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Abstract

A joint moment projection method (MPM) and maximum entropy (ME) approach
for treating the soot population balance equations (PBEs) is developed and presented
in this work. MPM is used to solve the PBEs and generate moments that are sup-
plied to ME as a post-processing technique to reconstruct the soot particle size dis-
tribution (PSD). The particle size range required by ME for PSD reconstruction is
determined based on the weighted particles generated in MPM. The performance of
the joint MPM-ME approach is first evaluated by solving a set of simplified PBEs
on MatLab, then it is implemented into a Stochastic Reactor Model (SRM) engine
code to simulate the formation and oxidation of soot particles in a single-cylinder
direct injection diesel engine. Results suggest that the MPM-ME approach has the
advantages of ease of implementation, high accuracy and low computational cost. It
enables a detailed analysis on the soot formation and oxidation processes in diesel
engines. Complete information on the soot PSD can be provided with little CPU cost
induced.
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Highlights:

• An efficient numerical approach for soot simulation in diesel engines is devel-
oped.

• This new approach is accurate, easy to implement and computationally cheap.

• It is based on an advanced method of moments to treat the detailed soot model.

• It enables a detailed analysis in soot formation in diesel engines at low CPU
cost.
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1 Introduction

Diesel engine is of critical importance to transportation and power generation owing to its
high thermal efficiency and low fuel consumption [1, 7, 8, 35, 47]. It is expected to remain
as a major power source in the next few decades. However, the existence of locally high
equivalence ratios together with high temperature zones inside the engine cylinder lead to
the formation of substantial amounts of soot particles, which are found to be major causes
of several environmental and health problems [11, 13, 21, 25, 26, 39, 43]. Therefore,
the worldwide regulations on soot emissions from diesel engines are becoming more and
more strigient, which limits the viability of diesel engines. In order to reduce the soot
emissions and achieve cleaner combustion, modelling soot formation and oxidation in
diesel engines is seen to have increasing importance.

The literatures [5, 23, 63] on simulations of soot formation and oxidation in diesel en-
gines are largely based on simplified empirical soot models, most of which belong to the
two-step model [18, 19] and its variants [41, 51]. The soot formation is modeled to be
linked directly to the fuel concentrations using lumped reactions with usually very high
activation energy [41]. The oxidation of soot particles is often described using the Nagle
and Strickland-Constable oxidation model [38]. These empirical soot models have advan-
tages of ease of implementation and low computational costs but having the drawbacks of
a poor representation of the physical and chemical sooting processes. Since the detailed
soot particle dynamics is neglected, limited soot formation and oxidation details can be
provided and these models often suffer from a narrow range of applicability.

The formation of soot is a rather sophisticated process including both gas phase chemistry
and particle dynamics depending on a wide range of parameters [12, 15, 20, 40, 48, 59,
60]. Starting from the formation of polycyclic aromatic hydrocarbons (PAHs) due to fuel
pyrolysis and oxidation, these PAHs collide with each other to form the first primary soot
particles [49]. Once the particles are formed, their population may evolve through the col-
lision and sticking which occur amongst soot particles. They may also grow or decrease
in size due to surface reactions with gaseous molecules. Up to nowadays, numerous soot
models have been proposed to describe the detailed soot formation and oxidation pro-
cesses such as the spherical model [2, 4], surface volume model [36] and primary particle
model [28]. Different soot models focus on different aspects of the soot formation process
and give rise to different complexity. Nevertheless, all these soot models can be described
by using the so-called population balance equations (PBEs) [44] which are, in mathemat-
ics, a series of partial differential equations that are very complex to solve. Kraft and
co-workers [14, 34, 52] have adopted a stochastic method to treat the soot PBEs in inter-
nal combustion engines. The stochastic method [3, 24, 42] is intuitive and accurate. It
allows for the direct calculation of the soot particle size distribution (PSD) characterizing
particles by multiple properties. The simulations have been proven to converge to the
deterministic solution of the PBEs. However, the coupling between the soot models and
the gas-phase chemistry within the framework of the stochastic method is not trivial. The
simulations are prohibitively expensive and limited to single molecules [61].

The method of moments (MOM) is a promising approach for simulating soot formation
in diesel engines owing to its low computational cost and ease of implementation. Instead
of solving the particle PBEs directly, it transforms the PBEs into moment equations and
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solves for just the first few lower order moments, thus reducing the computational cost
significantly. However, the application of MOM for the simulations of soot formation
in diesel engines has been limited in two aspects. On the one hand, the soot moment
equations are usually unclosed. The realistic collision kernels lead to the presence of
fractional-order moments in the moment equations which are not directly solved for and
have to be properly estimated [16, 29–31, 58]. An even more challenging closure problem
arises from the soot oxidation process where the number of the smallest soot particles is
required to evaluate the soot boundary flux term [32, 37, 54]. On the other hand, the
low computational cost of MOM comes at the expense of limited information on the soot
particles that can be provided [10]. Since the detailed soot PSD has been transformed into
moments, only integral quantities such as the total soot number and mean particle size can
be generated by MOM.

