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Abstract

In this paper, we develop a set of software agents which improve a knowledge-graph
containing thermodynamic data of chemical species by means of quantum chemistry
calculations and error-cancelling balanced reactions. The knowledge-graph repre-
sents species-associated information by making use of the principles of linked data
as employed in the Semantic Web, where concepts correspond to vertices and re-
lationships between the concepts correspond to edges of the graph. We implement
this representation by means of ontologies, which formalise the de�nition of concepts
and their relationships, as a critical step to achieve interoperability between heteroge-
neous data formats as well as software. The agents, which conduct quantum chem-
istry calculations and derive estimates of standard enthalpies of formation, update
the knowledge-graph with newly obtained results, improving data values and adding
nodes and connections between them. A key distinguishing feature of our approach
is that it extends an existing, general-purpose knowledge-graph, called J-Park Simu-
lator (theworldavatar.com), and its eco-system of autonomous agents, thus enabling
seamless cross-domain applications in wider contexts. To this end, we demonstrate
how quantum calculations can directly affect the atmospheric dispersion of pollutants
in an industrial emissions use-case.

Highlights

� Autonomous agents for quantum chemistry and enthalpy of formation calcula-
tions are developed.

� Enthalpies of formation are derived using error-cancelling balanced reactions.

� The agents are integrated, exploiting knowledge-graph-enabled interoperabil-
ity.

� A multi-scale, cross-domain industrial pollution use-case is considered.

� Quantum calculations are directly seen to affect atmospheric pollutant disper-
sion.

1



Contents

1 Introduction 3

2 The World Avatar 4

3 Design and implementation 6

3.1 The chemical knowledge-graph . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Agent template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Error-cancelling balanced reaction agent . . . . . . . . . . . . . . . . . . 9

3.4 Quantum calculation agent . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Thermodata agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7 Monitoring agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Use-case: Atmospheric pollutant dispersion 16

5 Conclusions 17

References 19

2



1 Introduction

Optimising industrial operations is critical for mitigating their environmental impact, that
is, maximising energy ef�ciency and minimising pollution and waste of resources. In or-
der for this to be most effective, systems must not be considered in isolation, but rather
connected to one another as part of a network. Furthermore, implementing this requires
models of all systems involved. Such reasoning naturally leads to the ideas of Indus-
try 4.0 [29] and the Internet of Things (IoT) [2], where digital twins of real objects can
communicate with each other via the internet.

In case one or more of the models in the network involve chemistry in some form, chem-
ical models need to be built, using chemical data about species and reactions. Numerous
databases exist for such purposes, containing various levels of detail. For instance, some
of the most widely used are Reaxys [22], PubChem [26], and the CAS Registry [1], each
of which include a wealth of chemical and physical substance information on in excess
of 108 compounds. Amongst the largest is the Chemical Universe Database GDB-17 [41]
with more than 1011 structures, though it contains SMILES strings [46] only. At a smaller
scale, PrIMe [17] is largely focussed on combustion, and includes not only a warehouse
of experimental and computational data, but also an associated set of tools for a variety
of tasks related to model development. At the most detailed end of the spectrum, and
even more focussed on thermodynamic properties, are collections that include quantum
chemistry calculations. For example, Ramakrishnan et al. [40] have conducted quantum
calculations for a GDB-17 subset of more than 105 structures. NIST's CCCBDB [24]
provides extensive experimental and quantum calculation data on the thermochemistry
of 1968 small gas-phase species. Active Thermochemical Tables (ATcT) [42] use a sta-
tistical approach to synthesise accurate and consistent thermodata from experiments and
computations for 1617 species. Highly accurate thermochemistry has been calculated for
219 molecules relevant to combustion [21].

