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Abstract

We apply Deep Kernel Learning (DKL), which can be viewed as a combination of
a Gaussian process (GP) and a deep neural network (DNN), to compression igni-
tion engine emissions and compare its performance to a selection of other surro-
gate models on the same dataset. Surrogate models are a class of computationally
cheaper alternatives to physics-based models. High-Dimensional Model Represen-
tation (HDMR) is also briefly discussed and acts as a benchmark model for com-
parison. We apply the considered methods to a dataset which was obtained from
a compression ignition engine and includes as outputs soot and NOx emissions as
functions of 14 engine operating condition variables. We combine a quasi-random
global search with a conventional grid-optimisation method in order to identify suit-
able values for several DKL hyperparameters, which include network architecture,
kernel and learning parameters. The performance of DKL, HDMR, plain GPs, and
plain DNNs is compared in terms of the root mean squared error (RMSE) of the
predictions as well as computational expense of training and evaluation. It is shown
that DKL performs best in terms of RMSE in the predictions whilst maintaining the
computational cost at a reasonable level, and DKL predictions are in good agreement
with the experimental emissions data.
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Highlights:

• The application of DKL as a surrogate model to engine emissions is explored.

• A 14-dimensional dataset of emissions from a compression ignition engine is
studied.

• Hyperparameters in DKL are systematically optimised.

• DKL outperforms plain GPs, DNNs, and HDMR on the considered dataset.
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1 Introduction

Complex physical systems such as internal combustion engines are generally studied via
physical or computational experiments, or their combinations. In many situations, physi-
cal experiments may not be feasible or can be highly expensive to perform, and computer
experiments are then preferred in such cases. These involve experimenting on a rigor-
ous first-principles or physics-based model instead of the real system [10]. However,
expressive computer experiments often involve high computational cost. Therefore, in
any application that requires large numbers of data points or model evaluations such as
optimisation or parameter estimation, it is inevitable to replace high-fidelity models and
real physical experiments by computationally cheap surrogate models.

A surrogate model is an empirical analytical or numerical expression for the quantifica-
tion of relationships between relevant input features and output labels/values of a physical
system [12]. Surrogate models can be viewed as a substitute model which mimics the
behaviour of a detailed model or data as closely as possible whilst keeping the computa-
tional cost at a minimum. The construction of a surrogate model requires one to choose a
mathematical or numerical form for modelling. Surrogate modelling has been studied ex-
tensively in applications in numerous areas across science and technology, too numerous
to review here, and for a variety of purposes, the most popular ones being parameter es-
timation [8, 24] and sensitivity analysis [1]. Many statistical and machine learning meth-
ods have been proposed as surrogate models in the literature, such as High-Dimensional
Model Representation (HDMR) [41, 43], support vector regression (SVR) [7], and ra-
dial basis function (RBF) fitting [38], to name a few. The variety of available surrogate
modelling techniques is reflective of the fact that there is no such thing as a ‘univer-
sal surrogate’. Any given technique may work well in some applications, but relatively
poorly in others, depending on the unique characteristics in each case, such as dimen-
sionality, oscillatory or discontinuous behaviour, and many others. Learning based Evo-
lutionary Assistive Paradigm for Surrogate Selection (LEAPS2) is a framework that was
proposed to recommend the best surrogate(s) with minimal computational effort given
the input/output data of a complex physico-numerical system [13]. A frequently encoun-
tered issue, particularly in engine applications, is that the input spaces of the datasets are
high-dimensional. Another common problem, and again this applies particularly to en-
gine applications, is that the size of the datasets is usually quite limited due to the high
cost induced by the data measurement, which further compounds the problem of high
dimensionality, although techniques exist to alleviate this [10, 11].

The literature is replete with work related to the application of various machine-learning
methods to internal combustion engine modelling, optimisation, and calibration. Ghan-
bari et al. [14] used support vector machines (SVMs) to predict the performance and
exhaust emissions of a diesel engine and showed that SVM modelling is capable of pre-
dicting the engine performance and emissions. In the study by Najafi et al. [35], an SVM
and an adaptive neuro-fuzzy inference system (ANFIS) are applied to predicting perfor-
mance parameters and exhaust emissions such as CO2 and NOx of a spark ignition (SI)
engine and are compared in terms of their performance, and they showed ANFIS is sig-
nificantly better than SVM. Silitonga et al. [44] applied a method known as kernel-based
extreme learning machine (K-ELM) to evaluate the performance and exhaust emissions of
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compression ignition (CI) engines with biodiesel-bioethanol-diesel blends at full-throttle
conditions. Lughofer et al. [29] investigated the modelling of NOx emissions of a diesel
engine using a fuzzy model directly from measurement data, which is then shown to be a
good alternative to physics-based models. Yilmaz et al. [54] compared the response sur-
face methodology (RSM), a commonly used surrogate model, with least-squared support
vector machine (LSSVM) based on their performance in predicting the performance and
exhaust emissions of a diesel engine fuelled with hazelnut oil, and showed that LSSVM
narrowly outperforms RSM. Ghobadian et al. [15] studied the application of a multilayer
perceptron (MLP) to predicting exhaust emissions of a diesel engine using waste cooking
biodiesel fuel and showed that MLP performs quite well in emissions prediction. Further
studies in modelling and predicting the performance and exhaust emissions of diesel en-
gines under different conditions can be found in the literature, such as the work of Niu
et al. [37] on the comparison of artificial neural network (ANN) and SVM on emissions
prediction of a marine diesel engine, and the study by Wong et al. [52] on using relevance
vector machine in modelling and prediction of diesel engine performance. Various stud-
ies on the application of ANNs to emissions modelling in diesel engines under different
conditions can be found for example in [34, 42, 55].