Up to date, numerous moment methods have been proposed for the handling of the mo-
ment closure problems. Among them, the moment projection method (MPM) [56, 57] is
attractive for its robustness and high accuracy. In MPM, the PSD is approximated by a
set of weighted particles with one particle size fixed at the smallest size to evaluate the
boundary flux term due to oxidation. The performance of MPM has been tested exten-
sively and it has shown to be very accurate for all particle processes including oxidation.
However, like the traditional MOM, MPM can only be used to generate integral particle
quantities. To overcome this limitation, several continuous kernel function based mo-
ment methods have been proposed [10, 27, 32]. In the finite-size domain complete set
of trial functions method of moments (FCMOM) [46], a series of Legendre polynomi-
als are adopted to estimate the unclosed moment source terms and approximate the PSD.
Since limited numbers of polynomials can be determined, FCMOM cannot guarantee the
positivity of the approximated PSD. This problem is avoided in the extended quadrature
method of moments (EQMOM) [62] by representing the PSD with a set of non-negative
kernel density functions such as gamma function or beta function. EQMOM has shown
to be able to achieve high accuracy in terms of the reconstructed PSD. However, it re-
quires prior information on the shape of the PSD to select a suitable kernel function and
the resulting moment equations are usually so complex that it is not trivial to be directly
implemented for soot simulation in diesel engines. Instead of solving directly for the
PSD, a possible approach belongs to one of those moment reversion algorithms such as
the Maximum Entropy (ME) technique [33, 55]. In ME, the PSD is reconstructed with a
series of non-negative exponential polynomials based on just a few lower-order moments.
Given a proper particle size range and corresponding moments, the reconstructed PSD by
ME can be of high accuracy.

The purpose of this paper is to present a new approach for simulating soot formation
in diesel engines. A joint MPM-ME approach is developed which is able to provide
a comprehensive study on the soot particle dynamics and at the same time retain the
advantages of ease of implementation, low computational cost and high accuracy. The
paper is organized as follows. First, the engine and soot models are introduced together
with a brief description of the moment projection method. Then the detailed algorithm of
the ME technique is described. In section 3, the performance of the MPM-ME approach
is evaluated with a set of simplified particle PBEs. In section 4, this new approach is
implemented into a Stochastic Reactor Model (SRM) engine code to simulate the soot
formation and oxidation processes inside a single-cylinder direct injection diesel engine
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which is operated under three different conditions. Finally some key conclusions are
summarized.

2 Numerical methodology

2.1 Engine model

The Probability Density Function (PDF) based Stochastic Reactor Model (SRM) engine
code is a spatially zero-dimensional model applicable for physical and chemical processes
including Internal Combustion (IC) engines [34]. It has been successfully applied for
combustion simulation in a number of IC engines including Direct Injection Spark Igni-
tion (DISI) engines [14], Homogeneous Charge Compression Ignition (HCCI) engine [34]
and Direct Injection Compression Ignition engine (DICI) [45]. The code possesses sub-
models for turbulent mixing, fuel spray, flame propagation and heat transfer. Within the
framework of SRM, the scalar variables such as species concentrations, temperatures as
well as the soot moments are represented by a so-called “stochastic particle”. The en-
gine in-cylinder charge can then be split into an ensemble of the stochastic particles to
describe the distribution of these scalar variables. These stochastic particles can mix with
each other and exchange the scalar variables to update the engine in-cylinder distributions
of the gas species concentrations and soot moments during the combustion process. The
number of the stochastic particles determines the precision of the physical and chemical
predictions. Higher accuracy is achieved with more stochastic paritcles but at the expense
of high computational cost. Usually 100 stochastic particles are found to be sufficient for
engine simulations.

For diesel engine combustion simulation, a very important concern is the in-cylinder
mixing intensity which significantly affects the mixture inhomogeneity inside the engine
cylinder. This becomes even more important for cases where the soot formation process is
modelled using a quadrature based method of moments such as the one used in this work.
This is because the inappropriate mixing of soot moments would violate the realisability
of the moment set, thus leading to unphysical soot particle size distributions. To avoid this
problem, this work adopts the Curl’s mixing model [9] to describe the turbulent mixing
in which a pair of stochastic particles is chosen at a time and mixed to produce two new
stochastic particles whose properties are the mean of the properties of the original ones.
This mixing model has been proven to be able to maintain the realisability of the moment
set [4].

2.2 Soot model

The soot model proposed by [2, 4] is adopted in this work to describe the soot formation
and oxidation processes inside the diesel engines. The physical and chemical processes
considered to be important for the evolution of soot particles include: Inception, i.e. nu-
cleation of the primary soot particles through dimerisation of pryene molecules, conden-
sation, i.e. deposition of a pyrene molecule from the gas-phase to the surface of soot
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particles, surface growth, i.e. the addition of an acetylene molecule to the soot particle
surface through a repeating cycle of H-radical abstraction and acetylene addition (HACA)
mechanism [17], oxidation, i.e. removal of carbon atoms from the surface of soot parti-
cles due to reactions with hydroxyl radical and molecular oxygen, and coagulation is the
modeled as the formation of larger soot particles due to the coalescent collision between
soot particles. The detailed description of these processes is given in Appendix A.