With so much data available from so many different sources, inconsistencies are ubiqui-
tous, both in terms of naming of species and in terms of data values of thermodynamic,
transport, and kinetic properties of species and reactions (seee.g.[28]). Combined with
the complexity of fuel combustion models, with hundreds or even thousands of species
and reactions, it is clear that automation is inevitable. A number of attempts have been
made to automate the generation of kinetic mechanisms, and in particular the genera-
tion of thermodynamic data. The Reaction Mechanism Generator (RMG) [20] constructs
species and reactions based on a known set of rules, which also includes estimation of
thermodynamic, kinetic, and transport properties. Building upon RMG, Keçeli et al. [25]
have developed a Predictive Automated Computational Thermochemistry (PACT) soft-
ware package which automatically generates thermodynamic data from quantum calcu-
lations for species involved in the combustion of an arbitrary hydrocarbon fuel. Li et al.
[31] have implemented a self-evolving thermochemistry machine which uses a convolu-
tional neural network to predict species formation enthalpies. The network is trained on a
database of density functional theory (DFT) calculations and estimates its own prediction
errors, launches new DFT calculations whenever the error exceeds a given threshold, and
includes the new results into its training database, thus continuously and automatically
improving its predictions.
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As the above examples show, automating speci�c, well-de�ned tasks can be achieved
through tailor-made code. However, the challenge becomes much harder as soon as
one considers more general contexts, where, in order to make substantial progress with
automation, a more fundamental, systematic approach is required. One such approach
utilises knowledge-graphs, which represent information by making use of the principles
of Linked Data [3, 5] as employed in the Semantic Web [4], where concepts correspond
to vertices and relationships between concepts correspond to edges of the graph. This
representation is implemented by means of ontologies, which formalise the de�nition of
concepts and their relationships through collections of subject-predicate-object triples.
The power of knowledge-graphs at a large scale has become abundantly clear in vari-
ous applications over the last few years [16, 36]. In the �eld of chemistry, it has been
recognised that subject-predicate-object representations of chemical data are of value, in
particular for automation [43], with PubChemRDF [19] being one of many examples.

In previous work on knowledge-graphs in the chemistry domain [34], we have developed
an ontology for quantum chemistry calculations based on Chemical Markup Language
(CML [39]), called OntoCompChem [27]. We have furthermore developed an ontology
for chemical reaction mechanisms, called OntoKin [13]. In order to connect these two
worlds, linking reaction mechanisms and quantum chemistry [14], we have introduced an
ontology for unique chemical species, called OntoSpecies, thus integrating the union of
all these concepts into a single knowledge-graph.

The purpose of the present paper is to employ a knowledge-graph approach, speci�-
cally with newly-developed software agents, to improve thermodynamic data for chem-
ical species, and apply it to a multi-scale, multi-domain combustion example. Whilst
this process can also be automated by means of other methods, our approach achieves
this in a fashion that, by design, guarantees interoperability between data and software,
and thus allows seamless integration with complex cross-domain applications. As such,
the knowledge-graph approach renders automated thermochemistry extensible beyond its
original scope.

The paper is structured as follows. Section 2 explains the context, namely the general-
purpose knowledge-graph within which the present work is placed. In section 3, we out-
line a generic agent design and describe a number of thermochemical agents and how they
are integrated. In section 4, we provide a cross-domain use-case of atmospheric dispersion
of industrial pollution. Conclusions are drawn in section 5.

2 The World Avatar

The term `World Avatar' intends to capture the idea of representing every aspect of the
real world in a digital `mirror' world. This is essentially an extension of the Digital Twin
concept, where, taking an example from Industry 4.0, a device or a unit operation in an
industrial process has a corresponding virtual representation. Lifting the restriction to
industrial devices, thus considering virtualisation of any abstract concept or process, is a
logical continuation, similar to extending the Internet of Things to the Internet of Services
and beyond.
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Figure 1: Current design of the J-Park Simulator (JPS) as an implementation of a World
Avatar. Agents are part of the knowledge-graph and operate on it.

The J-Park Simulator (JPS)1 [11] is an implementation of the World Avatar concept. Fig-
ure 1 illustrates its main underlying principles. At the heart of the JPS lies a knowledge-
graph that is intended to be general-purpose and all-encompassing. As a representation of
data, the key distinguishing feature of a knowledge-graph is that individual items of infor-
mation are linked to each other. In the JPS, this Linked Data is achieved through the use
of Internationalised Resource Identi�ers (IRIs), essentially generalised web-addresses, in
line with the Semantic Web. The concepts in the knowledge-graph and the links be-
tween them are implemented by means of ontologies for various domains. These include
process engineering (OntoCAPE [32]), Eco-Industrial Parks (EIPs) (OntoEIP [47–49]),
electrical power systems (OntoPowerSys [10]), and 3D buildings and landscapes (On-
toCityGML [11]). In the chemistry domain, we have developed ontologies for the sub-
domains of quantum chemistry (OntoCompChem [27]), species (OntoSpecies [14]), and
kinetic reaction mechanisms (OntoKin [13]). In addition, various subgraphs of the Linked
Open Data (LOD) Cloud2 are also connected to the JPS knowledge-graph, in particular
DBpedia3 [30].