In the field of machine learning applications in diesel engine modelling, one of the most
widely used methods is known as extreme learning machine (ELM), which has inspired
many extensions and applications in the diesel engine community since its introduction.
Extreme learning machines are feedforward neural networks, with a single hidden layer
in most cases [19]. ELMs are an alternative to conventional neural networks in the sense
that each hidden unit in an ELM is a computational element, which can be same as clas-
sical nodes in an MLP, as well as basis functions or a subnetwork with hidden units [18].
Vaughan and Bohac [47] proposed an online adaptive Extreme Learning Machine named
Weighted Ring-ELM, which provides real-time adaptive, fully causal predictions of near-
chaotic Homogeneous Charge Compression Ignition (HCCI) engine combustion timing.
Janakiraman et al. [21] proposed a stochastic gradient based ELM (SG-ELM), a stable
online learning algorithm, designed for systems whose estimated parameters are required
to remain bounded during learning. Wong et al. [53] studied the ELM-based modelling
and optimisation approach for point-by-point engine calibration. Silitonga et al. [44] stud-
ied the application of kernel-based ELM [20] for prediction of the engine performance of
biodiesel-bioethanol-diesel blends.

In addition to the above-mentioned studies, there exist a large number of works on the ap-
plication of machine learning to diesel engine calibration and control. For instance, Tietze
[46] studied the application of Gaussian process regression for calibrating engine param-
eters. Jeong et al. [22] applied a hybrid evolutionary algorithm consisting of a genetic
algorithm and particle swarm optimisation to optimise diesel engine design with respect
to decreasing exhaust emissions. Berger and Rauscher [4] and Berger et al. [5] discussed
various learning methods such as linear regression, feedforward neural networks, and GP
regression for modelling and optimisation for stationary engine calibration. Malikopoulos
et al. [30] proposed a reinforcement-learning-based decentralised control method which
allows an internal combustion engine to learn its optimal calibration in real time while
running a vehicle.

In this study, we focus on data-driven engine emissions modelling using deep kernel learn-
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ing [51] – a state-of-the-art machine learning technique which can be viewed as a standard
deep neural network with a Gaussian process as its last layer instead of a fully connected
layer. In this way, we can not only use a deep feedforward network to extract a high-
level representation of the data, but also take advantage of the non-parametric flexibility
induced by the Gaussian process regression. We implement deep kernel learning for a
Diesel engine emission dataset, taking 14 input variables including speed, load, injection
timing and others to make predictions of NOx and soot emissions. We then use a sys-
tematic two-stage procedure to determine several of the hyperparameters in DKL, and
compare the resulting surrogate to a plain deep feedforward network, a plain Gaussian
process, as well as high-dimensional model representation (HDMR).

The paper is structured as follows. In section 2, we discuss in some detail HDMR, deep
feedforward networks, Gaussian processes and deep kernel learning, respectively. In sec-
tion 3, we apply the three methods to the target engine emission data, and compare their
performance. Conclusions are drawn in section 4.

2 Methods

2.1 High Dimensional Model Representation

Here, we briefly recall a well-established surrogate modelling method, High Dimensional
Model Representation (HDMR), which we use as a reference method for comparison.

HDMR is a finite expansion for a given multivariable function [41]. Under its representa-
tion, the output function y can be approximated using the following expression:

y ≈ f(x) = f0 +
Nx∑
i=1

fi(xi) +
Nx∑
i=1

Nx∑
j=1

fij(xi, xj), (1)

where Nx is the dimension of the input space and f0 represents the mean value of f(x).
The above approximation is sufficient in many situations in practice since terms contain-
ing functions of more than two input parameters can often be ignored due to their neg-
ligible contributions compared to the lower-order terms [28]. The terms in Eqn. (1) can
be evaluated by approximating the functions fi(xi) and fij(xi, xj) with some orthonor-
mal basis functions, φk(xi), that can be easily computed. Popular choices for the basis
functions include ordinary polynomials [28] and Lagrange polynomials [2]. Apart from
applications in chemical kinetics, HDMR has been applied in process engineering [43]
and also in engine emissions modelling [26].

