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Abstract

In this paper, we demonstrate through examples how the concept of a Semantic
Web based knowledge-graph can be used to integrate combustion modelling into
cross-disciplinary applications and in particular how inconsistency issues in chem-
ical mechanisms can be addressed. We discuss the advantages of linked data that
forms the essence of a knowledge-graph, and how we implement this in a number of
interconnected ontologies, specifically in the context of combustion chemistry. Cent-
ral to this is OntoKin, an ontology we have developed for capturing both the content
and the semantics of chemical kinetic reaction mechanisms. OntoKin is used to rep-
resent example mechanisms from the literature in a knowledge-graph which itself is
part of an existing, more general knowledge-graph and eco-system of autonomous
software agents that are acting on it. We describe a web interface which allows users
to interact with the system, upload and compare existing mechanisms, and query spe-
cies and reactions across the knowledge-graph. The utility of the knowledge-graph
approach is demonstrated for two use-cases – querying across multiple mechanisms
from the literature, and modelling the atmospheric dispersion of pollutants emitted
by ships. As part of the query use-case, our ontological tools are applied to identify
variations in the rate of a hydrogen abstraction reaction from methane as represented
by ten different mechanisms.
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Highlights

• A Semantic Web-based knowledge-graph is built to link mechanisms, species
and quantum calculations.

• A web-interface is developed to enable interaction with the knowledge-graph.

• Mechanisms can be uploaded, and species and reactions can be compared.

• Interoperability of models and data is demonstrated through a cross-domain
application.
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1 Introduction

Modelling combustion in devices as part of relevant applications such as pollution pre-
diction necessarily covers multiple domains. As an example, consider the prediction of
emissions from ships, which involves at the very least a fuel model, and internal combus-
tion engine model, data on wind direction and speed, an atmospheric dispersion model,
and terrain and building models. In practice, this requires compatibility of data obtained
from various sources in different formats and seamless interaction between various pieces
of software – in short, interoperability.

Chemical kinetic fuel models, i.e. reaction mechanisms, form an essential part of any sim-
ulation of emissions from a combustion device, but may not always be readily available
for a particular fuel of interest and thus may need to be created in some way from existing
databases. The latter can be achieved for example either through automated mechanism
generation tools (e.g. [11]), or through assembly of subsets of species and reactions from
(possibly multiple) previously published mechanisms.

When trying to assemble a mechanism by combining collections of species and reac-
tions from multiple sources, one encounters two well-known classes of consistency prob-
lems [9, 21]. The first one relates to unique identification: What should be one and
the same species may have been given different names or labels in models originat-
ing from different sources. And vice versa, species that ought to be distinct may have
been given identical labels in different mechanisms. The second problem relates to data-
inconsistency: The same species or reaction from different sources may have been as-
signed different thermodynamic or kinetic parameter values, respectively, with variations
at times well beyond reported uncertainties.

The two, at first sight perhaps seemingly unrelated, challenges of interoperability and
consistency have in common that they can be both addressed at the same time using ideas
from the Semantic Web [3]. The Semantic Web offers the ability to connect previously
isolated pieces of data, associate meaning to them, and represent knowledge extracted
from them. It is this collection of entities and the connections between them that defines
the knowledge-graph. Autonomous software agents [16] can then navigate this graph to
manipulate it and interact with human and machine users.

A natural way to implement a knowledge-graph is by means of ontologies [14] – collec-
tions of entities and relationships between them. There have been several attempts to build
a Chemical Semantic Web [15] using chemical ontologies [34] representing elements and
substances to meet an increasing interest to generate knowledge from chemical data and
to facilitate data sharing. A number of ontologies have been developed to capture and
represent the semantics and knowledge of chemicals and chemical interactions with dif-
ferent levels of granularity. OntoCAPE (Ontology for Computer Aided Process Engineer-
ing) [27] was developed as a formal ontology for modelling chemical processes, includ-
ing the concepts (classes) of elements, species, and reactions. In addition, a number of
cross-domain ontologies that cover aspects of chemical modelling have been developed.
ChEBI [6] is an ontology created for representing concepts and relations belonging to
chemistry and biology. PubChemRDF [10] represents structures and metadata of chem-
ical substances and compounds. In addition to chemical semantic resources, there are ini-
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tiatives that have led to well-established chemical databases (PubChem [19], PrIMe [9],
and Reaxys (https://www.reaxys.com), to name but a few).