Clearly, these soot particle processes may occur in a wide range of size classes, as a
result an infinite number of soot population balance equations are needed to describe
the soot PSD. This makes the simulation computationally extremely expensive, which is
impractical for soot simulation in diesel engines. To reduce the computational cost, this
work adopts the method of moments to treat the soot model. The moments of the soot
PSD are defined as:

Mr =
∞∑
i=i0

irNi, r = 0, 1, · · · ,∞ (1)

whereNi is the number density of soot particles that contain i carbon atoms. Mr is the rth-
order moment. The lower-order moments usually have physical meanings. For example,
M0 is the total soot number and M1 refers to the total soot size. Unfortunately the soot
moment equations are unclosed. Especially, the evaluation of the soot oxidation source
term requires the knowledge on the number of the smallest soot particles to account for
the particle depletion term, which is challenging to MOM. To handle this problem, MPM
is adopted to solve the soot moment equations. MPM has been shown to be able to treat
the particle shrinkage problem (equivalent to oxidation) with high accuracy and at the
same time retain the high computational efficiency. Refer to Appendix A for the detailed
MPM formulation for the soot source terms.

2.3 Particle size distribution reconstruction

Starting from the moments obtained by MPM, the maximum entropy method is adopted as
a post-process technique to reconstruct the particle size distribution. A brief description
of the ME technique is given in this section. With ME, a positive distribution ÑK is
generated such that

imax∑
i=imin

irÑK(i) = Mr, r = 0, · · · , K, (2)

which eventually converge to the real PSDN(i) asK approaches infinity. The determina-
tion of ÑK is achieved by finding the maximum entropy of N(i) under the condition that
the first K + 1 moments of ÑK are equal to the moments of the real PSD. The entropy
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function of N(i) is given as:

S = −
imax∑
i=imin

(
N(i)lnN(i)−N(i)

)
+

K∑
j=0

λj

( imax∑
i=imin

ijN(i)−Mj

)
. (3)

where λj (j = 0, · · · , K) are Lagrange multipliers. Taking the functional variation of
Eq. (3) with respect to (N(i)) yields

δS

δN(i)
= 0→ N(i) = ÑK(i) = exp

(
−

K∑
j=0

λji
j
)
. (4)

The key problem becomes to determine the Lagrange multipliers λj so that ÑK(i) can be
used as an approximation of N(i). Note that the first K + 1 moments of ÑK(i) are equal
to the real moments:

imax∑
i=imin

irÑK(i) =
imax∑
i=imin

ir exp
(
−

K∑
j=0

λji
j
)

= Mr, r = 0, · · · , K. (5)

Equation 5 can be viewed as a nonlinear system ofK+1 equations for theK+1 Lagrange
multipliers. Unfortunately, the analytical solution of Eq. (5) rarely exists. For numerical
purpose, the following convex potential is introduced:

∆ =
imax∑
i=imin

[
exp

(
−

K∑
j=0

λji
j
)
− 1
]

+
K∑
j=0

Mjλj, (6)

One just needs to minimize the potential ∆ as its stationary points are solutions to Eq. 5:

δ∆

δλr
= 0→

imax∑
i=imin

ir exp
(
−

K∑
j=0

λji
j
)

= Mr, r = 0, · · · , K. (7)

The Newton minimization procedure is adopted to determine these Langrange multipliers.
Starting with some initial choices for λ = (λ0, · · · , λK)T, updated λ by:

λ = λ−H−1(M− 〈I〉λ), (8)

where H is the Hessian matrix defined by Hm,n = ∂2∆
∂λm∂λn

= 〈im+n〉λ for m,n =

0, · · · , K, and 〈I〉λ = (〈i0〉λ, · · · , 〈iK〉λ)T is the vector of approximated moments:

〈ir〉λ =
imax∑
i=imin

ir exp
(
−

K∑
j=0

λji
j
)
. (9)
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The evaluation of 〈ir〉λ can be done with the Gaussian quadrature approximations. Since
the Gaussian quadrature points are computed for normalized densities at the interval [0,1],
a change of variabes is needed to re-locate the PSD from the interval [imin, imax] to [0,1]
and the following transformation of moments has to be applied:

µr =
Mr

irmaxM0

, r = 0, · · · , K. (10)

Input: AK × 1 vector M with elements are the moments M̃r (r = 0, · · · , K − 1); the minimum particle size imin and the maximum particle size imax; The absolute
tolerance ε.

Output: The reconstructed PSD Ñ(i), i = imin, · · · , imax .
Initialize the 24-point Gaussian quadratures:

x=[-0.064056893, 0.064056893, -0.191118867, 0.191118867, -0.31504268, 0.31504268, -0.433793508, 0.433793508, -0.545421471, 0.545421471, -0.648093652,
0.648093652, -0.740124192, 0.740124192, -0.820001986, 0.820001986, -0.886415527, 0.886415527, -0.938274552, 0.938274552, -0.974728556, 0.974728556,
-0.99518722, 0.99518722]

w=[0.127938195, 0.127938195, 0.125837456, 0.125837456, 0.121670473, 0.121670473,
0.115505668, 0.115505668, 0.10744427, 0.10744427, 0.097618652, 0.097618652,
0.086190162, 0.086190162, 0.073346481, 0.073346481, 0.059298585, 0.059298585,
0.044277439, 0.044277439, 0.028531389, 0.028531389, 0.01234123, 0.01234123]

Create aK × 1 vector µ with elements µr = M̃r/i
r
maxM̃0. This corresponds to the moments of normalized PSD at the interval [0,1].

for N=1 to K-1 do
Create a (N + 1)× (N + 1) matrix H, a (N + 1)× 1 vector I and a (N + 1)× 1 vector λ with zero in all elements. Create a (N + 1)× 1 vector λ