2.2 Deep Neural Networks

Deep learning, or deep artificial neural networks, are composed of multiple processing
layers to learn a representation of data with multiple levels of abstraction [27]. Deep
learning has gained exploding popularity in the machine learning community over the
past two decades, and it has been applied in numerous fields including computer vision,
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natural language processing, recommendation systems, etc., due to its ability to find both
low- and high-level features of the data as well as its scalability to high-dimensional input
spaces. However, the construction of deep learning requires specification of many hyper-
parameters including number of epochs, regularisation strength, dropout rate, etc., and
there is no universal paradigm for determining the optimal settings for these hyperparam-
eters. Hence the performance of a deep neural network can heavily depend on engineering
techniques such as architecture specification and parameter tuning.

In our study, we are only concerned with fully-connected neural networks. The goal of a
neural network is to learn the underlying representation of the given datasets. A deep feed-
forward network follows the standard forward propagation and backpropagation to tune
the learnable parameters of the neural network, then use the trained network for further
predictions on similar problems. In Figs. 1 and 2, we show simple graphical representa-
tions for forward and backpropagation in a fully-connected network, respectively.

The architecture of a neural network can be described as a directed graph whose vertices
are called neurons, or nodes, and directed edges, each of which has an associated weight.
The set of nodes with no incoming edges are called input nodes, whereas the nodes with
no outgoing edges are called output nodes. We define the first layer to be the input layer
and the last layer to be the output layer, and all other layers in between are called the
hidden layers. The input data are propagated in a feedforward fashion as follows:

i

j

k

l

Hidden Layer 1

Hidden Layer 2

Output Layer

Wkl

Wij

Wjk

Input Layer

Figure 1: Forward propagation in a 3-layer feedforward neural network. For each unit
in the layers other than the input layer, the output of the unit equals the in-
ner product between all the outputs from the previous layer and the weights
followed by a nonlinearity (e.g. the ReLU function).

Figure 1 shows how input signals are propagated forward in a three-layer fully-connected
neural network, where for each unit in any layer other than the input layer, the input to
the unit equals the inner product between the output signals from all the units from the

6



previous layer and the associated weights:

zj =
∑

i∈previous layer

wijyi

The unit then outputs a scalar by applying a nonlinearity, g, to this inner product: yj =
g(zj). The signals are propagated forward in this way layer by layer until the output
layer is reached. Commonly used non-linear activation functions include the rectified
linear unit (ReLU) f(z) = max(0, z), the sigmoid function σ(z) = [1 + exp(−z)]−1

and the hyperbolic tangent function tanh(z). In this case, we have omitted bias terms for
simplicity.

At an output node, after taking the linear combination of its predecessor values, instead
of applying an activation function, an output rule can be used to aggregate the informa-
tion across all the output nodes. In a regression problem, as opposed to a classification
problem, we simply keep the linear combination as the output prediction.

i

j

k

l

Wkl

Wij

Wjk

𝜕𝐸

𝜕𝑦𝑗

𝜕𝐸

𝜕𝑧𝑗

𝜕𝐸

𝜕𝑤𝑖𝑗

𝜕𝐸

𝜕𝑦𝑖

Figure 2: Backpropagation in a 3-layer feedforward neural network. Computing the
derivatives of the cost function with respect to the weight parameters using
chain rules, then the parameters are updated using gradient descent with the
computed derivatives.

The weights and bias parameters in neural networks are usually learnt via backpropaga-
tion using the cached quantities from the forward propagation stage. Backpropagation,
as represented in Fig. 2, is executed using gradient-descent-based optimisation methods.
Given a cost function, E(ŷ, y), which quantifies the difference between the current pre-
dictions of the output (ŷ) and the actual outputs (y), the derivatives of E with respect to
each weight in each layer of the network can be derived using the chain rule,

∂E

∂zj
=
∂E

∂yj

∂yj
∂zj

,
∂E

∂wij
= yi

∂E

∂zj
, (2)
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where the initial ∂E/∂yj is derived given the activation function and the cost function.
Then we compute ∂E/∂zj , ∂E/∂wij and ∂E/∂yi iteratively for each node i in layer l
and node j in layer l − 1 until we reach the input layer. Then we use methods such as
stochastic gradient descent to update the weights in the network:

wij ← wij − α
∂E

∂wij
, (3)

where α is some scalar known as the learning rate.

Iterative application of forward propagation and backpropagation will gradually decrease
the cost function value in general, and if the cost function is convex in the input space, it
will eventually converge to the global minimum or somewhere close to the global mini-
mum.

The power of neural networks lies in the composition of the nonlinear activation functions.
From the results on universal approximation bounds for superpositions of the sigmoid
function by Barron [3], it can be implied that a neural network with sigmoid activation
can arbitrarily closely approximate a nonparametric regression mode.

Here we only discuss fully-connected neural networks, where the only learnable parame-
ters are the weight parameters wij between each node i in layer l − 1 and each node j in
the previous layer l. For a general review of various architectures of deep learning such as
convolutional neural networks and recurrent neural networks, the reader is referred to [27]
for example.