Beyond mere data representation, the JPS contains an eco-system of software agents that
act autonomously and operate on the knowledge-graph, constantly updating it, as also
illustrated in Fig. 1. Crucially, the agents themselves are part of the knowledge-graph,
governed by the OntoAgent [50] ontology. As agents are continuously operating on the
knowledge-graph, it evolves in time. In particular, we have developed agents for automatic
agent discovery and composition [50],i.e. agents that create new, composite agents for
more complex tasks. And further, in order to facilitate the usage of agents and simplify
identi�cation of an agent suitable for a speci�c task in an agent-rich environment, with

1http://www.theworldavatar.com/
2https://lod-cloud.net/
3https://wiki.dbpedia.org/
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an abundance of services available, we have established an agent market place based on
block-chain technology and Smart Contracts [51].

The JPS started with a focus on virtualising industrial operations within the Jurong Island
EIP in Singapore [37, 38, 48], but has since expanded well beyond this original scope. It
has been employed in a variety of cross-domain applications that require interoperability
between heterogeneous software and data formats, such as optimal site selection of nu-
clear power plants [9] and industrial pollution prediction of ships and power plants [11].
In addition, scenario planning is possible using the Parallel World Framework [12], which
generically allows asking what-if questions and exploring alternatives in complex multi-
domain applications.

3 Design and implementation

In this section, we describe the agents that form the basis of the present paper. We give
some theoretical background of what they do and outline their architecture as well as some
key features of their implementation. We also explain how they are integrated,i.e. how
they work with each other and the knowledge-graph, and thus how they are part of the
wider World Avatar agent eco-system as described in the previous section.

3.1 The chemical knowledge-graph

In order to provide the necessary context of what environment the agents are operating in,
we brie�y recall here what chemical entities are represented in the knowledge-graph and
how. As mentioned above, we have previously created three ontologies for a number of
chemical concepts, populated triple-stores with collections of instances, and established
links between them:

The OntoKin [13] ontology covers chemical reaction mechanisms – collections of chemi-
cal elements, species, and reactions together with their associated thermodynamic, kinetic,
and transport data. A web-interface is available4 that allows up- and download, and basic
queries [15]. In addition, we have developed an API that allows programmatic up- and
downloading, and import of, export of, and conversion between widely used mechanism
�le formats.

The OntoCompChem [27] ontology is concerned with representing quantum calculations.
Whilst the ontology itself is not intrinsically speci�c to a particular piece of software, the
parser and API we have written for �le import is designed for Gaussian 09/16 calculations.
A web-interface is also available5. Representable quantities include empirical formula,
InChI and SMILES strings, molecular geometry, level of theory and basis set, rotational
and vibrational frequencies, rotational constants, and electronic energies.

Thirdly, we have introduced the OntoSpecies ontology [14], primarily for the purpose of
identifying chemical species uniquely. The ontology captures basic physical and chemical

4http://www.theworldavatar.com/ontokin/
5http://www.theworldavatar.com/molhub/
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information about species, such as elemental composition, connectivity between atoms,
molecular geometry, and in particular standard enthalpy of formation. In itself, On-
toSpecies is not meant to and does not need to store much information – its main value lies
in providing links via IRIs, connecting quantum calculations with each other as well as
species in mechanisms, which are labelled using arbitrary strings. These IRI links are used
to disambiguate arbitrary chemical labels, distinguishing different species with identical
labels as well as recognising identical species with different labels, thus circumventing
naming inconsistencies.

The agents described in the following critically depend upon this infrastructure, with its
links between relevant concepts, being in place.

3.2 Agent template

Figure 2: Elements of a generic agent (red triangle) and how they interact with the
knowledge-graph (green box). An asynchronous watcher (grey diamond) man-
ages running an executable (grey diamond), with all associated input and out-
put �les (blue boxes).