The J-Park Simulator (JPS, http://www.theworldavatar.com) is an implementation
of a universal knowledge-graph that uses semantic representation to harness the reasoning
and inferencing power of ontologies to perform cross-domain simulations.

The purpose of this paper is to present a proof of principle of how the concept of a
knowledge-graph can be used to address both the problem of interoperability in cross-
domain applications involving combustion and the problem of naming and data inconsist-
encies in chemical reaction mechanisms. We aim to achieve this through two examples.
In the first one, we apply ontological tools we have developed to query across multiple
mechanisms from the literature, and find inconsistencies in the rate of a hydrogen abstrac-
tion reaction from methane as represented by ten different mechanisms. In the second
example, we integrate kinetic fuel models in the form of mechanisms with an internal
combustion engine model, real-time weather and ship location data, and an atmospheric
pollutant dispersion model to simulate emissions from ships.

2 A knowledge-graph approach

2.1 The World Avatar

The J-Park Simulator (JPS) is an automation-centric implementation of a World Avatar
as a decentralised privacy-aware extendable system that supports data-driven decision
making via the use of data and models that can be publicly available or privately owned
and that are represented and linked using a knowledge-graph (Fig. 1). While respecting
the accessibility restrictions put in place, the approach allows the navigation of automated
intelligent software agents through relevant information objects that have different levels
of accessibility to generate, store and analyse data, and enables the interoperability of data
and models across multiple domains.

Linked Data [4] is the state-of-the-art approach for generating the Web of data with se-
mantics. JPS provides structure to data and semantics using a knowledge-graph built upon
the principles of Linked Data using ontologies. This allows the representation of data en-
compassing both empirically observed results, and calculated output, to record the state of
a system and involved models (both physics and data-based) to characterize the system as
a function of its state and other model parameters. JPS facilitates automation of tasks via
an eco-system of computational and representational agents (of various types [7], featur-
ing behaviours [13] including simple, composite, sequential and parallel) which operate
on the knowledge-graph. The OntoAgent ontology [42] has the logical infrastructure and
coverage in terms of concepts and properties for the codification of agents.

JPS has been readily applied to many aspects of Industry 4.0 [28] due to the codification of
operational semantics of models and data. An example of this is the development of pro-
cess optimising solutions for the Eco-Industrial Park (EIP) on Jurong Island in Singapore.
An EIP is comprised mainly of product manufacturers and service providers collaborat-
ing to address issues related to CO2 footprint and particulate emission, and recover and
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Figure 1: The J-Park Simulator (JPS) as an implementation of a World Avatar
knowledge-graph, including autonomous software agents that act upon it.

reuse of waste materials and heat to achieve environmental and economic benefit [25].
An EIP may involve recovered waste-heat supply to district heating, material exchanges,
energy systems, and wastewater treatment networks, which can be modelled at different
levels such as unit operations, processes, plants, and networks as well as optimised for
improved performance [17, 29].

A number of ontologies have been developed for the JPS which seamlessly connect with
the relevant branches of OntoCAPE [24], including OntoEIP [41], designed for resource
and transportation networks, and chemical process plants, an EIP energy system onto-
logy [38], built for a decision-making system integrating data from heterogeneous sources,
and a biodiesel plant ontology [40], built for simulating and optimising biodiesel produc-
tion.