′
with

1 in all elements.
while abs(λ

′
− λ) > ε do

λ = λ
′

for n=0 to N do
Determine the elements of matrix I with the Gaussian quadratures:

In+1 =
1

2

24∑
i=1

wi(
1

2
xi +

1

2
)
nexp(−

N∑
j=0

λj+1(
1

2
xi +

1

2
)
j
)

end
for m=0 to N do

for n=0 to N do
Determine the elements of matrix H with the Gaussian quadratures:

Hm+1,n+1 =
1

2

24∑
i=1

wi(
1

2
xi +

1

2
)
m+nexp(−

N∑
j=0

λj+1(
1

2
xi +

1

2
)
j
)

end
end
Check if matrix H is positive definite. If not, exit the loop.
Calculate the inverse matrix Hinv of H through Choleski decomposition and update Lagrange multipliers by:

λ
′
= λ−Hinv(M− I).

end
Determine the ME distribution:
for i = imin to imax do

Ñ(i) = exp(−
K∑

j=0

λj+1(i/imax)
j
)M̃0/imax

end
end

Algorithm 1: Maximum entropy algorithm.

This corresponds to the moments of normalized PSD located at [0,1]. After the PSD is
reconstructed, a change of the variables back to the original interval is needed. It should
be pointed out that the particle size interval [imin, imax] is a key factor in determining the
accuracy of ME. If it is set too narrow or too wide, unrealistic PSD might be generated.
In MPM, the obtained weighted particles offer a proper way to approximate the interval.
By fixing one weighted particle size α1 at imin, the largest weighted particle size αNp can
be used as a good reference of imax. In this work, imax is determined by imax = cαNp .
c is a user defined factor. It is found that satisfactory accuracy is always achieved by
setting c between 1 and 2. c = 1.5 is adopted in this work. The detailed algorithm of the
ME method is shown in Algorithm 1. 24-point Gaussian quadrature points are adopted
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for evaluations of Eq. (9). Since H is symmetric positive definite, the classical Choleski
decomposition is used to solve the linear system in Eq. (8).

3 MPM-ME evaluation

Before applying the joint MPM-ME approach to the simulation of soot formation in diesel
engines, the performances of this approach for the treatment of PBEs and PSD recon-
struction are evaluated first on MatLab. A simplified particle population balance model is
adopted where the contributions of gas-phase species are neglected, and constant incep-
tion rates and collision kernels are applied. The PBE describing such particle system is
given as:

dni
dt

= r(i) + g(i) + wg(i) + wox(i). (11)

Note that lower case letters are used to avoid confusions with the soot model described in
Appendix A. The specific particle source terms are:

r(i) = I0, (12)

g(i) =
1

2

i−1∑
j=1

βj,i−jnjni−j −
∞∑
j=1

βi,jninj, (13)

wg(i) = kg(i− 1)ni−1 − kg(i)ni, (14)
wox(i) = kox(i+ 1)ni+1 − kox(i)ni, (15)

where I0 represents the inception rate. The surface reaction kernels kg(i) and kox(i) are
modelled to be proportional to the particle size: kg(i) = kgi and kox(i) = koxi, where kg

and kox are constants. The coagulation kernel under the continuum regime is used:

βi,j = Kc(
1

i1/3
+

1

j1/3
+K

′

c(
1

i2/3
+

1

j2/3
))(i1/3 + j1/3), (16)

where Kc and K ′c are assumed to be constants. Two test cases are adopted where the oxi-
dation kernel is varied to simulate relatively strong (Case 1) and weak (Case 2) oxidation:

Case 1 Inception rate I0 = 500 s−1, growth kernel kg = 2 s−1, oxidation kernel kox =

10 s−1, coagulation kernels Kc = 10−6 s−1 and K ′c = 2.

Case 2 Inception rate I0 = 500 s−1, growth kernel kg = 2 s−1, oxidation kernel kox =

0.5 s−1, coagulation kernels Kc = 10−6 s−1 and K ′c = 2.

Simulations are performed with a log-normal distribution supplied as the initial condition:

n(i, t = 0) = 100exp(−(log(i)− log(40))2/0.2). (17)
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In MPM, four weighted particle size classes (Np = 4) are adopted to treat the PBEs.
In total 7 (2Np − 1) moments are calculated. The performance of MPM is assessed by
comparing the model solution with the direct numerical simulations. Figure 1 shows the
moments obtained for case 1. For this case, a large oxidation kernel is adopted to simulate
a oxidation-dominant condition. Therefore, both the total particle number as represented
by M0 and total particle size represented by M1 exhibit a gradual decrease. The moments
obtained using MPM match the exact solution perfectly, suggesting the high accuracy of
MPM in solving the particle PBEs.
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Figure 1: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM and the direct numerical simulation for case 1.

Given the moments obtained by MPM, the particle PSDs at different simulation time are
reconstructed using the ME method with 7 Lagrange multipliers. Figure 2 compares the
reconstructed PSDs with the original ones. Since oxidation is dominating the particle
process, a shift of the PSD towards the smallest size is observed. The number of the
smallest particles exhibits an increase at the beginning resulting from the transformation
from the large particles, then starts to decrease due to their own oxidation. In general, the
reconstructed PSDs match well to the exact solutions, indicating the high performance of
the ME method adopted in this work.