When developing agents for various tasks, one quickly arrives at the realisation that many
design features are entirely generic,i.e. independent of the speci�c task. Such design
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Figure 3: UML activity diagram of a generic agent which enables computational jobs
(running of an executable “X”) to be executed asynchronously on an HPC
system upon HTTP request, with inputs obtained from the knowledge-graph
(shaded in yellow) and outputs written back into the knowledge-graph (shaded
in magenta).

features include most importantly listening and responding to HTTP requests, submission
and monitoring of jobs to a resource manager (e.g. SLURM) on an HPC system, and
managing input and output �les associated to a job as well as their transfer between the
hardware platforms involved. We have thus developed a template that is, within reason,
applicable to `any' (Linux) executable.

Figure 2 illustrates the main components of this generic agent and how it interacts with
the knowledge-graph. The agent (the triangle shaded in red) consists of two executable el-
ements: An asynchronous watching process and a generic executable. The asynchronous
watcher handles HTTP requests and responses, through which other agents can request
jobs. Secondly, it manages input and output �les, which are being stored in separate
folders associated to each job. And thirdly, it takes care of submitting jobs to a resource
manager tool on an HPC system as well as monitoring any jobs that are running. It does
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this using a status �le associated to each job in its corresponding folder. This design is
robust to unexpected interruptions such as power-cuts or reboots by a system administra-
tor. Once the hardware and the agent are restarted, the latter will continue its operations
unaffected.

When the agent receives job request via HTTP, inputs to the agent are passed to it in
Semantic Web standard JavaScript Object Notation (JSON) format. These inputs can
include `direct' inputs (from other agents) such as parameters specifying the task to be
executed, but more typically will take the form of IRIs, pointing to relevant entities that are
represented in the knowledge-graph. Also retrieved from knowledge-graph are parameters
that are speci�c to the HPC hardware on which the executable that constitutes the agent
is to be executed, such as the number of CPU-cores and amount of memory to be used, as
well as a SLURM �le which is used for submission to the resource manager.

As an aside, we note that this design implies that only a single instance of this agent needs
to be deployed on a particular piece of hardware, and also in general, if the volume of
incoming requests is suf�ciently small.

Figure 3 shows a Uni�ed Modelling Language (UML) activity diagram, illustrating the
step-by-step activities of the components. Handling HTTP requests and monitoring run-
ning jobs are conducted asynchronously in parallel, as any events can happen at any time,
in any order. Most agents will retrieve inputs from the knowledge-graph (shaded in yel-
low) and write outputs back to the knowledge-graph (shaded in magenta). Which inputs
and outputs exactly are exchanged with the knowledge-graph is of course not generic, but
depends on the executable in question. Another critical activity relates to job monitoring:
In practice, there are many things that can go wrong in the submission and execution of
a computational job. It is therefore important to have robust procedures in place to deal
with any unexpected failure in a controlled fashion, which in particular involves escalat-
ing useful error messages back to the calling entity, and ultimately a human, if the cause
of the problem cannot be recti�ed by means of an algorithm.

3.3 Error-cancelling balanced reaction agent

The purpose of this agent is two-fold. Given a set of chemical species, it can produce
estimates of standard enthalpy of formation, and in addition, within the given set, identify
individual species as either consistent or inconsistent. The agent operates in two steps.
The �rst step computes the standard enthalpy of formation of a species by using error-
cancelling balanced reactions (EBRs) [6]. At the centre of this method lies Hess' law,
which states that the total enthalpy change of a reaction,DH �

r is equal to the sum of all
individual enthalpy changes, independent of the reaction pathway:

DH �
r = å

s2SP

n(s)DH �
f (s) � å

s2SR

n(s)DH �
f (s) (1)

Here,SP andSR denote the sets of products and reactants,n(s) the stoichiometric coef�-
cients, andDH �

f (s) the standard enthalpy of formation of speciess. The reaction enthalpy
can be estimated from the results of quantum chemistry calculations via

DH �
r = å

s2SP

n(s)E� (s) � å
s2SR

n(s)E� (s); (2)
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whereE� (s) is the zero-point corrected ground state energy given by quantum chemical
calculations. If the enthalpy of reaction is computed as above, then the standard enthalpy
of formation of a given target species,sT can be estimated by rearranging Hess' law:

DH �
f (sT) =

1
n(sT) å

s2SP

n(s)DH �
f (s) �

1
n(sT)

�
DH �

r + å
s2SRnf sTg

n(s)DH �
f (s)

�
(3)

However, it is known that estimating enthalpies using quantum chemical calculations re-
sults in systematic errors [45]. To circumvent this, error-cancelling balanced reactions
(EBRs), are employed, which make use of structural and electronic similarities between
the species in a reaction to allow cancellation of the systematic errors. Examples of types
of EBRs include isogyric reactions, which conserve the number of spin states during
the reaction, and isodesmic reactions, which conserves the number of each type of bond
during the reaction. Using EBRs enables improved estimates of standard enthalpies of
formation of species from quantum chemical calculations.

The second step performed by the agent is a heuristic cross-validation. The algorithm is
described in detail elsewhere [6], and so only a brief summary is provided here. A set
of species is given to the agent, each with a reference value for the standard enthalpy
of formation. These reference values may be derived experimentally or from high-level
computational methods. Next, one species in the set is selected, in a leave-one-out cross-
validation method. For the selected species, a user-de�ned number of EBRs are generated.
Each EBR can then be used to estimate the standard enthalpy of formation of the species
by using Eqn. (3), an estimate ofDH �

r derived from quantum calculations, and the refer-
ence enthalpies for all other species in the EBR. For each EBR, the estimated standard
enthalpy of formation generated for the species is then compared to the reference value,
and an error is computed:

er(r;sT) =
�
�DH �

f;reference(sT) � DH �
f (r;sT)

�
� (4)

The EBR is then accepted if this error is below a de�ned upper limit,emax
r , and rejected

otherwise. If all EBRs for a given species are rejected, the species is �agged as potentially
inconsistent. This process is repeated for all of the species in the reference set to sort them
as consistent or potentially inconsistent.

The set of consistent and potentially inconsistent species is then re�ned by selecting the
potentially inconsistent species with the highest average error and generating a new set
of EBRs for it using only species that were deemed consistent in the initial sorting. The
errors are then recomputed for this new set of EBRs. If the average error for the new set
of EBRs,ēnew

r , is lower than the error for the initial set of EBRs,ēinitial
r , then it is assumed

that the original inconsistency for this species is due to another species that appeared in
the original EBRs, and the selected species is added to the consistent set. The process
is repeated for each potentially inconsistent species in descending order of average error
until the set of inconsistent species does not change. At this point, convergence is reached,
and the set of inconsistent species is reported as needing an improved estimate of the
standard enthalpy of formation. It is noted that, depending on the size of the species set
and other parameters, executing the algorithm can be computationally expensive.

The design and implementation of this EBR agent follows that of the generic template
outlined in subsection 3.2, as illustrated in Figs. 2 and 3. Jobs are requested via HTTP.
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The JSON-formatted inputs, that are passed as arguments as part of the HTTP request,
include a list of pairs of IRIs. Each pair consists of an IRI to a unique species instance in
OntoSpecies, and an IRI to a quantum calculation in OntoCompChem. This list de�nes
the species set that the EBR algorithm is applied to. All associated information, like ref-
erence values for the standard enthalpies of formation for each species, can be retrieved
from the knowledge-graph using the provided IRIs. Other JSON inputs include for ex-
ample the type of EBR to be used (isogyric, isodesmic,etc.), and algorithm termination
criteria (maximum numbers of iterations of various loops). Once all required information
has been assembled, input �les for the core EBR code are generated and the job is sub-
mitted to the resource manager on an HPC platform. In case of successful termination,
the resulting new estimates of standard enthalpies of formation as well as the �nding of
whether or not a species is being deemed consistent or not are stored in the knowledge-
graph (as part of the relevant instances in OntoSpecies).

