Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 — 4273

A Smart Contract-based agent marketplace for
the J-Park Simulator — a Knowledge Graph for
the process industry

Xiaochi Zhou!, Mei Qi Lim!, Markus Kraft!2-3

released: 17 September 2019

' CARES 2 Department of Chemical Engineering
Cambridge Centre for Advanced Research and and Biotechnology
Education in Singapore, University of Cambridge
1 Create Way, New Museums Site
CREATE Tower, #05-05, Pembroke Street
Singapore, 138602 Cambridge, CB2 3RA
United Kingdom

E-mail: mk306@cam.ac.uk

3 Nanyang Technological University,
School of Chemical and
Biomedical Engineering,

62 Nanyang Drive,
Singapore,
637459

Preprint No. 240

Keywords: Blockchain, Smart Contracts, agent marketplace, Knowledge Graph

mailto:mk306@cam.ac.uk

Edited by

Computational Modelling Group

Department of Chemical Engineering and Biotechnology
University of Cambridge

West Cambridge Site

Philippa Fawcett Drive

Cambridge CB3 0AS

United Kingdom

Fax: + 44 (0)1223 334796
E-Mail: cde@cam.ac.uk
World Wide Web: https://como.ceb.cam.ac.uk/

mailto:c4e@cam.ac.uk
https://como.ceb.cam.ac.uk/

Abstract

The chemical industry is increasingly relying on agents for data acquisition, opti-
mization, and simulation. In order to enable efficient management of agents, Knowl-
edge Graphs (KG) together with agent composition frameworks are therefore ap-
plied. However, a method to assess the reliability of agents for such systems is
absent. Therefore, this paper proposes a Smart Contract-based agent marketplace
for composition frameworks to estimate the reliability of agents. In this agent mar-
ketplace, we improved the feedback-based reputation system by leveraging Smart
Contracts to eliminate fraudulent ratings and to enable automation. The marketplace
incorporates a rating-dependent payment mechanism as well, to further enhance the
trust. The paper also illustrates how this marketplace is integrated into the J-Park
Simulator (JPS) agent composition framework for the automated agent selection and
transaction.

Agent marketplace

Agent Record Agent Performace
Lookup Evaluation

T A
i — A
veers Comp® g P/ayment A

Agents
Smart coptracts

Blockchain infrastructure

I

Bldck 11

Block 12

Nodes

Highlights

e A novel decentralized and automated agent marketplace is built on top of
blockchain-based Smart Contracts.

e The agent marketplace is integrated into an agent composition framework, to
support automated agent selection and payment.

1 Introduction

The progress in information technology changes the field of chemical engineering at an
increasing pace. For example, the number of web services or agents that provide functions
relevant to chemical engineering over the internet or intranet is increasing. They are used
for data acquisition, simulation, and optimization. For instance, the two thermodynamic
databases, NIST chemistry webBook [2 1] and Mol-Instincts [2] provide agents that allow
retrieval of thermodynamic data.

However, due to the heterogeneity and the increasing number of agents, it is challenging
to enable their efficient discovery and coordination. A solution to this problem can be
achieved by embedding agents into a Knowledge Graph (KG) which enables automated
management of agents [|, 31]. Knowledge Graphs are sets of inter-connected classes, re-
lations, and instances that are semantically described, i.e., each distinct information is de-
noted by an unique Uniform Resource Identifier (URI) . Due to the unique mapping from
URISs to classes or instances, semantic descriptions are explicit and machine-readable. A
collection of the semantic concepts providing vocabularies to build KGs is called Ontol-
ogy. Within the KGs, information such as the I/O signatures and prices of agents are
described on top of agent Ontologies such as OntoAgent [3 1] so that functions, request
formats, and other properties of agents can be interpreted by computer programs. Thus,
systems interacting with agents automatically, such as agent composition frameworks and
agent registries, are enabled in KGs.

The J-Park Simulator (JPS) [1 1, 31] is an example of such a KG and serves as a research
platform to explore how internet technologies can be used to achieve interoperability be-
tween different domains. It contains the semantic descriptions, based on OntoAgent, of a
set of agents across multiple domains. On top of the agent descriptions, an agent composi-
tion framework has been implemented for the automated creation of composite agents for
complex tasks consisting of interconnected sub-tasks. A composite agent selects atomic
agents from the KG and put into a sequence based on their I/O signature (i.e., the data type
of their inputs and outputs). After creating a composite agent, the composition framework
executes the composite agents.