2.3 Gaussian Processes

A Gaussian process (GP) is a stochastic process, which is a collection of random vari-
ables, with the property that any finite subcollection of the random variables have a joint
multivariate Gaussian distribution [48]. We denote the fact that a stochastic process f(·)
is a Gaussian process with mean function m(·) and covariance function k(·, ·) as

f(·) ∼ GP
(
m(·), k(·, ·)

)
. (4)

The definition implies that for any x(1), x(2), . . . , x(n) ∈ X , where X denotes the set of
possible inputs, we have[

f(x(1)), . . . , f(x(n))
]> ∼ N([m(x(1)), . . . ,m(x(n))

]>
, K
)
, (5)

where the covariance matrix K has entries Kij = k(x(i), x(j)).

Gaussian processes can be interpreted as a natural extension of multivariate Gaussian dis-
tributions to have infinite index sets, and this extension allows us to think of a Gaussian
process as a distribution over random functions. A Gaussian process is fully determined
by its mean and covariance functions. The mean function can be any real-valued function,
whereas the covariance function has to satisfy that the resulting covariance matrix K for
any set of inputs x(1), . . . , x(n) ∈ X has to be a valid covariance matrix for a multivariate
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Gaussian distribution, which implies that K has to be positive semidefinite and this crite-
rion corresponds to Mercer’s condition for kernels [31]. Hence the covariance function is
sometimes also known as the kernel function. One of the most popular choices of kernel
function is the RBF (or squared error) kernel

kRBF(x, x′) = exp
(
− ‖x− x

′‖2

2l2

)
, (6)

where l is a kernel parameter which quantifies the level of local smoothness of the distri-
bution drawn from the Gaussian process.

Gaussian processes have gained increasing popularity in the machine learning commu-
nity since Neal [36] showed that Bayesian neural networks with infinitely many nodes
converge to Gaussian processes with a certain kernel function. Therefore, Gaussian pro-
cesses can be viewed as a probabilistic and interpretable alternative to neural networks.

In our study, the focus of the application of Gaussian processes lies within regression
tasks. Suppose we are given a dataset D = {x(i), y(i)}i=1,...,n, that one may refer to as the
training set, of independent samples from some unknown distribution, where x(i) ∈ Rd

and y(i) ∈ R for i = 1, . . . , n. A Gaussian process regression model is then

y(i) = f(x(i)) + ε(i), for i = 1, . . . , n, (7)

with a Gaussian process prior over the functions f , that is f(·) ∼ GP
(
m(·), k(·, ·)

)
, for

some mean function m(·) and valid kernel function k(·, ·), and the ε(i) are independent
additive Gaussian noises that follow N (0, σ2) distributions.

Suppose we are given another dataset D∗ = {x(i)∗ , y(i)∗ }i=1,...,n∗ , that one may refer to as
the blind-test set, drawn from the same distribution as D. By the definition of a Gaussian
process, we have [

F
F∗

] ∣∣∣∣∣X,X∗ ∼ N
(

0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (8)

where X = {x(i)}i=1,...,n, F represents [f(x(1)), . . . , f(x(n))]>, K(X,X) represents an
n×n kernel matrix whose (i, j) entry is K(x(i), x(j)), and analogous definitions for quan-
tities with asterisk subscripts, e.g. X∗ = {x(i)∗ }i=1,...,n∗ . Then, given the additive Gaussian
noises, the joint distribution of Y = [y(1), . . . , y(n)]> and Y∗ becomes[

Y
Y∗

] ∣∣∣∣∣X,X∗ ∼ N
(

0,

[
K(X,X) + σ2I K(X,X∗)
K(X∗, X) K(X∗, X∗) + σ2I

])
. (9)

Using the rules for conditioning Gaussian distributions, the posterior distribution of the
blind-test data given the training data is then given by

Y∗|X∗, X, Y ∼ N (µ∗,Σ∗) , (10)

µ∗ = m(X∗) +K(X∗, X)[K(X,X) + σ2I]−1Y ,

Σ∗ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X,X∗) .
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Eqn. (10) is the posterior Gaussian process regression model for predictions. The kernel
parameters θ of the kernel function in the Gaussian process regression model can be learnt
by maximising the (log) posterior marginal likelihood

log p(Y |θ,X) ∝ −Y >
(
Kθ(X,X) + σ2I

)−1
Y − log

∣∣Kθ(X,X) + σ2I
∣∣ (11)

with respect to the kernel parameters, where we have emphasised the dependence of the
kernel matrix K on its parameters θ through a subscript.

2.4 Deep Kernel Learning

…

…

…

… …

Hidden 
layers

Input 
layers

……

…… …

… …

… … … … …GP 
layer

w(1)

w(2)

w(L)

k (, )

Output 
layer

Figure 3: Deep Kernel Learning: Input data is propagated in a forward fashion through the
hidden layers of the neural network parameterised by the weight parameters w. Then,
the low-dimensional high-level feature vector as the output of the neural network is
fed into a Gaussian process with a base kernel function kθ(·, ·) for regression. The
posterior mean of the Gaussian regression model is taken as the prediction given the
input data. (Adapted from [51].)

