 4. The final Section 5 is devoted to presenting
estimated hardware requirements, as a result of evaluating geospatial functionality on tens
of thousands of buildings with over 2000 different types of two-dimensional and three-
dimensional geometrical shapes.

2 Refined Ontology for CityGML

Producing a proof of concept Semantic 3D City Database required ensuring reliability
of the ontology, used as its schema, in the first step. As a result, following the general
principle of reusability, such schema – OntoCityGML – is based on an existing ontology
reflecting the CityGML 2.0 standard and developed at the University of Geneva [15, 36].
Because of the methods used to produce it, it is referred to as CityGML ontology in the
following subsections, where the steps and methodology undertaken in the process of
refining it to a version suitable for the proof of concept solutions are elaborated on.

2.1 An evaluation of the CityGML ontology

The publicly available CityGML ontology [15], which served as a base for OntoCityGML
ontology, was developed as a result of applying XSLT transformations to CityGML 2.0
schema [28] as well as some manual mapping needed to generate it [15]. The ontology
implements 185 classes, 281 object properties and 92 data properties. It also contains
1254 implemented axioms. Categorisation of criteria used during its evaluation in order to
check suitability for the proof of concept presented in this paper is enumerated in Table 1.
The suite of tools and plugins available in the Protégé ontology editor [45] was utilised
during this process.

The following errors were reported by those tools in the CityGML ontology, and then
manually fixed during evaluation, based on the all of the above metrics. First, it did
not pass the Accuracy test. There were a number of Illegal redeclarations of entities:
reuse of entity errors. For instance, the term year of construction, also present in the
original Charlottenburg CityGML 2.0 data, was implemented as owl:ObjectProperty and
owl:DatatypeProperty entities at the same time. More than fifty errors of this nature
were reported by the editor. Second, the Conciseness test checked whether the base on-
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Table 1: Categorisation of Ontology Evaluation Criteria (updated from [29]).

Evaluation perspective Metrics
Accuracy
Conciseness

Ontology correctness Completeness
Consistency & Coherence

Ontology quality Computation efficiency

tology defined entities which were irrelevant to the domain to be covered [29]. Con-
ducting it on the CityGML ontology revealed entities which were irrelevant as ontology
elements with regard to TWA domain. For example, the term class was implemented as
owl:ObjectProperty for entities which were irrelevant to TWA domain. The base ontol-
ogy contained more than ten entities of this nature. Third, the Completeness test mea-
sured whether the domain of interest was appropriately covered [29]. It revealed that the
CityGML ontology did not completely cover TWA domain. For instance, a term such as
envelope, essential for the proof of concept, was defined in the CityGML 2.0 open data
model but was not implemented in the CityGML ontology [15]. Fourth, the HermiT [27]
reasoner revealed the Coherence and Consistency of the CityGML ontology. Finally, the
Computational efficiency test showed that the expressivity of Description Logics (DLs)
of the CityGML ontology was equivalent to A L E H I (D) DLs. The described as-
sessment ensured that the CityGML ontology could serve as a good starting point for the
development of an OntoCityGML ontology and provide some foundations for creating a
dynamic geospacial knowledge graph.

2.2 An evaluation of the OntoCityGML ontology

OntoCityGML ontology, which served as a Tbox [5] for the proof of concept Semantic
3D City Database, is an extension of the CityGML ontology and a result of resolving pre-
viously mentioned issues. As in the case of the base ontology, tools and plugins available
for the Protégé ontology editor [45] were used for its evaluation. The OntoCityGML on-
tology implements 344 classes, 272 object properties and 78 datatype properties. It also
contains 3363 implemented axioms.

The Computational efficiency test shows that the expressivity of OntoCityGML ontology
DLs is equivalent to A L E H (D) DLs. Due to the DLs’ expressivity of the ontology
falling between DL-Lite [11] and S ROI Q DL [30], the OntoCityGML cannot be used
to query city data stored in relational databases by the means of the ontology-based data
access (OBDA) technologies [39]. The HermiT reasoner is able to classify the OntoCi-
tyGML ontology. In debugging mode, it also detects that this ontology is Consistent and
Coherent. The OntoCityGML ontology fully passed Accuracy, Conciseness and Com-
pleteness tests as well. Protégé does not show any errors related to illegal declaration of
entities or reuse of entities.

To cover TWA domain appropriately and to the extent needed for the proof of concept,
sixty-nine new terms were implemented into the OntoCityGML ontology. The terms were
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checked for one to one correspondence between the implementation in the ontology and
the CityGML 2.0 specification [28]. The list of terms corresponds to the unique list of
CityGML 2.0 tags found in the Charlottenburg-Wilmersdorf data used in this proof of
concept. OntoCityGML axioms relevant to this list are included in the Appendix A.

Additionally, each of the new terms implemented in the OntoCityGML was covered by
unit tests. This step ensures that any further changes to the OntoCityGML ontology pre-
serve its structure. Sample test cases are included in Appendix B. Furthermore, the On-
toCityGML ontology has been placed under git version control system in order to make
tracking such changes transparent.

3 Augmented Data Transformation Tools

For the proof of concept, data validation mechanisms of the augmented Importer/Exporter
tool, originating from TUM [57], were used to transform CityGML 2.0 data to the Seman-
tic 3D City Database [5] which uses OntoCityGML terms to describe city models. In this
process, every CityGML object is validated by the tool prior to its instantiation to a cor-
responding Java object. The data transformation process is described in the next section
(3.1).