The work described in this paper is positioned within this context. It addresses the needs
of JPS by developing an ontology to represent chemical mechanisms and integrate the
corresponding data into its knowledge-graph. This supports the automation of processes
within JPS by enabling intelligent agents to query and manipulate the knowledge-graph,
and thus to search and retrieve mechanisms for a given task.
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2.2 OntoKin, OntoCompChem, and OntoSpecies

OntoKin [8] is a chemical ontology specialised for representing and managing chemical
kinetic reaction mechanisms. OntoKin includes semantics of chemical data in the rep-
resentation of reaction mechanisms using Description Logic (DL). This offers advantages
such as interoperability between chemical kinetic systems, agents’ ability to comprehend
chemical mechanisms automatically, the capability to perform complex semantic quer-
ies on the mechanisms in the Web environment, and easy detection of thermodynamic,
transport and reaction data inconsistencies across mechanisms.

OntoCompChem [20] is an ontology for quantum chemistry calculations. It is an ex-
tension of the Gainesville Core [35] ontology and CompChem [30]. The goal of Onto-
CompChem is to add DL-based semantics of chemical data to computational chemistry
calculations. This enables interoperability between quantum chemistry software, auto-
mated agents to understand such calculations, and reduced consumption of computational
resources via the reuse of already performed calculations.

OntoSpecies is an ontology designed to capture both generic and domain-specific inform-
ation about species, such as empirical formula, molecular weight and standard enthalpy
of formation. The ontology focuses on the linking of quantum chemistry calculations
represented in OntoCompChem with reaction mechanisms codified in OntoKin. Due to
its generic structure, the ontology can be used to map existing databases of species. The
ontology is suitable for harvesting and curating species data to develop high-quality re-
sources of species.
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Figure 2: Selected concepts, properties, and relations demonstrating links between the
OntoKin, OntoSpecies, and OntoCompChem ontologies.

Figure 2 illustrates the three ontologies with a small subset of their concepts, data prop-
erties, and relations which are building blocks of the knowledge-graph. For OntoKin,
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the figure shows the Mechanism, Species and Thermo Model concepts. The ontological
model of the Mechanism concept consists of data and metadata of a mechanism. The
Species concept includes data properties and relations of a chemical species. The Thermo
Model concept defines the structure of thermodynamic models required for a species. The
hasQuantumCalculationIRI data property represents an IRI (Internationalised Resource
Identifier) which connects the thermodynamic model to computational chemistry calcula-
tions of a species. The hasUniqueSpeciesIRI data property represents an IRI which con-
nects a species in a mechanism to its corresponding representation in OntoSpecies. The
OntoKin ontology is available here: http://www.theworldavatar.com/ontology/
ontokin/OntoKin.owl.

Figure 2 depicts the G16, Geometry Optimisation, Molecule and Atom concepts of On-
toCompChem. The G16 concept is an ontological model for the representation of elec-
tronic structure calculations, while Geometry Optimisation represents the molecular geo-
metry of both stable minima and transition state species. The hasCoordinates object prop-
erty is used for the codification of the 3D geometry of a molecule. The hasUniqueSpe-
ciesIRI data property links computational chemistry calculations of a species to its cor-
responding representation in OntoSpecies by means of an IRI. The OntoCompChem on-
tology is available here: http://theworldavatar.com/ontology/ontocompchem/
ontocompchem.owl.

Figure 2 includes the Species, Empirical Formula, Element Number and Element con-
cepts of OntoSpecies. The Species concept is designed to model a real-world species.
Element defines the ontological structure to describe a chemical element or an atom,
whereas Element Number establishes a link between a chemical element and its quant-
ity within a species. The data properties that belong to OntoSpecies are dc:identifier,
which codifies the unique identifier of a species, and skos:altLabel, which codifies al-
ternative names. Adopting best practices in ontology development, these properties are
reused from Dublin Core (dc) [37] and Simple Knowledge Organisation System (skos)
[26], respectively. This modelling choice separates the names of a species from its iden-
tity. As a result, a species which has multiple names can still be recognised uniquely via
its identifier (this approach is also taken for example by the CAS Registry and PrIMe [9]).
OntoSpecies thus addresses the species naming issues mentioned in the introduction, in-
cluding isomers etc., via enforcing a unique entry for each real-world species. The Onto-
Species ontology is available here: http://www.theworldavatar.com/ontology/
ontospecies/OntoSpecies.owl.