We now briefly discuss the main method we apply as a surrogate model, deep kernel
learning [51]. Deep kernel learning can be intuitively interpreted as a combination of a
deep neural network and a Gaussian process. A graphical representation of a DKL model
is shown in Fig. 3, where we can see that the structure consists of a deep neural network
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followed by a Gaussian process. As mentioned in the previous section, a Gaussian pro-
cess is the limit of a Bayesian neural network with an infinite number of nodes, hence the
Gaussian process at the end of the DKL architecture can be interpreted as another hidden
layer in the deep neural network, but with an infinite number of nodes, and this greatly in-
creases the expressiveness compared to a stand-alone deep neural network. When the data
enters the DKL model, it is firstly propagated in a forward fashion through the neural net-
work. The high-dimensional input data is thus transformed by the neural network into a
lower-dimensional feature vector, which is then used as the input arguments for Gaussian
process regression. The expectation of the resulting posterior distribution is then taken
as the value predicted by DKL as a function of the input data. As Gaussian processes
naturally do not perform well in high-dimensional input spaces, the deep neural network
acts as a feature extractor and dimensionality reduction method for more robust Gaus-
sian process regression. Being a combination of deep learning and kernel learning, DKL
encapsulates the expressive power for extracting high-level features and capturing non-
stationary structures within the data given its deep architectures and the non-parametric
flexibility in kernel learning induced by its probabilistic Gaussian process framework.

We can also view DKL as a Gaussian process with a stand-alone deep kernel. Starting
from a base kernel k(x(i), x(j)|θ) with kernel parameters θ, the deep kernel can be con-
structed as

k(x(i), x(j)|θ)→ k
(
g(x(i), w), g(x(j), w)

∣∣θ, w) , (12)

where g(x;w) is a non-linear mapping induced by the neural network with weight pa-
rameters w. A popular choice for the base kernel k(x(i), x(j)|θ) is again the RBF kernel
(Eqn. 6). Inspired by Wilson et al. [51], we also look at the spectral mixture (SM) base
kernel

kSM(x, x′|θ) =

Q∑
q=1

aq
|Σq|

1
2

(2π)
D
2

exp
(
− 1

2

∥∥Σ
1
2
q (x− x′)

∥∥2) cos〈x− x′, 2πµq〉 (13)

by Wilson and Adams [49], where the learnable kernel parameters θ = {aq,Σq, µq} con-
sist of a weight, an inverse length scale, and a frequency vector for each of the Q spectral
components, and where 〈·, ·〉 denotes the standard inner product. The spectral mixture
kernel is meant to be able to represent quasi-periodic stationary structures within the data.

We denote by γ = {w, θ} the parameters of the DKL model, consisting of the neural
network weight parameters w and the Gaussian process kernel parameters θ. These pa-
rameters are learnt jointly via maximising the log-posterior marginal likelihood of the
Gaussian process (Eqn. 11) with respect to γ.

3 Applying DKL to engine emissions

3.1 Dataset

The dataset used in this work was obtained from a Diesel-fuelled compression ignition en-
gine whose main geometric features are provided in Table 1. The data consists of soot and
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Table 1: Specification of the turbocharged 4-stroke Diesel-fuelled compression ignition
engine used in this work.

Quantity Value

Bore 98 mm
Stroke 120 mm
Connecting rod length 180 mm
Compression ratio 17:1

NOx emissions taken engine-out during steady-state operation at 1861 distinct operating
points. Each of these points is characterised by 14 operating condition variables, which
include engine speed and torque, intake manifold temperature, injection pressure, mass
fraction of recirculated exhaust gas, start, end, and fuel mass of injection, and combustion
chamber wall temperatures. The set of points is spread roughly evenly over the entire en-
gine operating window in terms of speed and load. NOx emissions are measured in units
of parts per million by volume (ppmv) with a nominal error bar of 3% and soot represents
the carbon fraction of emitted particulate matter with a stated measurement uncertainty
of 5%.

Since the numerical values of the soot response vary over several orders of magnitude, it
is necessary to consider their logarithms instead of their raw values. The NOx response
values can be used as is. We split the dataset randomly into disjoint training and blind-test
sets which comprise 90% and 10% of the total, respectively.

3.2 Implementation

In all numerical experiments, our DKL implementation consists of a five-layer fully-
connected network and a Gaussian process with RBF kernel. The neural network employs
the rectified linear unit (ReLU) function [27] as the activation function for each hidden
layer, and all the weights are initialised with the He normal initialisation [16]. We use
the standard root mean squared error (RMSE) loss function, and the Adam optimiser for
optimisation [25].

We implement DKL as a surrogate model into Model Development Suite (MoDS) [6] –
an integrated software written in C++ with multiple tools for conducting various generic
tasks to develop black-box models. Such tasks include surrogate model creation [43],
parameter estimation [24], error propagation [33], and experimental design [32]. Our
MoDS-implementation of DKL uses PyTorch [39] and GPyTorch [9].