3.1 3D City Database Importer/Exporter Tool

Depending on the level of detail, CityGML models can form quite complex and, when
measured by the average present-day computing capabilities, relatively large datasets. An
architecture of any application designed to work with such models needs to be developed
with this in mind. In the particular case of the semantic geospatial knowledge graph, it has
to ensure efficiency of SPARQL queries on an Abox as well as balance performance and
optimal data storage. While citygml4j [16], an open source Java class library and API,
provides a very good start to work with CityGML 2.0 models programmatically, there is
a lack of tools which would be able to turn such models into semantic triples forming an
Abox of a geospatial knowledge graph.

After exploring options, the closest existing data transformation tool able to fulfill such
requirements is the 3D City Database Importer/Exporter [1]. It is also based on citygml4j
and is available as an open source project. The TUM tool is optimised to work with large
CityGML 2.0 models and uses multithreading to read the data, transform it and write it
into a database [57]. Hence, it is more computationally efficient than a raw library when
the potential number of a city model objects being processed simultaneously is taken into
consideration. This matters in the case of large and detailed models. The unmodified tool
supports Oracle and PostGIS relational databases and makes use of the Java Database
Connectivity (JDBC) API with respective database connectors. This particular design
allowed the reuse and augmentation of large parts of its code to work with Semantic 3D
City Database based on a non-relational graph triple store.

In order to augment the tool in such a way, Jena JDBC, A SPARQL over JDBC driver
framework [32], was utilised for the proof of concept presented in this paper, with choos-
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Figure 1: CityGML 2.0 data transformation tool augmented to support Blazegraph™
as a data store back-end. In the depicted menu, connection to the semantic
database was established and the tool is ready to start importing the data. In
this augmented version of the Importer/Exporter tool [57], city model data will
be imported via executing SPARQL statements with OntoCityGML vocabulary
against the semantic data store, instead of SQL statements against a relational
database with predefined 3DCityDB schema, like in the original version. The
original functionality is preserved and relational database types can still be
used.

ing its Remote Endpoint driver connecting into a SPARQL Protocol compliant triple store
that exposes SPARQL query and SPARQL update endpoints. Adding the new driver al-
lowed augmentation of the tool and preservation of its original functionality. The majority
of the new features were added into two of the tool’s original code packages: impexp-
client and impexp-core. While modifying the first one allowed addition of components
enabling the selection of new database type, augmentation of the second component al-
lowed the tool to be capable of establishing a connection to a triple store via JDBC. This
required adding a new database backend adapter and incorporation of five new classes
into the foundation codebase. Namely, BlazegraphAdapter, GeometryConverterAdapter,
SchemaManagerAdapter, SQLAdapter and UtilAdapter classes had to be implemented, at
minimum, for the tool to be able to facilitate connectivity to a semantic triple store with
the new driver.
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As the Importer/Exporter tool was originally designed to work with relational databases
at a very high level, it was validating the CityGML models before instantiating model
members into Java objects, which were, in turn, persisted in a database by the means
of corresponding SQL statements. For the tool to be fit for purpose when used as a data
transformation tool with the Semantic 3D City Database, the last step had to be augmented
with the functionality to generate equivalent SPARQL statements for the respective Java
objects. Preserving current data structures leveraged many years of development spent
on query and storage optimisation at TUM while developing it and fine-tuning over that
time [57].

In order to produce a semantic twin of the 3D City Database representation for the Charlotte-
nburg-Wilmersdorf district of Berlin, the following classes of the org.citydb.citygml.importer.dat-
abase.content module had to be modified to work with SPARQL JDBC prepared state-
ments instead of SQL JDBC prepared statements: DBCityObject, DBBuilding, DBAd-
dress, DBAddressToBuilding, DBCityObjectGenericAttrib, DBSurfaceGeometry, DBAp-
pearance, DBAppearToSurfaceData, DBExternalReference, DBSurfaceData, DBTexIm-
age, DBTextureParam, DBThematicSurface. New methods generating SPARQL prepared
statements were added to each of these classes and covered by appropriate unit tests. The
existing code was augmented to fill in those statements with CityGML objects data when
the semantic backend is specified as a chosen option for the 3D City Database Importer/-
Exporter tool. As depicted in Figure 1, the modified tool is able to produce the Semantic
3D City Database Abox, using OntoCityGML as a Tbox. It also produces a semantic
“mirror twin” of the relational 3D City Database, with additional properties specific to
semantic knowledge bases. Those properties are described in more detail in the next sub-
section.

3.2 Relational Schema to Graph Mapping

The heart and soul of much mathematics consists of the fact that the “same” object can
be presented to us in different ways [44]. The present section elucidates this statement
while taking into consideration the results of data transformations, which are outcomes
of the augmented data transformation tool. The augmented Importer/Exporter is able
to produce the original database as well as the Semantic 3D City Database. Structural
isomorphism of the 3D City Database and its semantic twin, illustrated in Figure 2, shows
their equivalence.

There is one to one correspondence [6] between schemas of the proof of concept databases,
in terms of the number of schema objects as well as their names RDB∼ SDB. Both make
use of names defined in the CityGML 2.0 conceptual schema. The number of tables and
graphs is equal in both databases. Graph names are equivalent to table names, when
underscores are removed from table names. For each table and a graph with the corre-
sponding name, the number of columns in the table is equal to the number of edge names
in the graph. There exists an equivalent graph edge name in a graph with name equivalent
to a table name, for each table column name, when underscores are removed from table
names and column names. The number of rows in each table is equal to number of sets of
triples sharing the same subject in the graph with equivalent name. For each value of each
row of each table, there exists an equivalent graph vertex, in a graph with the name equiv-
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Figure 2: An example of structural isomorphism illustrating equivalence of the city model
representations within the original 3D City Database and its semantic twin.
Named graphs of addresses and buildings correspond to relational database ta-
bles with the same names. IRIs identifying entities correspond to table records
with unique and sequential IDs as primary keys of the original database. Ad-
dress to building binding occurs by linking data via their IRIs, instead of via
records containing appropriate foreign keys in the original binding table.

alent to that table name, which is an endpoint of a graph edge with a name equivalent to
a column name to which this value belongs in that table, when underscores are removed
from table names and column names. In other words, the above describes morphisms
f : RDB→ SDB and g : SDB→ RDB, where g is an inverse of f . The established isom-
porhism stays in accordance with the transformation approach described by Tim Berners
Lee as one of the ways of publishing data from relational databases as linked data [7].