Any composition framework faces the problem of assessing the atomic agents’ perfor-
mance and reliability. In other words, the framework needs to know whether an agent
can be trusted. For example, the consistency and the comprehensiveness of thermochemi-
cal data for chemical species, provided by a thermodynamic database agent, significantly
affects the accuracy, predictive performance and quality of the models that utilize this
data [4]. In addition, agent performance and reliability are important selection criterion
within the agent composition framework when there are multiple functionally identical
agents available. Therefore, it is critical to provide credible information of the perfor-
mance and reliability of the agents.

A most traditional way to endorse the trustworthiness of an entity (e.g. an agent) is to
establish an authority to qualify and monitor the agents so that their quality and integrity
is guaranteed. However, such a solution can not handle the vast number of agents in
KGs because investigation and examination are time-consuming. Another solution is the

1https ://www.w3.0rg/Addressing/URL/uri-spec.html

https://www.w3.org/Addressing/URL/uri-spec.html

contract-based solution, where contracts define the rights and duties of the parties in ad-
vance, and the violation of the terms will lead to consequences. However, the enforcement
of the contracts is challenging due to the large scale of KG. Besides the scalability prob-
lem, the two aforementioned solutions rely on human-intervention, which is too slow to
cope with the highly automated nature of the agent composition framework.

Among all the solutions to access performance and reliability, feedback-based reputation
systems are considered as the most cost-effective and scalable one. A typical reputation
system is administrated by a single party (e.g. a hotel review website). It collects users’
ratings for a vendor or product after a transaction and calculates a cumulative rating upon
all the historical ratings, forming a quantified reputation score. Such a score allows the
users to assess the reliability of the vendor or the quality of the product before the pur-
chase, and hence establishes the confidence of the users for this purchase [14, 22]. The
feedback-based reputation system is scalable and cheap, as it does not rely on designated
institutes to evaluate the quality of products. As a result, it is adopted by virtually all
electronic commerce platforms. Meanwhile, barely any human intervention is required
to manage such a system [14, 22] so that the system can operate automatically. Such a
solution is scalable and compatible with automated systems.

However, the current implementation suffers from persistent problems of rating frauds,
from both users and the administrators [13, 16, 24], which discredit the reputation sys-
tem. Firstly, the higher ratings lead to more profit [29] so the users (e.g., vendors on
e-commerce platforms and agent providers in KGs) may insert unjustly high ratings to
promote a product or service and inject unfairly low ratings to demote competitors. There-
fore, the ratings will fail to reflect the quality of the products. One of the existing solu-
tions is to analyze the ratings and filter out the malicious ones. Many filters have been
built [17, 26, 28]. However, when the profit for creating a fraudulent rating surpasses its
cost, the well-funded dishonest rating could be deliberately masked as regular ones, mak-
ing it harder to distinguish malicious ratings. For the case of KGs, the commercial agents
involved are usually of high value. For example, in our use case the ADMS agent is built
on top of the Atmospheric Dispersion Modeling System (ADMS)-, a proprietary software
with a substantial cost per license. Consequently, the profit per call will be high too.
Therefore, if a feedback-based reputation system is implemented for the the composition
framework, it is even more likely to encounter fraudulent ratings from agent providers.
Secondly, the mainstream designs of reputation systems are centralized, which means the
functions of cumulative score calculation and score look up, and score storage are con-
trolled by designated administrators, which could also behave dishonestly. For example,
an administrator may take bribery from an agent provider to tamper the scores of their
agent. Clearly, the countermeasures against frauds from agent providers are no longer
applicable.

With the advent of the blockchain technology, some decentralized designs are proposed to
address this problem. A blockchain, which will be further illustrated in Section 2.2, pro-
vides tamper-proof and decentralized storage of data. Since a blockchain is managed
without a central authority, several blockchain-based decentralized reputation systems
have been created. [9] proposed a blockchain-based P2P reputation
system for file transaction. [7] designed an incentive-based feedback reputation

2https ://www.cerc.co.uk/environmental-software/prices.php

https://www.cerc.co.uk/environmental-software/prices.php

model on top of the Bitcoin blockchain. These designs successfully established reputation
systems without centralized control over them while guaranteeing the integrity of repu-
tation records. However, the mentioned models could not implement functions such as
score calculation and service searching without a centralized third party, as a blockchain
could only provide decentralized management of data but not the implementation of func-
tions. For example, the calculation of the cumulative score is exposed to manipulation by
this third party. Consequently, the scores are still vulnerable to dishonest behaviour.