Case 2 simulates a weak oxidation process. The moments obtained for this case with
MPM and the direct numerical simulation are shown in Fig. 3. An increase in the total
particle number and size is observed. Again, MPM generates almost the same moments
with the direct numerical solution. This further indicates the high accuracy of MPM.

The original and reconstructed PSDs at different simulation time for case 2 are shown in
Fig. 4. A shift of the PSD towards the large particle size is observed. At the same time, the
peak becomes wider and lower. Due to the persistent inception at the smallest particle size
and formation of large particles through growth, the PSD exihibits a bimodal distribution.
In general, the PSDs reconstructed by ME match satisfactorily well to the exact solution.

In summary, the proposed joint MPM-ME approach in this work is able to solve the
particle PBEs and reconstruct the PSD with satisfactory accuracy.
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Figure 2: Comparison between the original PSD and the reconstructed PSD obtained by
ME for case 1.
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Figure 3: Comparison of the zeroth moment M0 (left panel) and the first moment M1

(right panel) between MPM and the direct numerical simulation for case 2.

4 Diesel engine simulation

In this section, the joint MPM-ME approach is implemented into the SRM engine code
to simulate the combustion process in a single-cylinder direct-injection diesel engine
from [22]. The specifications of the engine are summarized in Table 1. The engine was
running at a constant speed of 1500 rpm with three different loads. The operating condi-
tions are given in Table 2. In the experiment, the engine in-cylinder pressure was measured
using a Kistler 6215C piezoelectric sensor. An exhaust flow dilution channel was built on
the diesel engine experimental bench and a low pressure impactor was adopted to collect

11



0 5 0 1 0 0 1 5 0 2 0 0
0

4 0

8 0

1 2 0

1 6 0

 O r i g i n a l  P S D
 R e c o n s t r u c t e d  P S D

t  =  0  s

t  =  0 . 1  s

t  =  0 . 2  s

t  =  0 . 3  s

t  =  0 . 4  s

Nu
mb

er

S i z e

t  =  0 . 5  s

I n c r e a s i n g  t i m e

Figure 4: Comparison between the original PSD and the reconstructed PSD obtained by
ME for case 2.

the emitted soot particles. Refer to [22] for the detailed experimental setup. Simulations
were performed with a time step of 0.2 CAD and 100 stochastic particles. A detailed
mechanism for Primary Reference Fuel (PRF) containing 208 species and 1002 reactions
is employed [34]. The soot model described in section 2.2 is used to simulate the soot
formation process. In MPM, three weighted particle size classes (Np = 3) were used to
treat the soot PBEs. In total 5 soot moments were solved for.

Figure 5 compares the predicted in-cylinder pressure and heat release rates with the ex-
perimental measurements for case 1. Satisfactory match between the simulation results
and experimental data has been achieved. The ignition timing and combustion duration
have been well captured, suggesting that the combustion process inside the diesel engine
has been successfully modeled.

To evaluate the additional CPU costs induced by including the soot model in the diesel
engine simulations, the cases that only consider gas-phase chemistry and those with both
gas-phase chemistry and soot particle dynamics are simulated. The CPU costs are com-
pared and summarized in Fig. 6. Note that for all cases the CPU time is normalized by the
data obtained where only gas-phase chemistry is considered. As can be seen the inclusion
of the soot model does not contribute much computational cost owing to the high effi-
ciency of MPM. The CPU time is increased by around only 20 %. This is very promising
concerning the fact that traditionally the treatment of the soot model using the stochastic
method usually makes the diesel engine simulation prohibitively expensive.

In Fig. 7, simulation and experimental results of the engine-out soot mass for all the cases
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Table 1: Diesel engine specification.

Engine type Single-cylinder, four-stroke, water-cooled
Bore 105 mm
Stroke 115 mm
Compression ratio 18:1
Displacement 996 cm3

Rated power 12.1 kW
Rated speed 2300 r/min
Start of injection 25 oCA BTDC
Injection duration 28 oCA
Spray angle 154 oCA
Nozzle diameter 0.28 mm
Number of nozzle 5
Injection pressure 30 MPa

Table 2: Engine operating conditions.

Case 1 Case 2 Case 3
Engine speed (r/min) 1500 1500 1500
Torque (N m) 40 30 20
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Figure 5: Comparision of measured and modeled in-cylinder pressure and heat release
rate for case 1.

are summarized. Both the experimental and simulation results have been normalized by
the data for case 1. As can be seen the soot model correctly captures the trend of the
soot emissions. With the engine load increasing, more diesel fuels are consumed and cor-
respondingly the emitted soot mass is increased. However, the predicted soot emissions
exhibit some discrepancies with the experimental results, which is a consequence of the
inappropriate soot model parameters. The parameters describing the soot formation and
oxidation rates are derived from a limited number of experimental or theoretical studies.
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Figure 6: Evaluation of the additional CPU costs induced by including the soot model in
the diesel engine simulation. For all the cases, the CPU time is normalized by
the data obtained without considering the soot model.