Table 2: High level overview of building blocks of a dynamic city model representation as
well as their implementations within original 3D City Database and its semantic
twin (from left to right).

Building Block 3D City Database Semantic 3D City Database

Schema SQL database schema OntoCityGML Tbox
Features tables named graphs
Features’ Properties columns OntoCityGML predicates
Instance Representation rows same subject triple sets
Instance Data rows’ values of each column triples’ objects
Instance IDs sequential numbers URIs
Instance Relations numerical foreign keys URI subjects
Query Language SQL SPARQL

The open world assumption (OWA) in the semantic representation [5] is what makes it
different from the relational database representation with closed world assumption (CWA)
[54]. An analogy could be drawn to the 10 = 9.99999... equation. It is possible to say
much more about the world when one has the realm of real numbers at hand to describe
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it – as on the right side of the relation – than it is when one is left to do so with only
decimal numbers at hand – as on the left side of the relation. The same statement holds
when considering representations built on elements listed in Table 2.

The following example illustrates one of the potential consequences of CWA and OWA
when considering relational versus semantic 3D City Databases used to build the proof
of concept described in this paper. Both databases contain information concerning a
building identified by gml id BLDG_000300000007a403, which could be also found
in the original CityGML 2.0 representation of Charlottenburg-Wilmersdorf downloaded
from https://www.businesslocationcenter.de/en/economic-atlas/download-portal/ for the
purpose of building this proof of concept. Both databases also contain information about
an address, identified by the gml id UUID_76daf80a-2fef-443d-88bb-b9bc0c24fffb be-
longing to this building. While querying for information concerning the building and
its address in both databases, it is possible to find that this building is in Berlin at 36
Tauroggener Str. One can also find out that the building is bounded by a polygon spec-
ified by the following set of coordinates: {<384781.38838, 5820924.88493, 33.54>,
<384789.35344, 5820924.88493, 33.54>, <384789.35344, 5820938.34387, 36.13122>,
<384781.38838, 5820938.34387, 36.13122>} as well as that it has one roof specified by
another polygon with a slightly different set of coordinates, in both databases.

However, the relational database address record for the building contains NULL in place
of the country, whereas the semantic database contains a BLANK NODE as a vertex,
which is an endpoint of the country edge connected to the address of the building on the
other side. In the case of the relational database, under the CWA, this could be interpreted
as “The building with this address does not belong to any country”. In case of its semantic
twin and under the OWA, on the other hand, it is possible to interpret that as “It is not
known to which country the building with this address belongs to”.

This would matter if both databases were integrated into a bigger system, like TWA, and
turned into knowledge bases. For example, one could imagine a subsystem integrating
different information sources coming from a few neighbouring European countries in or-
der to find out the most suitable roof locations for solar panels, for instance. It is not hard
to imagine that some of those information sources would not contain any geospatial infor-
mation about the buildings, but would rather make possible retrieval of some information
for buildings by postal address. Geospatial search, as one of the features of the dynamic
geospatial knowledge graph in TWA, would allow retrieval of information concerning
buildings with one roof in a square area spanning those countries and compare this in-
formation with the one retrieved from the information sources containing no geospatial
information whatsoever.

It would be not possible to easily integrate those systems and make them interoperable
under the CWA. On the one hand, one would end up with the information containing the
one roof buildings in a few countries, specified by the coordinates of the square. On the
other hand, one would end up with buildings with either no country, under the CWA, or
unknown country, under the OWA. It would be easier to add the country information to
such buildings by narrowing down the geospatial search to the country level after that and
filling in the missing information under the OWA.

This way, it would be possible to say that “The building identified by gml id BLDG_00030-
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0000007a403 is in Germany” and integrate this information with other systems, which
do not contain any geospatial information for European buildings. However, under the
CWA, one would end up with two contradictory statements: “The building identified by
gml id BLDG_000300000007a403 is in Germany”, and “The building identified by gml
id BLDG_000300000007a403 does not belong to any country”. Contradictory statements
contain no information and, therefore, it is possible to say much more about the world
under the OWA. Adding new information onto the CWA system “The building with the
address identified by the gml id BLDG_000300000007a403 is in Germany” changes such
a system and invalidates previous inferences, whereas such a thing does not take place in
the OWA systems.

4 Semantic 3D City Data Store

Results from working on the OntoCityGML ontology and augmented data transformation
tool, described in previous sections, ensured the possibility of city model representations
compliant with W3C and OGC standards at the same time. In order to obtain this result,
promising when looked at from the point of view of sustainable digitalisation practices,
realised in a form of dynamic geospatial knowledge graph, Semantic 3D City Database
had to be created within a scalable and W3C compliant triple store as well. To keep the
architecture open to further collaborations and maximise potential of its reuse and innova-
tive modifications in the future, during the proof of concept stage of the database, research
presented here was focused on open source stores. From the scalability point of view, the
store must be capable of accommodating city data in a form of semantic triples. Further-
more, it must be possible to add more data without significantly reducing performance of
geospatial queries. In addition to that, the store must be capable of ensuring multidomain
interoperability by allowing city data to be linked with any other data in a semantic form
and be queried for such relationships. The following describes results of the research,
briefly summarised in Figure 3, as well as motivations of the final triple store technology
choice as a target solution for this proof of concept.