3.4 Quantum calculation agent

The purpose of this agent is to conduct a quantum chemistry calculation using the Gaus-
sian [18] software. Quantum chemical calculations are used to derive the molecular
properties of a chemical system from �rst principles by solving the time-independent
Schrödinger Equation. Solving this equation for a molecule,i.e. for a system consisting
of several electrons and nuclei, yields the wavefunction of the system, which provides
information about the quantum state of the system, such as the positions of nuclei and
electrons and the energy associated with their particular con�guration. The Schrödinger
Equation can be written as

ĤY(~r;~R) = EY(~r;~R); (5)

whereĤ is the Hamiltonian operator,Y is the wavefunction of the system,~r and~Rare the
positions of electrons and nuclei, andE is the eigenvalue, representing the total energy of
the system. The Hamiltonian operator can be written as

Ĥ = T̂n + T̂e+ V̂n-n+ V̂n-e+ V̂e-e; (6)

where,T̂n and T̂e operators represent the kinetic energy of the nuclei and electrons re-
spectively, andV̂n-n, V̂n-e andV̂e-e represent the potential energy of the nucleus-nucleus,
nucleus-electron, and electron-electron interactions, respectively.

Typically, the Born-Oppenheimer approximation is invoked, which neglects the coupling
between the electrons and nuclei of a system. This results in the electronic Schrödinger
equation, which is what modern computational chemistry packages like Gaussian solve to
derive molecular properties:

ĤeY(~r;~R)e = EeY(~r;~R)e (7)

In this notation,Y(~r;~R)e is the electronic wavefunction,Ee are the eigenvalues represent-
ing the electronic energies of the system, andĤe is the electronic Hamiltonian:

Ĥe = T̂e+ V̂n-e+ V̂e-e (8)
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For chemical systems larger than simple hydrogen-like atoms, the Schrödinger equation
can only be solved numerically. Various methods to do so are implemented in modern
computational chemistry software such as Gaussian. One very popular method is Density
Functional Theory (DFT), which derives the properties of a chemical system by manipu-
lating the electronic Schrödinger equation and solving for the energy as a function of the
electron densityr (~r) of the system [52]. This results in the equation [23]

E[r (~r)] = Ts[r (~r)] + Vn-e[r (~r)] + J[r (~r)] + Exc[r (~r)]; (9)

whereTs[r (~r)] is the kinetic energy of the non-interacting model system andJ[r (~r)] is
the Coulomb energy functional, both of which are known exactly. Similarly,Vn-e[r (~r)] is
the nucleus-electron attraction potential functional whose form can be derived given the
Born-Oppenheimer approximation. The �nal term,Exc is termed the exchange-correlation
functional, and accounts for the difference in kinetic and potential energies between the
real interacting-electron system, and the approximate non-interacting electron system.

DFT is a very popular approach, as the electron density is only a function of the spa-
tial coordinates, making it a computationally ef�cient way to derive molecular properties
through quantum chemistry, and is hence adopted in this work. Nevertheless, such meth-
ods still require substantial computational resources, and do typically need to be run on
HPC systems.

The quantum calculation agent automates the solutions of the above equations via Gaus-
sian. Similar to the enthalpy of formation agent, the implementation of this agent follows
exactly the design outlined in subsection 3.2 (Figs. 2 and 3),i.e. calculations are re-
quested via HTTP and are conducted on an HPC system, with key inputs and outputs
retrieved from and written back into the knowledge-graph. JSON inputs passed to this
agent include in particular an IRI of a unique species instance in OntoSpecies. Species
de�nition information required for a quantum calculation such as charge, spin multiplic-
ity, and geometry of the molecule are retrieved from the knowledge-graph by means of
SPARQL queries. Having obtained all necessary inputs from the knowledge-graph, a
plain-text Gaussian input �le is then populated. Job submission and monitoring are man-
aged generically by an asynchronous watching process. In case of successful completion,
the result of the quantum calculation, namely the log �le output by Gaussian, is converted
to OWL and a new instance of the G16 class, as de�ned in the OntoCompChem ontology,
is created in the knowledge-graph.

3.5 Thermodata agent

The purpose of this agent is to calculate three thermodynamic quantities for a chosen
chemical species as functions of temperatureT, namely the heat capacity at constant
pressureCp, enthalpyH, and entropyS [14]. These thermodynamic quantities are de-
rived by means of the molecular partition function,q = qTqVqRqE, whose components
consist of the translational (qT), vibrational (qV), rotational (qR), and electronic (qE) parti-
tion functions derived from standard statistical mechanics expressions and the rigid-rotor-
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harmonic-oscillator (RRHO) approximation [33]:

qT =
� mkBT

2p} 2

� 3
2

V (10)

qV =
NV

Õ
i= 1

exp
�

� hni

2kBT

�

1� exp
�

� hni

kBT

� (11)

qR =
(8p3IxIyIz)1=2(kBT)3=2

sp } 3
(12)

qE � gE
0 (13)