There is a lack of concensus within the literatures in terms of these parameters. Therefore,
the soot model parameters usually have to be properly calibrated in order to achieve bet-
ter agreement between the simulation results and experimental data. However, it should
be noted that the purpose of this paper is not to calibrate the model parameters to fit the
experimental data but to propose a new numerical approach through which a comprehen-
sive study on the soot formation and oxidation processes inside diesel engines could be
achieved. Next the detailed evolution of soot particle population inside the diesel engine
obtained by the proposed MPM-ME approach for case 1 is presented.
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Figure 7: Comparison of soot mass between experiments and simulations. All experi-
mental data are normalized by the experimental value measured for case 1
condition, and all model data are normalized by the predicted value calculated
for case 1 condition.

Figure 8 shows the modeled rates ofM0 andM1 for different particle processes for case 1.
Note that the coagulation rate for M1, condensation rate and growth rate for M0 are zero,
hence not shown in the figures. The coagulation rate forM0 and oxidation rates forM0 and
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M1 are negative, here we take their absolute values for illustration. As can be seen, all the
moment rates exhibit a sharp increase soon after ignition. Due to the strong fluctuations in
turbulent mixing, the moment rates exhibit quite a bit of noise during the main combustion
process. As the combustion strength weakens, the noises become eliminating and these
moment rates show a gradual decrease. The oxidation rate via OH is found to be much
larger than that via O2, suggesting that the soot oxidation is mainly dominated by external
burning process while internal burning plays a minor role.
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Figure 8: Modeled soot moment rates as a function of crank angle for case 1.

Figure 9 shows the predicted molar concentrations of acetylene and pyrene as a function of
crank angle for case 1. Pyrene is considered as the soot precursor in the current soot model
and acetylene plays a major role in soot growth process via the HACA mechanism. The
evolution of these two species therefore has a significant effect on soot formation. As can
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be seen from Fig. 9 these two species exhibit a similar evolution trend with the heat release
rate as shown in Fig. 5. Soon after ignition, the molar concentrations of both species show
a sharp increase as a resut of the pyrolysis and oxidation of diesel fuel. Due to the rapid
chemical reactions during the main combustion stage, the molar concentrations of both
species exhibit a lot of noise. Then starting from around 30 deg ATDC, the combustion
strength becomes weakened and a decrease of the molar concentrations of both species is
observed.

Figure 10 shows the predicted soot number and mass as a function of crank angle for
case 1. At the beginning, inception dominates the soot formation process, leading to a fast
build up of soot particles inside the engine cylinder. Then oxidation starts to gain strength
and the total soot number shows a decrease trend during the late combustion stage. By
contrast the total soot mass exhibits a steady increase due to the accumulation of particles
at the large sizes which can be revealed by the following reconstructed soot PSD.
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Figure 9: Predicted molar concentrations of acetylene and pyrene as a function of crank
angle for case 1.
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Figure 10: Modeled soot number and mass as a function of crank angle for case 1.

As already mentioned, the soot PSDNi used in the soot model is based on the carbon atom
number i, which can be as large as 108 during the combustion process in diesel engines.

16



If applying this to Eq. 10, numerical errors may occur and the reconstructed PSD is not
realistic. In order to avoid this problem, a transformation from the carbon atom number
to the particle collision diameter is implemented:

d =
(6m1

πρs

)1/3

i1/3, (18)

where d is the collision diameter of particles that contain i carbon atoms. m1 is the mass
of a single carbon atom and ρs is the density of soot particles. The soot collision diameter
d is usually in the size range of [1 nm, 1000 nm] which can be used by ME with much
lower numerical errors. Correspondingly, the following collision diameter based moments
M∗

r are used as the input moments for the ME method:

M∗
r =

(6m1

πρs

)r/3
Mr/3, (19)

where the fractional-order moments Mr/3 are determined by using the polynomial inter-
polation technique based on the integer moments Mr.

Figure. 11 shows the reconstructed soot PSD as a function of crank angle for case 1. As
can be seen at -12 deg ATDC where ignition just occurs, the particle process is dominated
by inception. The soot PSD exhibits a unimodal distribution located at the smallest size.
As inception continues, an increase in the total soot particle number is observed. Further-
more, particles are formed at larger sizes as growth and coagulation start to gain strength.
Under the combined effect of persistent inception, growth, condensation and coagulation,
the soot PSD starts to exhibit a bimodal distribution. During the late combustion stage,
the oxidation starts to gain strength and the total soot particle number begins to decrease
gradually. Furthermore, an accumulation of particles at large sizes is observed under the
persistent effect of growth and coagulation.

Due to the high rotation speed and harsh combustion condition in diesel engines, it is dif-
ficult to extract the soot particles from the engine cylinder at fixed crank angle. Therefore
very limited experimental information on the soot PSD exists for comparison. However,
it should be noted that the main purpose of this work is not to calibrate the soot model
parameters to fit the experimental data, but to propose a new approach for simulating soot
formation and oxidation in diesel engines. The developed MPM-ME method is robust,
accurate and computationally cheap. At the same time it is able to provide a detailed
analysis on the soot particle dynamics in diesel engines.
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Figure 11: Reconstructed soot PSD as a function of crank angle for case 1. The top
panel refers to the main combustion stage and the bottom panel refers to the
late combustion stage.
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5 Conclusion