Considering Eclipse RDF4J, an open source framework for processing Resource Descrip-
tion Framework (RDF) data [19], as a triple store for the Semantic 3D City Database
was motivated mainly by its relative popularity as well as familiarity. It would allow im-
plementation of TWA data interoperability within a dynamic geospatial knowledge graph
without the need for data migration. At the moment, there are a few existing TWA compo-
nents which use it as a data store backend. The framework has modular architecture. It is
composed of a parser/writer API, model API, repository API and a storage and inference
layer (SAIL) API. Its repository API supports SPARQL 1.1 query and update language.
Different core database implementations are also supported, such as memory store, na-
tive store and elastic search store. On top of these core databases, the RDF4J API can
be extended with SPARQL Inferencing Notation (SPIN) rule based reasoning functional-
ities [37]. The RDF4J framework implements GeoSPARQL functions, but it fails almost
all of the GeoSPARQL benchmark tests [33]. The SAIL interface can be successfully
used for communication between the RDF4J framework and an Apache HBase database
in order to process petabytes of heterogeneous RDF data [55]. However, limited geospa-
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Figure 3: Triple stores taken under consideration while selecting the most suitable data
storage, providing scalable geospatial search functionality for the Semantic
3D City Database. Pros and cons of each solution are listed next to their logos.
Blazegraph™ was selected as the most promising one.

tial support as well as limited out of the box scalability motivated further research on the
triple store of choice for the semantic geospatial database storing city models.

Another open source SPARQL server project, Apache Jena Fuseki, was also considered
because of its relative popularity and familiarity (use of and interoperability with TWA
components). It has been used as a triple store backend for some of TWA components
as well. Users can run it as an operating system service, Java web application or a stan-
dalone server. The server follows the SPARQL 1.1 protocol to query and update RDF
data [4]. It also provides a graph store protocol [56]. A Fuseki SPARQL server eval-
uation test shows that it is too slow to be used in the production of software for inten-
sive use [34]. Apache Jena Fuseki supports a HTTP server component that conforms to
the GeoSPARQL standard [25]. A GeoSPARQL compliance benchmark test used thirty
benchmark requirements to prove that Jena Fuseki can handle geographical vector data
representation literals. The Jena Fuseki server supports top level spatial and topologi-
cal relation vocabulary components, as well as Resource Description Framework Schema
(RDFS) entailment [33]. Because geospatial search support has been set as an essential
requirement for the dynamic geospatial knowledge graph, the lack of it, as well as limited
scalability, motivated further research on the triple store of choice for the Semantic 3D
City Database proof of concept.

Although the spatiotemporal store Strabon, provided as an open source project by the
University of Athens, has never been used with TWA or any of its components before, it
caught initial attention during research on semantic data stores for the dynamic geospatial
knowledge graph as well. This was partially for the reasons discussed before; because it
uses familiar rdf4j backend as one of its components. Moreover, the store provides rich
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geospatial support and implementation of GeoSPARQL, stSPARQL, GML and WKT lit-
erals [40]. Its architecture is also based on using named graphs to separate data. Strabon
is known to show good performance on single machine and synthetic datasets [24]. The
novelty of the underlying stRDF model and stSPARQL query language consists of adding
temporal extensions to the semantic representations [42]. Although the mentioned query
language and model has not yet made it to the realm of W3C standards, from their authors’
perspective they provide a major advantage over pure GeoSPARQL. However, in the con-
text of TWA, a time varying knowledge graph was already considered during development
of its Parallel World Framework [21]. Within TWA, this approach will be explored fur-
ther instead, as it was conceptualised to address a much broader problem spectrum than
that. Strabon scales up to 500 million triples [42]. This is less than double the estimated
number of triples required to transform the entire Berlin CityGML 2.0 data available at
the moment. It would be hard to link other datasets with the city data and provide a suf-
ficiently rich multi-domain interoperability for TWA under those limits. Moreover, apart
from the limited scalability of the pure rdf4j backend, there are still a number of open
problems related to scalability and inferencing with stSPARQL and its underlying data
model [37]. Some of them are solved by using PostGIS in addition to rdf4j within the
system. However, Semantic 3D City Database is a proof of concept demonstrating the
possibility of utilising fully non relational data stores for geospatial representations, so
that they can be incorporated into dynamic geospatial knowledge graphs. Strabon also
appears less than production ready for larger deployments, due to its relatively rudimen-
tary documentation [58] when compared to other RDF stores. An additional point is a
lack of technical community forums which would allow users to find answers to com-
mon questions and help with resolving any potentially arising issues. Geospatial search
as a feature is also not mentioned in the currently available documentation or publications
concerning the store.

Blazegraph™ is an active open source project and a triple store which met the require-
ments listed at the beginning of this section. It is a W3C compliant semantic data store
released under a GPL-2.0 License [8]. Because of its compliance with standards, it proved
to be relatively easy to migrate other TWA data to this triple store as well, even if it had not
been used within the system before. The latest stable version, 2.5.1, was released on the
19th of March 2019. The latest version candidate, 2.6.1, was released on the 4th of Febru-
ary 2020. Blazegraph™ is in production use at Fortune 500 companies such as EMC,
Autodesk and Wikimedia Foundation’s Wikidata Query Service. Semantic transforma-
tion of Charlottenburg-Wilmersdorf CityGML 2.0 LOD2 data contains 20,570 buildings
and results in 24,244,610 triples materialised and stored in Blazegraph™ across multi-
ple named graphs in a single namespace. Blazegraph™ supports up to 50 billion edges
on a single machine and it seems to be capable of accommodating the whole Berlin city
data, which is split into 12 parts (Charlottenburg-Wilmersdorf being one part). Assum-
ing that each part contains between 20,000 and 25,000 buildings, there will be a need to
accommodate between 240,000 and 300,000 buildings in order to semantically represent
the whole of Berlin. Assuming uniform complexity of the buildings in other parts of the
city, it would result in between 282,873,427 and 353,591,784 semantic triples generated.
This is still quite far from reaching the single machine limit and shows the possibility of
integrating various additional layers of heterogeneous data to complement the city data
and achieve high levels of multi-domain data interoperability within a general knowledge
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graph, such as TWA.