Here,h denotes Planck's constant,kB is the Boltzmann constant,m is the mass,V is the
volume,ni is the magnitude of thei th frequency,Ik is the moment of inertia about thekth

axis, s is the symmetry number, andgE
0 is the ground state electronic degeneracy. The

necessary frequencies, rotations, and ground state energies to compute the partition func-
tions are obtained from the results of quantum chemistry calculations. Once the molecular
partition function is constructed, the molar heat capacity, entropy, and enthalpy can be de-
rived from the following expressions:

Cp = Cv + NAkB with Cv = NAkBT ¶2(T lnq)
¶T2 (14)

S= NAkB
� ¶(T lnq)

¶T � lnNA + 1
�

(15)

DH =
RT

0 CpdT = NAkBT2

q
¶q
¶T + NAkBT (16)

Here,NA denotes Avogadro's number. Note that Eqn. (16) provides instead of an abso-
lute value only an enthalpy difference. In order to obtain meaningful absolute values,
it is therefore necessary to provide a reference value for the enthalpy of formation at a
known reference temperature, usually 298:15 K. In practice, the functional dependence of
the three thermodynamic quantities on temperature is captured by �tting the widely-used
NASA polynomials to the thermochemical data extracted from the partition functions,
with seven coef�cientsc1; : : : ;c7 for each polynomial, for two contiguous temperature
ranges:

Cp

R
= c1 + c2T + c3T2 + c4T3 + c5T4 (17)

H
R

= c1T +
c2

2
T2 +

c3

3
T3 +

c4

4
T4 +

c5

5
T5 + c6 (18)

S
R

= c1 lnT + c2T +
c3

2
T2 +

c4

3
T3 +

c5

4
T4 + c7 (19)

The calculations involved for the thermodata agent are computationally very light and thus
do not require submission to an HPC system. Instead, they can be conducted directly by
whichever webservice responds to the HTTP request. Therefore, this agent can follow a
simpler design than the one outlined in subsection 3.2. When it receives an HTTP request,
the JSON arguments need to contain an IRI of a quantum calculation in the knowledge-
graph from which thermodata is to be derived, as well as an IRI to a unique species
instance in order to retrieve a reference value for the enthalpy of formation.
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3.6 Integration

Figure 4: UML sequence diagram illustrating the interaction of the agents and how they
act on the knowledge-graph (inputs to agents from knowledge-graph shaded in
yellow, outputs back into the knowledge-graph shaded in magenta).

Figure 4 sketches in a UML sequence diagram how the three agents described above
are being integrated,i.e. how they communicate with each other and how they interact
with the knowledge-graph. The basic idea is a three-step process: Firstly, the EBR agent
commences the process by retrieving previously obtained quantum calculation results and
enthalpies of formation for a given set of species from the knowledge-graph via IRIs,
and then detecting inconsistent species amongst the given set using cross-validation. Sec-
ondly, for each of those species that have been identi�ed as inconsistent, the EBR agent
requests quantum calculations from the quantum calculation agent at a higher level of the-
ory than currently available in the knowledge-graph. Lastly, for any quantum calculation
job that has �nished successfully, the thermodata agent derives the corresponding thermo-
data. This involves retrieving a consistent estimate of the standard enthalpy of formation
from the knowledge-graph, as populated by the EBR agent. As the �nal step, the thermo-
data agent then updates a chemical mechanism if it contains a species that is linked to the
unique species whose thermodata was just updated.

As mentioned in subsection 3.1, we note that this sequence of three agents reading from
and writing to the knowledge-graph is made possible by and relies upon IRI links being
present in the knowledge-graph between quantum calculations (OntoCompChem), unique
species (OntoSpecies), and species as they are part of chemical mechanisms (OntoKin).

3.7 Monitoring agent

In order to monitor the health status of the knowledge-graph, and to provide a high-level
overview of how it evolves over time, we have created a web-page displaying various
metrics6. Figure 5 displays screen-shots of the relevant parts of that web-page. The page

6http://theworldavatar.com/graph/statisticsAction/
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