This work presents a new approach, a joint moment projection method (MPM) and max-
imum entropy (ME) reconstruction, for simulating soot formation and oxidation in diesel
engines. With this approach, MPM is adopted to solve the soot population balance equa-
tions including inception, coagulation, condensation, surface growth and oxidation. The
moments obtained by MPM are supplied to ME, which is adopted as a post-processing
technique, to reconstruct the soot PSD. The particle size range, which is a key factor in
affecting the accuracy of ME, is determined based on the weighted particles generated in
MPM. The performance of this approach is first evaluated by solving a set of simplified
PBEs on MatLab. Both cases where oxidation is dominant and weak are simulated. MPM
has shown to be very accurate in solving the PBEs. The moments obtained by MPM are
almost the same with the direct numerical simulations. The reconstructed PSDs by ME
match satisfactorily well with the exact solutions for both cases considered. The bimodal
distribution of the particles due to persistent inception and growth are successfully re-
produced. Afterwards, the joint MPM-ME approach is implemented into a PDF-based
SRM engine code to describe the soot formation and oxidation processes inside a single-
cylinder direct-injection diesel engine. Three test cases are applied where the diesel en-
gine is operated under different engine loads. Results suggest that the inclusion of the
soot model induces little CPU cost owing to the high efficiency of MPM. For all the cases
considered, the model is able to correctly capture the emission trend of soot. The soot
moment rates for all particle processes together with the evolutions of the total soot num-
ber and soot size are obtained. The soot PSDs at different crank angles are reconstructed,
which enables a physical interpretation of the soot particle dynamics during the combus-
tion process. The proposed joint MPM-ME approach in this work is accurate, easy to
implement and computationally cheap. It offers a comprehensive study on the soot for-
mation and oxidation processes in diesel engines. Complete information of the soot PSD
can be provided, resolving a long-standing limitation of the method of moments (MOM).
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Nomenclature

Upper-case Roman
Cs Transformation factor
G Source term due to coagulation
H Hessian matrix
I0 Inception rate
I Vector with components are a function of reconstructed particle size distri-

bution
K Number

Kc, K
′
c Coagulation kernels

M Moment
M Matrix with components which are a function of moments
N Number
R Source term due to inception
S Entropy function of particle size distribution
W Source term due to surface reactions

Lower-case Roman
d Diameter
g Source term due to coagulation

i, j particle size
kg Growth kernel
kox Oxidation kernel

k, i, j, r Indices
kg Growth kernel
kox Oxidation kernel
r Source term due to inception
m Mass
n Number
t Time
w Source term due to surface reactions
w Vector with components are Gaussian quadrature weights
x Vector with components are Gaussian quadrature positions

Greek
α Particle size
β Collision kernel
δ Particle size change
λ Lagrange multiplier
µ Normalized moment
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ρ Density

Subscripts
p Particle
0 Initial or minimum

Symbols
x̃ Approximation of x
x∗ Transformation of x

Abbreviations
EQMOM Extended quadrature method of moments
FCMOM Finite-size domain complete set of trial functions method of moments

HACA H-radical abstraction and acetylene addition
PAH Polycyclic aromatic hydrocarbon
PBE Population balance equation
PDF Probability density function
PSD Particle size distribution
ME Maximum entropy

MOM Method of moments
MPM Moment projection method
DSA Direct simulation algorithm
SRM Stochastic reactor model
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A MPM closure for soot formation and oxidation source
terms

In this work, the soot is modeled as a population of spherical particles consisting of merely
carbon atoms. Within each stochastic particle, the evolution of the soot particle population
is governed by:

dNi

dt
= R(i) +G(i) +W cond(i) +W g(i) +W ox(i), (A.1)

where Ni refers to the number density of soot particles of the size i. The terms on the
right–hand side of the above equation represent, respectively, inception, coagulation, con-
densation, surface growth and oxidation.

Inception: The primary soot particles are assumed to be formed when two PAH molecules
collide and stick with each other. The sticking probability of the PAHs is determined with
a collision efficiency model. In this work, it is assumed that the primary soot particle is
formed after two pyrene molecules stick together after a collision with the source term
given as:

R(i0) =
1

2
βinN

2
pyrene, (A.2)

whereNpyrene is the pyrene number density and βin is the collision rate of pyrene molecules.
i0 refers to size of the primary soot particles.

Coagulation: Once the primary soot particles are formed, the population of the particles
can evolve through collision and sticking among these particles. The coagulation process
is modeled using the Smoluchowski equation [50]:

G(i) =
1

2

i−1∑
j=i0

βj,i−jNjNi−j −
∞∑
j=i0

βi,jNiNj. (A.3)

βi,j is the collision kernel describing the rate of successful collisions between two soot
particles. The first term on the right–hand side describes the creation of particles due
to collisions between all combinations of particles with sizes that sum to i. It contains
a factor of 1/2 to avoid double counting. The second term describes the destruction of
particles due to collisions between particles of size i and any other size j.

Condensation: The soot particle may grow in size due to the deposition of the PAH
molecule on the particle surface following a collision between the two partners. The
collision rate is determined as per coagulation except that one of the collision partners is
PAH which is modeled as pyrene in this work:

W cond(i) = βi−δ,δNpyreneNi−δ − βi,δNpyreneNi, (A.4)

δ refers to the change of the particle size and is modeled as 16 since pyrene is adopted as
the condensation species.
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Surface growth: Surface growth results from a repeating cycle of H-radical abstraction
and acetylene addition followed by the formation of a new aromatic ring on the soot
particle surface (HACA mechanism) [17]. The reaction rate depends on the soot surface
radical sites and is assumed to be proportional to the surface area:

W g(i) = kg(si−δNi−δ − siNi). (A.5)

kg represents the growth kernel and si is the particle surface area. δ is set as 2 since
acetylene is adopted as the growth species.