Blazegraph™ supports geospatial search via SPARQL queries. Partitioning data into
namespaces allows for query optimisation by executing them on smaller portions of data,
potentially in parallel. Using named graphs for different parts of city objects (i.e. walls,
roofs, etc.) allows querying smaller graphs within namespaces independently. Informa-
tion resulting from such independent queries could be combined into information about
larger objects, as well as various interdependencies between such objects. The linked data
approach allows OntoCityGML buildings’ data to be combined with other semantic data,
either stored within one and the same namespace, or across named graphs in separate
namespaces. Federated queries are supported by Blazegraph™ too. Sale-out and High
Availability features are available in Enterprise editions of Blazegraph™, which also sup-
ports GPU query optimisation, amongst many other features. Transactions, very high
concurrency and very high aggregate IO rates are supported in all of its editions.

In conclusion, Blazegraph™ triple store has been used for this proof of concept because of
its scalability as well as geospatial search algorithms already implemented as a part of its
functionality. Enabling this functionality in Blazegraph™ required development of a cus-
tom vocabulary class as well as a datatype configuration properties file. Due to the variety
of the geometrical shape types found in the proof of concept data, it was not possible to
create such a configuration manually. Therefore, a functionality of automatically creating
such datatype configurations as well as corresponding vocabulary items was added to the
augmented TUM data transformation tool’s GeometryConverterAdapter class. Together
with a newly introduced BlazegraphConfigBuilder class, based on a thread safe single-
ton design pattern, the tool detects any new shape type not previously encountered in the
data and creates appropriate configurations based on its geometrical properties. Those
properties are also encoded in vocabulary item names to make it easier to break down the
stored data into underlying geometries. This way, for instance, it is possible to find out
that coordinates stored under the datatype ending with SOLID-3-15-15-15-15-15-15, as
the last part of the IRI, contain information about a cube. The first number – 3 – describes
dimensionality of the stored geometry type. The rest of the numbers say that the stored
data consists of 6 parts of such a cube and each piece describes a polygon in terms of 15/3
= 5 points encoded in a coordinate system. This algorithm allowed detection and building
of datatype configurations automatically for over 2000 different geometrical shape types
found in the Charlottenburg-Wilmersdorf LOD2 building data. Those were required to
fully complete and materialise the Semantic 3D City Database proof of concept, enabling
the possibility of dynamic geospatial knowledge graph components within TWA. Sample
live query results performed on the Charlottenburg-Wilmersburg data, with the Semantic
3D City Database already integrated into TWA, and particularly relevant to the city plan-
ning, are presented in the next section together with hardware requirements, estimates and
recommendations.

5 Hardware Requirements

Integration of the Semantic 3D City Database, populated with Charlottenburg-Wilmersdorf
LOD2 building data, by transforming the original CityGML 2.0 representation using the
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Table 3: City planning related questions answered by the live CKG subsystem of TWA.

Query Question No. of Elapsed
No. Solutions Time
1. Ask if a certain building function exists in the dataset. 1 2 ms.
2. Ask if a certain street name exists in the dataset. 1 219 ms.
3. Return all data about a building in a specified address. 39 193 ms.
4. Return all distinct generic attribute names found in the

dataset.
40 602 ms.

5. Return all distinct building function codes in the dataset. 167 155 ms.
6. Return all generic attribute names and their values found

in the dataset.
956 823 22118

ms.
7. Return specified generic attribute “Qualitaet” with all its

values found in the dataset and order solutions by the value
in descending order.

2 798 6048
ms.

8. Return all distinct street names found in the dataset. Count
the number of buildings in every street.

738 199 ms.

9. Return all distinct street names that have building function
code “1134” in it. Count how many times that function
occurred and order streets by the number of function oc-
currence in descending order.

7 155 ms.

10. Return all distinct street names that have building function
code “1444” in it. Count the ratio of the specified function
in each street. Order results by the ratio in descending
order.

89 480 ms.

augmented Importer/Exporter tool and OntoCityGML ontology, into the TWA, enabled
dynamic geospatial knowledge graph capabilities within the wider system. Cities Knowl-
edge Graph (CKG) is a TWA subsystem under active development and research [13] in
collaboration between the Cambridge Centre for Advanced Research and Education in
Singapore (CARES) [12] and the Singapore-ETH Centre (SEC) [14]. A decision support
system for Smart City planning, based on the CKG, is a showcase of making sustainable
urbanisation practices while being aided by the sustainable digitisation practices described
in the previous sections. Results of sample questions, important from the city planning
perspective, translated into the appropriate SPARQL queries executed against the CKG
are listed in the tables 3 and 4. The number of query solutions as well as elapsed time are
listed next to each query.

The system is deployed to a server with Microsoft Windows Server 2016 Standard as an
operating system and 1TB of storage space, 200GB RAM as well as 2 Intel® Xeon®
ES-2620 v3 @ 2.40GHz CPUs. Out of the total 200, 32GB of RAM is assigned solely
to the Blazegraph(™), deployed in Nano SPARQL Server mode. The current journal file
size used by it to store available city data is 6.13GB. System performance on the type of
queries illustrated in Tables 3 and 4 is satisfactory in a single user mode.

Following are the results of executing multiple geospatial search queries simultaneously
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Table 4: City planning questions answered by the live CKG subsystem of TWA. (continued
from Table 3)

Query Question No. of Elapsed
No. Solutions Time
11. Return all street names that have building function code

“1171” in it. Return other existing functions in those
streets. Count and order other functions by their occur-
rence in descending order.