All simulations were performed on a desktop PC with twelve 3.2 GHz CPU-cores and 16
GB RAM. Even though MoDS allows parallel execution, all simulations were conducted
in serial in order to simplify quantification of computational effort. For the same reason,
no GPU-acceleration of Torch-based code was considered. We also did not explore the
use of kernel interpolation techniques [40, 50] to speed up GP learning.
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3.3 Network architecture, kernel, and learning parameters

The DKL framework involves learnable parameters such as network weights and kernel
parameters, as well as hyperparameters such as the learning rate, number of iterations,
and number of nodes in each layer of the neural network. Before training can be carried
out, suitable values of the hyperparameters need to be chosen. We approach this in two
ways: Firstly, we make this choice manually, based on previous experience and cross-
validation over a small hyperparameter search-space, and secondly, we employ a sys-
tematic, optimisation-based procedure. In both cases, we determine the following seven
hyperparameters: the number of nodes in each of the four hidden layers, the prior white-
noise level of the Gaussian process, the number of epochs, i.e. training iterations, and the
learning rate.

Table 2: DKL hyperparameters considered for optimisation.

Parameters Lower Bound Upper Bound Scaling Rounded

N nodes Layer 1 1 1000 Log Yes
N nodes Layer 2 1 1000 Log Yes
N nodes Layer 3 1 1000 Log Yes
N nodes Layer 4 1 15 Linear Yes
White noise scale 0.0 0.5 Linear No
Number of epochs 10 1000 Log Yes

Learning rate 0.001 0.1 Log No

The optimisation approach consists of two stages: a global quasi-random search followed
by a local optimisation with a gradient-free grid-based method, both of which are con-
ducted using MoDS. For the first stage, a Sobol sequence [23], a low-discrepancy sam-
pling method, is employed. We generate 1000 Sobol points within the space spanned by
all of the hyperparameters given in Table 2, which also provides the range and scaling
type for each parameter. We then fit the DKL under each of these 1000 hyperparameter
settings to the training data. The quality of each fit is assessed by calculating the objective
function

Φ(θ) =
[ 1

Nb − 1

∑
i∈Ib

(
f(x(i))− y(i)

)2]2
+
[ 1

Nt − 1

∑
i∈It

(
f(x(i))− y(i)

)2]2
, (14)

where f denotes the surrogate model, i.e. the trained DKL, and x(i) and y(i) the exper-
imental operating conditions and responses (soot or NOx), respectively, of the ith data
point. Ib denotes the set of indices belonging to the blind-test data points, and Nb de-
notes their number, whereas It and Nt refer to the analogous quantities for the training
data points. The normalisation of the two parts of the objective function, i.e. the training
and blind-test parts, by the number of points they contain, implies that the two parts are
equally weighted with respect to each another, irrespective of how many points they con-
tain. We tested other forms of the objective function but found empirically that this form
yields the best results. Furthermore, we note that including the blind-test points into the
objective function is not a restriction. In any application, whatever set of points is given,
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it can arbitrarily be split into training and blind-test subsets. Again, we made this choice
because we found empirically that it produces the best results.
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(a) Objective against number of nodes in layer 1.
DKL performs relatively poorly for small num-
bers of nodes in hidden layer 1.
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(b) Objective against number of nodes in layer 4.
Best performance is found for 3 extracted fea-
tures, i.e. 3 nodes in layer 4.

Figure 4: Combined training and blind-test objective function value (Eqn. 14) for 1000
Sobol points in the space of hyperparameters of Table 2. The point with the
lowest objective value overall is circled.

Scatter plots of the Sobol points, showing their objective values against two of the archi-
tecture parameters, are given in Fig. 4. In Fig. 4a, we observe that best performance is
achieved if the number of nodes in the first layer well exceeds the number of inputs. From
Fig. 4b, we conclude that the number of features extracted by the neural network part of
DKL, i.e. the number of nodes in the fourth hidden layer or in other words the number of
quantities fed as input to the Gaussian process, for which the objective function attains its
minimum is three. The objective value deteriorates appreciably for four and five features.

The best Sobol point as measured by Eqn. (14) (highlighted in Fig. 4) is then optimised
further with respect to the white noise of GP, number of epochs and learning rate using
Hooke and Jeeve’s algorithm [17] – a gradient-free grid-based optimisation algorithm
which is also part of MoDS. Since both the Sobol and Hooke-Jeeves method are designed
for continuous variables, we treat the discrete parameters, i.e. the number of nodes in each
layer and the number of epochs, internally as continuous and simply round their values to
the nearest integers when passing them on to DKL. This is also indicated in Table 2. Other
optimisation methods more suitable for discrete problems, such as genetic algorithms, are
expected to perform at least as well, however it is beyond the scope of the present work
to explore this.