2.3 Populating the knowledge-graph

For this paper, the OntoKin knowledge-graph is populated by integrating the ontological
representation of 50 arbitrarily chosen publicly available mechanisms from the literature.
The largest mechanism contains more than 2,800 species and 18,000 reactions, whereas
the smallest one contains 14 species and 33 reactions, resulting in a total of over 16 million
subject-predicate-object triples when deployed in an RDF4J triple-store.

The agent that creates instances in the knowledge-graph when a mechanism is uploaded
relies on a conversion agent to convert between CHEMKIN [18] mechanism files and
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OWL (Web Ontology Language) files. The conversion agent supports the transformation
of mechanisms in both directions between CHEMKIN and OWL, which is also used to
prove that the generated OWL files faithfully preserve the source data. The agent uses
the OWL API (https://github.com/owlcs/owlapi), a Semantic Web tool for cre-
ating ontologies, in the generation of OWL files. A knowledge-graph population agent
integrates the mechanisms with the wider JPS knowledge-graph.

3 Results and Discussion

This section introduces two use-cases to show how the OntoKin ontology and mechanism-
integrated JPS knowledge-graph can be applied: Querying across mechanisms and the
atmospheric dispersion of pollutants emitted by ships.

3.1 Querying across mechanisms

OntoKin has been developed to allow any user to upload chemical mechanisms to the
JPS knowledge-graph, and to query the knowledge-graph to retrieve and compare species
and reaction data. A web-based User Interface (UI) to demonstrate this is available at the
following link: http://theworldavatar.com/ontokin. A screen-shot of the UI is
shown in Fig. 3.

The OntoKin system consists of three main components – the UI, a business logic layer
and the underlying JPS knowledge-graph. The UI allows uploading mechanisms in CHE-
MKIN format. The business logic layer includes a CHEMKIN to OWL conversion agent,
an OWL file consistency checking agent, an OWL file uploading component and a query
component. The conversion agent can assess the validity of a CHEMKIN mechanism. It
is necessary to upload at least the kinetic mechanism and the thermodynamic data files.
Transport data and surface chemistry files are optional. If user-provided files represent a
complete mechanism, the converter proceeds with the conversion and reports success or
failure. In case of success, a consistency check is performed using the HermiT reasoner.
If the OWL file passes the consistency check, it is uploaded to the JPS knowledge-graph.

The UI allows users to select from a list of predefined queries (see Fig. 3). The UI trans-
lates the user input into a SPARQL (SPARQL Protocol and RDF Query Language) query
that is used to search the knowledge-graph. The results are displayed as charts or tables in
the UI. The queries predefined in the system will allow identifying the mechanisms con-
taining a species of interest, as well as comparing the thermodynamic data of a species
and rate coefficients of a reaction across mechanisms.

An example of how to use the UI and the mechanisms in the knowledge-graph is shown in
Fig. 4, which compares the heat capacity of benzene across a selection of mechanisms in
the knowledge-graph [1, 2, 5, 22, 31, 32, 36, 39]. We note that in this case, the UI allows
us to retrieve the information from the knowledge-graph even though benzene appears
under three different names: C6H6 [1, 22, 31, 36, 39], A1 [2, 32], and A1-C6H6 [5]. We
observe, as is well-known, that the thermodynamic data used for benzene varies across
the literature.
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Figure 3: Screen-shot of the web-based OntoKin user interface showing available quer-
ies.

Furthermore, the UI allows querying the rate parameters of a reaction of interest. Figure 5
shows pre-exponential factors and reaction rates as a function of temperature for a hy-
drogen abstraction reaction from methane as reported by [1, 2, 5, 12, 22, 31–33, 36, 39].
Temperature exponents and activation energies are also available via the UI but are not
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Figure 4: Screen-shot comparing heat capacity at constant pressure for benzene appear-
ing in three different names across mechanisms.

shown here. As before, we find variations in the reported rate parameters.

We emphasise that the selection of mechanisms for this study is entirely arbitrary, as one
of the goals of this paper is to demonstrate the suitability of the UI to identify and explore
the information available in the knowledge-graph.