66 415 ms.

12. Return the average height of each function code found in
the dataset and order functions by average height in de-
scending order.

167 172 ms.

13 Return all distinct street names found in the dataset. Count
average, minimum and maximum height of each street.
Order solutions by average height a descending order."

689 219 ms.

14. Return all distinct streets found in the dataset. Order so-
lutions by the number of buildings in the street and by the
average height in ascending order.

689 225 ms.

15. Return all distinct street names that have at least one of the
specified function codes. Order solutions by the number
of matched function codes in descending order and by the
average street height in ascending order.

71 338 ms.

16. Return all addresses of buildings with function code
“2921” found in the dataset. Order results by street name
and number in ascending order.

55 156 ms.

17. Return all addresses and envelope coordinates of buildings
with function code “2921” found in the dataset.

40 164 ms.

18. Return all building Ids and their function codes found
within a given boundary.

93 5073
ms.

19. Return function codes found within a given boundary.
Count function code occurrence and order functions by
their occurrence in descending order.

12 4938
ms.

20. Return a list of building function codes found within the
given boundary. Count the ratio of these functions in the
given boundary. Order results by ratio in descending order.

6 4152
ms.

on the CKG, using the same hardware. This incremental geospatial search concurrency
test follows the first few numbers of the Fibonacci Sequence, each multiplied by 10.

• 10 concurrent geospatial search queries completed in 611 ms, increasing overall
system CPU utilisation by 3% and memory utilisation by 0%. Queries returned
3913 city objects contained in variable square size areas in total.

• 20 concurrent geospatial search queries completed in 1617 ms, increasing overall
system CPU utilisation by 4% and memory utilisation by 0%. Queries returned
28653 city objects contained in variable square size areas in total.

17



• 30 concurrent geospatial search queries completed in 2771 ms, increasing overall
system CPU utilisation by 8% and memory utilisation by 0%. Queries returned
52196 city objects contained in variable square size areas in total.

• 50 concurrent geospatial search queries completed in 3959 ms, increasing overall
system CPU utilisation by 9% and memory utilisation by 0%. Queries returned
76689 city objects contained in variable square size areas in total.

• 80 concurrent geospatial search queries completed in 5766 ms, increasing overall
system CPU utilisation by 10% and memory utilisation by 0%. Queries returned
110318 city objects contained in variable square size areas in total.

• 130 concurrent geospatial search queries completed in 9274 ms, increasing overall
system CPU utilisation by 11% and memory utilisation by 0%. Queries returned
184496 city objects contained in variable square size areas in total.

• 210 concurrent geospatial search queries completed in 12292 ms, increasing overall
system CPU utilisation by 11% and memory utilisation by 0%. Queries returned
255711 city objects contained in variable square size areas in total.

Geospatial search queries were sent to the /citieskg/namespace/berlin/sparql endpoint in
the TWA as collections of HTTP GET requests, using Postman v8.1.0 [49] web API
testing tool, over the Internet. The proof of concept CKG, populated with Charlottenburg-
Wilmersdorf LOD2 building data and integrated into TWA, shows satisfactory results in
tests of concurrent execution of geospatial search queries as well, when looked at from
the point of view of expected workloads.

Recommendations for larger and more intensive workloads vary. For instance, Nguyen
and Kolbe [46] test graph comparison algorithms on city data using a machine running
SUSE Linux Enterprise Server 12 SP1 (64 bit) equipped with Intel® Xeon® CPU E5-
2667 v3 at 3.20GHz (16 CPUs + Hyper-threading), a PCIe Solid-state Drive Array (SSD)
and 1 TB of main memory. Whereas RDF GAS API, implemented in Blazegraph™,
seems not to be particularly heavy on memory and CPU requirements, but instead it em-
phasises the importance of the SSD technology to achieve close to 1 million traversed
edges per second on a MacBook Air [10]. Upon consultation, one of the market-leading
server hardware vendors recommended the following configuration for the CKG – at
least, as a starting point to a system able to store and query between 282,873,427 and
353,591,784 semantic triples generated in case of the whole Berlin and integrated within
TWA:

1. Frontend web server:

• 12 core / 2.9GHz CPU

• 64GB RAM

• 2x 300GB HDD

2. Virtualisation server for more intensive operations on geospatial data:

18



• 32 core / 2.3GHz CPU

• 256GB RAM

• 2 x 300GB HDD

3. Expandable Network Attached Storage system for VMs:

• 16TB usable, hot-swapable and expandable SSD storage.

6 Conclusions and future work

Applying sustainable digitisation practices in order to build scalable technological solu-
tions, based on standards and open source components, could be used to create intelligent
decision support systems. Architecture definition for one of them, in the form of CKG,
elaborated on in this paper, shows that incorporation of the Semantic 3D City Database
into TWA, enables dynamic geospatial knowledge graph capabilities within it and makes
it able to aid sustainable urbanisation practices and decision making processes.

Previous sections demonstrate how to build knowledge graphs capable of semantic rep-
resentation of three-dimensional geometrical city objects and, in this way, provide com-
prehensive insights based on multi-domain data interoperability. A refined OntoCityGML
ontology, presented in Section 2, is an example of bringing a well-defined and specified
international standard, namely CityGML 2.0, into the world of semantic web and making
it compliant with W3C recommendations and standards at the same time. The demonstra-
tion of using such ontology with augmented data transformation tools proved suitability of
the ontology to serve as a schema for the semantic twin of the 3D City Database, designed
and optimised at TUM for many years. CKG leverages this past work by keeping data in
named graphs organised within namespaces. Advantages of the new semantic representa-
tion arising from the implied OWA have been shown when adding intelligence to a bare
database is of interest as well. The last sections show the possibility of materialisation
of such a database within a scalable triple store with geospatial search capabilities. The
store also adheres to W3C standards as well as making it possible to integrate geospatial
data within a general knowledge graph, such as TWA, and provide multi domain data in-
teroperability. Such systems could be hardware demanding. Sample tests of a live CKG
single user and concurrent queries gauge existing TWA capabilities with regard to that,
allowing better understanding of how to evolve this aspect of the system further. Such
recommendations conclude the last section of this paper.