We note that the Hooke-Jeeves optimisation step achieves only a relatively small improve-
ment upon the best Sobol point, with the algorithm terminating after 68 and 78 iterations
for NOx and soot, respectively. However, one should bear in mind that DKL training it-
self being based on stochastic optimisation, and thus noise inherently being present in the
quality of the fit, presents a challenge to any local optimisation method. We furthermore
find that there is little to no benefit in including the architecture parameters of the network,
i.e. the number of nodes in the hidden layers, into the Hooke-Jeeves optimisation, so we
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excluded them from this stage.

The average CPU-time for (serial) evaluation of each Sobol or Hooke-Jeeves point was
about 1 minute for NOx and 2 minutes for soot. The reason for the larger evaluation time
for soot is that the optimisation favoured a number of epochs on average about twice as
high for soot as for NOx.

Table 3 shows the best values for the hyperparameters we find using the procedure de-
scribed above. We note that due to the random nature of both the global search and the
DKL training process itself, our procedure does not guarantee a global minimum. The

Table 3: Best values found for the hyperparameters in DKL through optimisation.

Output
N nodes
Layer 1

N nodes
Layer 2

N nodes
Layer 3

N nodes
Layer 4

White noise
scale

Number
of epochs

Learning
rate

NOx 822 46 356 3 0.39 210 0.019
Soot 690 5 6 3 0.48 466 0.026

best values found manually for the hyperparameters in DKL are 1000, 500, 50, and 3 for
the numbers of nodes in the hidden layers, a white-noise level of 0.1, 200 training epochs,
and a learning rate of 0.01.

3.4 Comparison

Table 4: Percentage of predictions within 20% of the experimental value and root mean
square errors of NOx and soot regressions for HDMR and DKL.

Output Surrogate
Percentage w/in 20% of exper. RSME
Training Blind test Total Training Blind test

NOx

HDMR 94.9% 90.3% 94.5% 44.78 69.17
DKL (man.) 99.7% 99.4% 99.6% 22.07 38.93
DKL (opt.) 99.9% 99.5% 99.9% 11.91 34.94

Soot
HDMR 47.6% 36.9% 46.5% 0.17 0.30

DKL (man.) 74.0% 44.0% 71.0% 0.09 0.22
DKL (opt.) 94.4% 56.1% 90.6% 0.05 0.17

Figure 5 shows a comparison of model versus experiment using HDMR and DKL for both
NOx and soot responses. For DKL, two sets of results are shown: One (Figs. (c) and (d))
obtained using the best values for the hyperparameters found manually, and another one
(Figs. (e) and (f)) using the optimised values. The NOx values are scaled linearly, whereas
the soot values are scaled logarithmically. The shaded areas in the plots represent an error
margin of 20% with respect to the experimental values. We note that DKL generally
produces more accurate regression fits for the data than HDMR for both NOx and soot,
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Figure 5: Modelled NOx and soot responses against experimental ones using HDMR and
two sets of DKL architectures and hyperparameter values. Soot values are
logarithmic. For confidentiality reasons, no values are shown on the axes.
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and also that DKL with the optimised hyperparameters is more accurate than with the
manual ones. In the NOx regression with DKL, almost all of the predicted training and
blind-test values lie within 20% of the experimental value and a large majority of the
predictions align closely with the experimental values. For HDMR, although only few
points lie outside the 20% margin, the predictions tend to be distributed further from
the experimental values. For the soot regression, similar behaviour is observed, but in
this case, significantly more predictions lie outside the 20% error bar with respect to
the experimental values. Soot being more challenging than NOx in terms of regression
is entirely expected, due to soot emissions depending much more non-linearly on the
engine operating condition and the measurements being intrinsically much more noisy. In
addition, we note in Fig. 5 that the spread of training points is quite similar to that of the
blind-test points for HDMR, whereas the latter is much wider for DKL, with the effect
being stronger for soot than for NOx. These observations are quantified in Table 4 in terms
of the percentage of points which lie within 20% of the experimental values, as well as
RSME. The blind-test RMSE is indeed seen to be larger than the training error for both
NOx and soot regression, and the difference is larger in relative terms for soot. This is
indicative of over-fitting – a well-known issue with neural networks [45]. Any surrogate
with a large number of internal degrees of freedom is prone to over-fitting, especially if
this number exceeds the number of data points. Given the number of layers and nodes
typically used in a neural network, and hence the associated number of weights, it is clear
that in our case the number of degrees of freedom in DKL is much larger than the number
of available data points. Another factor contributing to over-fitting is the sparsity of the
dataset in the input space, where there are less than 2000 available training points in 14
dimensions. As an aside, an additional consequence of this sparsity is that the variances
predicted by Eqn. (10) are too small to be useful, which is why they are not shown in any
of the plots.