Oxidation: The carbon atoms at the surface of soot particles can be removed due to
the surface reactions with molecular oxygen and hydroxyl radicals. When oxidized, the
large soot particles are turned into the small ones and the smallest are decomposed into
gas phase species, leading to a decrease of the total soot particle number. The oxidation
source term is given as:

W ox(i) = kox(si−δNi−δ − siNi). (A.6)

kox refers to the oxidation kernel. δ is set as−2 and−1, respectively, for oxidation via O2

and OH.

As already mentioned, an efficient approach to solve these soot PBEs is to transform them
into moment equations and solve for just the first few lower–order moments so that the
computational cost can be kept to the minimum. The moment of the soot PSD is defined
as:

Mr =
∞∑
i=i0

irNi, r = 0, 1, · · · ,∞ (A.7)

where Mr is the rth-order moment. The lower–order moments usually have physical
meanings. For example, M0 is the total soot number and M1 refers to the total soot
size. The soot moment equations can be obtained by applying Eq. A.7 to Eq. A.1:

dMr

dt
= Rr +Gr +W cond

r +W g
r +W ox

r , (A.8)

where the moment source terms are:
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Rr =
1

2
ir0βpyreneN

2
pyrene, (A.9)

Gr =


−1

2

∞∑
i=i0

∞∑
j=i0

βi,jNiNj, r = 0

0, r = 1

1
2

∞∑
i=i0

∞∑
j=i0

r−1∑
k=1

(
r

k

)
ikjr−kβi,jNiNj, r > 1

(A.10)

W cond
r =


0, r = 0
∞∑
i=i0

r−1∑
k=0

(
r

k

)
ikδr−kβi,δNpyreneNi, r > 1

(A.11)

W g
r =


0, r = 0

kg

∞∑
i=i0

r−1∑
k=0

(
r

k

)
ikjr−ksiNi, r > 1

(A.12)

W ox
r =


−kox

i0−1−δ∑
i=i0

siNi, r = 0

kox

∞∑
i=i0

r−1∑
k=0

(
r

k

)
ikjr−ksiNi − kox

i0−1−δ∑
i=i0

(i+ δ)rsiNi. r > 1

(A.13)

The evaluation of these source terms depends on the kernels adopted. In this work, the
kernels and rates related with the soot formation and surface reactions are taken from [2, 4,
53]. The application of these realistic kernel functions leads to the presence of fractional–
order moments which are not directly solved for and have to be properly estimated to
close the moment equations. Another closure problem arises from the oxidation moment
source term. As seen in Eq. A.13, the numbers of the smallest soot particles are present
which refer to the soot depletion process due to oxidation. The evaluation of this soot
depletion term is challenging to moment methods since the detailed information of the
soot PSD is lost as it has been transformed into moments.

In this work, the moment projection method is adopted to close these moment source
terms. The basic idea behind MPM is to approximate the soot PSD using a set of weighted
particles that are located into a finite number of particle size classes. The moments of the
approximated PSD is expressed as:

M̃r = αr1Ñα1 +

Np∑
j=2

αrjÑαj , r = 0, . . . , 2Np − 2, (A.14)

where αj is the approximated weighted particle size, Ñαj is the weight, and Np is the
number of weighted particle sizes adopted. These weighted particles have to meet the
requirement that the corresponding empirical moments are equal to the moments from the
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true PSD:

M̃r = Mr, r = 0, . . . , 2Np − 2. (A.15)

In order to evaluate the soot depletion term due to oxidation, one of the weighted particle
sizes is fixed at the smallest soot size, α1 = i0, so that the corresponding weight Ñα1 can
be used to approximate the number of the smallest soot particles. The moment source
terms within the framework of MPM is given as:

dM̃r

dt
= Rr(M̃) +Gr(M̃) +W cond

r (M̃) +W g
r (M̃) +W ox

r (M̃, Ñ), (A.16)

where the specific moment source terms are:

Rr(M̃) =
1

2
ir0βpyreneN

2
pyrene, (A.17)

Gr(M̃) =


−1

2

Np∑
i=1

Np∑
j=1

βαi,αjÑαiÑαj , r = 0

0, r = 1

1
2

Np∑
i=1

Np∑
j=1

r−1∑
k=1

(
r

k

)
αki α

r−k
j βαi,αjÑαiÑαj , r > 1

(A.18)

W cond
r (M̃) =


0, r = 0
Np∑
j=1

r−1∑
k=0

(
r

k

)
αkj δ

r−kβαj ,δNpyreneÑαj , r > 1
(A.19)

W g
r (M̃) =


0, r = 0

kg

Np∑
j=1

r−1∑
k=0

(
r

k

)
αkj δ

r−ksαjÑαj , r > 1
(A.20)

W ox
r (M̃, Ñ) =


−koxsα1Ñα1 , r = 0

kox

Np∑
j=1

r−1∑
k=0

(
r

k

)
αkj δ

r−ksαjÑαj − kox(α1 + δ)rsα1Ñα1 . r > 1

(A.21)

The determination of the weighted particles is achieved by using a Blumstein and Wheeler
algorithm [6] based on the obtained moments. See [56, 57] for the detailed algorithm of
MPM.
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