TWA, at its core, is an agent-based system where intelligent autonomous agents operate
on the knowledge graph. A system of agents specific to the CKG has not been considered
during its proof of concept as presented in this paper. In order to do that, further strength-
ening of the OntoCityGML would be required, mainly consisting of cross-checking more
CityGML 2.0 concepts not found in the sample city data used in this proof of concept.
This would allow to add more data into the CKG and enable it to serve as a base for even
broader insights with such data linked to other datasets, already available in TWA. At the
same time, further extensions of the TUM data transformation tools would be needed as
well. Higher level geospatial search functionalities currently implemented Blazegraph™,
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namely inCircle and inRectangle [9], failed in some of the tests conducted using different
coordinate reference systems. Therefore CKG makes use of only customFields geospatial
search feature at the moment. Resolving issues with those higher level types of search
would add more capabilities and enable implementation of certain functionalities going
forward as well. Making use of the Parallel World Framework, already implemented in
TWA, with the city data would allow users to simulate, analyse, dynamically visualise
and evaluate various urbanisation scenarios and enable the possibility for cross domain
sustainability impact analyses.

One can not forget that TWA, as an information system, also occupies some physical space
in a data centre – a group of buildings used to house computer systems and their associated
components. Improving the sustainability of such buildings has come into focus for many
big technology companies in recent years. Very often they look into making use of more
efficient cooling as well as utilisation of renewable energy sources, such as installation of
solar panels on their roofs, as well as multi-tenancy or maximisation of optimal computing
resource utilisation, eliminating idle but energy-consuming times. When looked at from
this angle, the presented proof of concept may be regarded as a brick on paving the road
towards self-sustainable knowledge graphs.
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List of abbreviations

EIP Eco-Industrial Park
HTTP Hypertext Transfer Protocol
URL Uniform Resource Locator
URI Uniform Resource Identifier
IRI Internationalized Resource Identifier
JPS J-Park Simulator
JSON JavaScript Object Notation
OWL Web Ontology Language
RDF Resource Description Framework
TUM Technische Universität München
SQL Structured Query Language
SPARQL SPARQL Protocol and RDF Query Language
W3C World Wide Web Consortium
XML Extensible Markup Language
GML Geography Markup Language
JDBC Java Database Connectivity
TWA The World Avatar
OWA Open World Assumption
CWA Closed World Assumption
DL Description Logic
OBDA Ontology-Based Data Access
OGC Open Geospatial Consortium
WKT Well-Known Text
CKG Cities Knowledge Graph
CARES Cambridge Centre for Advanced Research and Education in Singapore
SEC Singapore-ETH Centre
LOD2 Level Of Detail 2
CIM City Information Model
DT Digital Twin
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A OntoCityGML knowledge-base expressed in a DLs syn-
tax

Concept inclusion (CI) axioms:

CityModelTypevAbstractFeatureCollectionType
CityModelTypev∀_GenericApplicationPropertyOfCityModel.anyType
CityModelTypev∃appearanceMember.AppearanceType
CityModelTypev∀boundedBy.EnvelopeType
CityModelTypevCityGMLCoreModule
CityModelTypev∀cityObjectMember.AbstractCityObjectType

>v∀cityObjectMember.AbstractFeatureType
BuildingTypevAbstractBuildingType

AbstractBuildingTypevBuildingModule
BuildingModulevCityGMLModule

CityGMLModulevcitygml
citygml v>

>v∀Building.BuildingType
BuildingTypev∀_GenericApplicationPropertyOfBuilding.anyType

>v∀_BoundarySurface.AbstractBoundarySurfaceType
>v∀CeilingSurface.CeilingSurfaceType
>v∀ClosureSurface.ClosureSurfaceType
>v∀FloorSurface.FloorSurfaceType
>v∀GroundSurface.GroundSurfaceType
>v∀InteriorWallSurface.InteriorWallSurfaceType

OuterCeilingSurfaceTypevAbstractBoundarySurfaceType
AbstractBoundarySurfaceTypevBuildingModule

OuterFloorSurfaceTypevAbstractBoundarySurfaceType
>v∀RoofSurface.RoofSurfaceType
>v∀WallSurface.WallSurfaceType

MultiSurfaceTypevGeometricAggregateType
GeometricAggregateTypevGeometryType

MultiSurfaceTypevGeometryType
GeometryTypevcitygml

PolygonTypevSurfaceType
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Concept inclusion (CI) axioms (continue):

SurfaceTypevGeometricPrimitiveType
LinearRingTypevGeometryType

CompositeSurfaceTypevCurveType
CurveTypevGeometricPrimitiveType

GeometricPrimitiveTypevGeometryType
CompositeSurfaceTypevGeometricComplexType

GeometricComplexTypevGeometryType
GeometricComplexTypevTransportationProperty
TransportationPropertyvProperty

Propertyv>
SolidTypevGeometricPrimitiveType
SolidTypev∃exterior.SurfaceType

AddressTypevAbstractFeatureType
AbstractFeatureTypevcitygml
AbstractFeatureTypev∀name.Datatypestring

>v∀Address.AddressType
externalReferenceTypevCityGMLCoreProperty
CityGMLCorePropertyvProperty
externalReferenceTypev∃externalObject.ExternalObjectReferenceType