Figure 6 shows density plots of relative values ŷ/y for both outputs for DKL and HDMR,
where ŷ and y represent the predicted and experimental values, respectively. It can be
observed that for both outputs, the relative values for both HDMR and DKL are mainly
distributed near unity, and the majority of the predicted values are within 20% of the
experimental values for both methods for both outputs. However, it is clear from the plots
that the overall distribution of errors of DKL is significantly more centralised at unity than
HDMR for the regression of both outputs as the density is more centralised at unity for
DKL than HDMR for both outputs. It is also clear that the number of predictions within
20% of the experimental value made by DKL is more than those made by HDMR, and
this difference is greater for the soot prediction.

In Table 5, we show a comparison between DKL and HDMR on NOx regression in terms
of their training time and evaluation time. We see that HDMR is significantly computa-

Table 5: CPU-time comparison between DKL and HDMR.

Surrogate Training time [s] Evaluation time [s]

DKL 56 3
HDMR 2 1

17



0.4 0.6 0.8 1.0 1.2 1.4 1.6
Relative response value [-]

0

5

10

15

20

De
ns

ity
 [-

]
DKL
HDMR
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(b) Distribution of relative values of soot response.

Figure 6: Densities of prediction values relative to experiment using HDMR and DKL
regression for NOx and soot emissions, respectively. DKL generates better
predictions in terms of the number of points within 20% of the experimental
values, and the difference is greater for soot.
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tionally cheaper than the DKL method. The training time for DKL is 56 seconds whereas
the HDMR fitting takes less than 2 seconds on the same device. Hence, the trade-off
between accuracy and computational cost needs to be taken into consideration when se-
lecting surrogates for particular applications. It is worth noting that evaluation of a trained
DKL model is computationally much cheaper than its training process, which indicates
that a pre-trained DKL model may be feasible in some near real-time applications. We
furthermore note that a large part of this evaluation time is one-off overhead, such that
batch-evaluation of collections of points can be achieved with relatively minor additional
computational expense.

Table 6: RMSE performance of the considered surrogates on the Diesel dataset.

Output GP (RBF) GP (SM) DNN DKL (RBF) HDMR

NOx 110.06 777.93 34.282 11.91 44.78
Soot 4.77 2.28 0.52 0.05 0.17

Table 6 compares plain Gaussian process regression using RBF and SM kernels, a stand-
alone deep neural network, and DKL with RBF kernel, as well as HDMR with respect
to root-mean-square error (RMSE) for both NOx and soot emissions. We observe that
the performance of deep kernel learning is significantly superior to the plain Gaussian
processes with either the RBF or the spectral mixture kernel on both outputs. This is
consistent with expectation, since, as discussed in section 2.4, the 14-dimensional input
space of our engine dataset would be expected to cause problems for plain GPs. DKL also
outperforms a stand-alone DNN, indicating a genuine benefit in the combination of a GP
and a DNN.

0 50 100 150 200
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RM
SE
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ss
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]

DNN
DKL

Figure 7: Loss history of training DKL as well as a plain DNN for NOx regression.

In Fig. 7, we show the RMSE loss history of the NOx regression for DKL and plain neural
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network during the training process. We observe that the prediction losses with respect
to the experimental values of the DKL training throughout the training process is consis-
tently lower than those of the plain DNN training. Even at the beginning of the training,
it can be observed that the loss for the DKL prediction is lower than for the plain DNN
prediction. This agrees with our expectation due to the existence of a Gaussian process
at the end of DKL, which automatically computes the maximum a posteriori (MAP) es-
timate given the training dataset as the prediction. We can also see that the loss history
curve for the DKL is much smoother than that for the DNN. Hence the RMSE loss of
the DKL training process is a robust estimator for the performance of the trained model
whereas for the DNN training, the RMSE estimates the performance of the model with
larger uncertainty.

From Figs. 5, 6, 7 and Table 6 we conclude that the deep kernel learning shows improve-
ment over HDMR, plain Gaussian processes and plain neural networks in the regression
tasks on the considered diesel engine emission dataset.

4 Conclusions

In this paper, we studied Deep Kernel Learning as a surrogate model for diesel engine
emission data. Instead of using a physical-based model for modelling the complex sys-
tem, we have taken a purely data-driven approach. DKL was applied to a commercial
Diesel engine dataset for NOx and soot emissions comprising 1861 data points, with 14
operating condition variables as inputs. We employed a systematic two-stage procedure,
consisting of a quasi-random global search and a local gradient-free optimisation stage,
to determine seven DKL hyperparameters, which include network architecture as well as
kernel and learning parameters. It was found that the global search, conducted through
sampling 1000 Sobol points, was most effective in identifying a suitable set of hyperpa-
rameters. Local optimisation was found largely ineffective for the network architecture
hyperparameters, but led to minor improvement for the kernel and learning parameters.
We compared DKL to standard deep feedforward neural networks, Gaussian processes,
as well as HDMR, and the results indicate that, overall, DKL outperforms these methods
in terms of regression accuracy as measured by RMSE on the considered 14-dimensional
engine dataset for NOx and soot modelling. Further research themes could involve de-
signing DKL with non-stationary kernel functions to deal with the heteroskedasticity of
the input arguments.
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