3.2 Atmospheric dispersion of pollutants emitted by ships

In Singapore, the Green Port Programme (GPP), which is part of the Maritime Singa-
pore Green Initiative (MSGI), had come into effect on 1 January 2020 to encourage
ocean-going vessels anchoring at the Port of Singapore through the implementation of
an incentive-driven model to reduce emissions for achieving environmental sustainabil-
ity [23]. The GPP reduces the port or harbour dues by 25% if ships use Liquefied Natural
Gas (LNG) as a marine fuel and meet the Energy Efficiency Design Index (EEDI) defined
by the International Maritime Organisation (IMO). This indicates that the GPP does not
make it mandatory to use a specific fuel. Though there is an allowed upper limit (≤0.50%
m/m) on the amount of sulphur content in clean fuels used in such vessels, emissions of
sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and
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Figure 5: Screen-shots comparing pre-exponential factors and Arrhenius rates of the re-
action CH4 + OH→ CH3 + H2O across mechanisms.

particulate matter PM2.5 and PM10 from each ship can be arbitrary.

Predicting the dispersion of emissions from ships involves heterogeneous data, models
and tools from different domains. Interoperability and how it can be achieved in applic-
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Figure 6: Knowledge-graph based interoperability allows cross-domain integration of,
in this example, chemical fuel models, internal combustion engine simulation,
live weather and ship data, geometry of buildings, and atmospheric pollutant
dispersion simulation.

ations involving multiple domains is illustrated in Fig. 6, which shows a cross-domain use-
case from JPS (http://www.theworldavatar.com/JPS/?lat=52.076&lon=4.31&
zoom=14.5&tilt=0.0&rotation=0.6). As shown in the figure, within JPS the SRM
Engine Suite1, which is a software developed to evaluate the performance of and emis-
sions from internal combustion engines, simulates the exhaust emissions from a ship’s
diesel engine. ADMS, the Atmospheric Dispersion Modelling System2, simulates the
dispersion of pollutants emitted from each point source. ADMS uses real-time weather
data extracted from the Web and added to the JPS knowledge-graph by agents. In the
simulations, SRM uses reaction mechanisms retrieved automatically by an agent from the
knowledge-graph via SPARQL queries using IRIs of the mechanisms. The response from
the knowledge-graph is the corresponding mechanism in RDF, which is converted to a
form that is processable by the SRM. In this use-case, we use several ontologies includ-
ing OntoKin and OntoCAPE to enable interoperability between software from different

1https://cmclinnovations.com/products/srm
2https://cerc.co.uk/environmental-software.html
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Figure 7: Screen-shot of dispersion of pollutants, as emitted by ships (black dots), in the
atmosphere over the Marina Bay in Singapore, shown as a concentration map,
with selected buildings.

domains. The atmospheric dispersion of the emissions is visualised in JPS using Google
Maps (Fig. 7).

4 Conclusions

In this paper we have demonstrated how a knowledge-graph approach can be used to
address naming and data inconsistency problems in chemical kinetics and achieve inter-
operability allowing to describe complex combustion-derived air-pollution scenarios. We
showed two use-cases. In the first one, we used OntoKin, an ontological model which
captures the semantics of chemical kinetic reaction mechanisms as they are used in com-
bustion, to represent a collection of mechanisms from the literature and thus integrate
them into the knowledge-graph of the J-Park Simulator. We applied the ontological tools
we have developed to query across multiple mechanisms, and identified variations in ther-
modynamic data as well as reaction rates. The tools provide a first step towards facilitat-
ing querying and comparing mechanisms via the Semantic Web. In the second use-case,
we integrated a kinetic fuel model with an internal combustion engine model, real-time
weather and ship location data, and an atmospheric pollutant dispersion model to simu-
late emissions from ships, thus establishing interoperability between a number of software
agents and heterogeneous data sources. In the future, the amount of data in the knowledge-
graph will be scaled up, including links to other types of data sources and identification of
the highest quality thermodynamic and kinetic data, and more advanced tools for human
and machine-interaction will be developed in the form of more intelligent agents acting
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on the knowledge-graph.
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