AbstractGenericAttributeTypevCityGMLCoreProperty
StringAttributeTypevAbstractGenericAttributeType

>v∀stringAttribute.StringAttributeType
IntAttributeTypevAbstractGenericAttributeType

>v∀intAttribute.IntAttributeType
DoubleAttributeTypevAbstractGenericAttributeType

>v∀doubleAttribute.DoubleAttributeType
AbstractGenericAttributeTypevCityGMLCoreProperty

DateAttributeTypevAbstractGenericAttributeType
>v∀dateAttribute.DateAttributeType
>v∀BuildingPart.BuildingPartType

BuildingFunctionTypevBuildingProperty
BuildingPropertyvProperty

RoofTypeTypevBuildingProperty
MimeTypeTypevAppearanceProperty

AppearancePropertyvProperty
>v∀TexCoordList.TexCoordListType

WrapModeTypevAppearanceProperty
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Concept inclusion (CI) axioms (continue):

ParameterizedTextureTypevTextureType
ParameterizedTextureTypev∀_GenericApplicationPropertyOfParameterizedTexture.anyType
ParameterizedTextureTypev∀target.TextureAssociationType

TextureTypevAbstractSurfaceDataType
AbstractSurfaceDataTypevAbstractFeatureType
AbstractSurfaceDataTypevAppearanceModule

AppearanceModulevCityGMLModule
AppearanceTypevAppearanceModule
AppearanceTypev∀_GenericApplicationPropertyOfAppearance.anyType
AppearanceTypev∀surfaceDataMember.AbstractSurfaceDataType

>v∀X3DMaterial.X3DMaterialType
X3DMaterialTypevAbstractSurfaceDataType
X3DMaterialTypev∀_GenericApplicationPropertyOfX3DMaterial.anyType
X3DMaterialTypev∀ambientIntensity.doubleBetween0and1
X3DMaterialTypev∀diffuseColor.Color
X3DMaterialTypev∀emissiveColor.Color
X3DMaterialTypev∀shininess.doubleBetween0and1
X3DMaterialTypev∀specularColor.Color
X3DMaterialTypev∀transparency.doubleBetween0and1
∃hasGeometry.>vGeometryType
∃hasEnvelope.>vEnvelopeType
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Role inclusion (RI) axioms:

_FeatureCollectionv>×>
CityModelv_FeatureCollection

featureMember v>×>
cityObjectMember vfeatureMember

_Sitev_CityObject
_AbstractBuildingv_Site

Buildingv_AbstractBuilding
_Featurev>×>

_CityObject v_Feature
_BoundarySurfacev_CityObject

CeilingSurfacev_BoundarySurface
ClosureSurfacev_BoundarySurface

FloorSurfacev_BoundarySurface
GroundSurfacev_BoundarySurface

InteriorWallSurfacev_BoundarySurface
RoofSurfacev_BoundarySurface
WallSurfacev_BoundarySurface

interior v>×>
exterior v>×>
Addressv_Feature

externalObject v>×>
externalReferencev>×>

xalAddressv>×>
stringAttributev_genericAttribute

_genericAttributev_GenericApplicationPropertyOfCityObject
_GenericApplicationPropertyOfCityObject vGenericApplicationPropertyRelation

GenericApplicationPropertyRelationv>×>
doubleAttributev_genericAttribute

dateAttributev_genericAttribute
intAttributev_genericAttribute

lod2Solid vlod2Relation
lod2Relationv>×>
BuildingPart v_AbstractBuilding

_AbstractBuildingv_Site
BuildingPart v_Site

measuredHeight v>×>
roofTypev>×>
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Role inclusion (RI) axioms (continue):

consistsOfBuildingPart v>×>
mimeTypev>×>

TexCoordList v_TextureParameterization
_TextureParameterizationv_GML

_GMLv>×>
specularColor v>×>

imageURI vURI
borderColor v>×>

wrapModev>×>
texWrapModevwrapMode

target v>×>
ambientIntensityv>×>

surfaceDataMember v>×>
textureCoordinatesv>×>

Appearancev>×>
diffuseColor v>×>

emissiveColor v>×>
shininessv>×>

transparencyv>×>
X3DMaterialv_SurfaceData
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B Sample of unit test cases - covering CityModelType
term in OntoCityGML

<ontodebug:testCase>
<rdf:Description>

<ontodebug:axiom rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">CityModelType SubClassOf
AbstractSiteType</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">false</ontodebug:type>

</rdf:Description>
</ontodebug:testCase>
<ontodebug:testCase>

<rdf:Description>
<ontodebug:axiom rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">CityModelType SubClassOf
AbstractFeatureCollectionType</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">true</ontodebug:type>

</rdf:Description>
</ontodebug:testCase>
<ontodebug:testCase>

<rdf:Description>
<ontodebug:axiom rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">CityModelType SubClassOf
CityGMLCoreModule</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">true</ontodebug:type>

</rdf:Description>
</ontodebug:testCase>
<ontodebug:testCase>

<rdf:Description>
<ontodebug:axiom rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">CityModelType SubClassOf
CityGMLModule</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">true</ontodebug:type>

</rdf:Description>
</ontodebug:testCase>
<ontodebug:testCase>

<rdf:Description>
<ontodebug:axiom rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">CityModelType SubClassOf
AbstractCityObjectType</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">false</ontodebug:type>
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</rdf:Description>
</ontodebug:testCase>
<ontodebug:testCase>

<rdf:Description>
<ontodebug:axiom rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">CityModelType SubClassOf
AbstractFeatureType</ontodebug:axiom>

<ontodebug:type rdf:datatype="http://www.w3.org/2001/
XMLSchema#boolean">true</ontodebug:type>

</rdf:Description>
</ontodebug:testCase>
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