In order to implement a score calculation in decentralized ways, the blockchain-based
Smart Contract, which will also be explained in details in Section 2.2, is proposed to
provide decentralized control over the implementation of functions [5]. [6]
proposed a reputation system in which the cumulative performance score of an agent is au-
tomatically calculated and managed by the Smart Contracts and stored in the blockchain.
This solution takes one step further; it not only guarantees that the performance records are
tamper-proof but also secures the integrity of the calculation of the cumulative score.

[15] also provided a Smart Contract-based solution for a decentralized service mar-
ketplace, which integrates functions such as match-making, transaction settlement, and
dispute resolution. However, both solutions rely on the feedback from users. Conse-
quently, although the Smart Contract-based solution prevents the risk of frauds from ad-
ministrators, it still exposes the reputation system to the risk of rating frauds from the
users.

In conclusion, to the best of our knowledge, a mechanism to provide credible agent perfor-
mance record that could cope with the highly automated nature of an agent composition
framework and the large scale KGs as well as resistant against fraudulent ratings from
both users and administrators is absent.

The purpose of this paper is:

e To present a novel design of a Smart Contract-based feedback reputation system
that allows an agent composition frameworks in a KG to assess the reliability of
agents while ensuring that the design is scalable, compatible with highly automated
systems, and invulnerable to rating frauds from neither users nor administrators.

e To demonstrate a use case which integrates the agent marketplace with the JPS
agent composition framework, to facilitate its agent selection.

The remaining parts are structured as follows. Section 4 explains the technologies lever-
aged by the agent marketplace. Section 3 illustrates the design and implementation of
the Smart Contract-based agent marketplace in detail. Section 4 demonstrates how we
integrated this agent marketplace with the JPS agent composition framework. Section
discusses the limitations of the current work while Section 5 provides plans for the future
improvement. Section 7 outlines the conclusions for this paper.

2 Background

In this section we provide some information on the J-Park Simulator (JPS) and Etheruem
Smart Contracts. The JPS will provide the environment in which we built our use case and

4

demonstrate the effectiveness of our solution. Etheruem Smart Contracts is the specific
technology we have chosen to develop our solution and the section below summarises
some key features useful to understand the technical aspects of the paper.

2.1 J-Park Simulator

Large cross-domain systems such as Industrial Symbioses, chemical plants, and cities
are constituted by components such as power generators, storage tanks, and buildings,
which are from diverse domains. In order to achieve complex tasks including running
simulation and optimization and coordination of multiple components, the relevant data,
knowledge and models must be integrated. However, the communication friction due to
the heterogeneous conventions across domains hinders such an integration. Therefore,
JPS is developed to provide a data management common ground for those components
and enable semantic interoperability, so that cross-domain integration could be enabled.

For example, on top of JPS, [30] proposed a methodology to use the ontologies
for the modelling and management of eco-industrial parks (EIPs) and their components.
They also applied such a methodology to increase the efficiency of intra-plant waste heat
utilization. The waste heat utilization between chemical plants on Jurong island in Singa-
pore is hindered due to the communication friction between them caused by the heteroge-
neous terminologies. With the explicitness of ontology descriptions, intra-plant waste heat
utilization opportunities could be better found. In addition, [10] gave an
example of using the JPS cross-domain KG to access financial and geographical informa-
tion of potential sites for the optimal placement of Small Modular Reactor (SMR). Such
an approach is enabled by the KG’s capability to effectively incorporate cross-domain
data and provide convenient access to them.

To constitute the JPS cross-domain KG, a set of ontologies are developed or incorporated,
which contains structured and connected knowledge and data that are represented seman-
tically, i.e. concepts and individuals are denoted by Uniform Resource Identifiers (URIs).
As each URI uniquely points to a distinct concept or individual (e.g. dbr:Cambridge
and dbr:Cambridge,_Massachusetts” each denotes "Cambridge" in the UK and the US),
the data representation is explicit and unambiguous. The explicitness also makes the data
and knowledge machine-readable. A collection of the explicitly declared concepts and
individuals are referred to as an ontology [25]. Further, a collection of inter-connected
ontologies integrated for a certain purpose is considered as a KG according to our under-
standing.

As shown by Figure 1, the JPS KG consists of the domain ontologies and the agent on-
tology. The domain ontologies are utilized to model knowledge, data, and entities in a
wide range of fields. For instance, OntoCAPE [19] is integrated to describe concepts and
individuals that are related to chemical process engineering. Starting from OntoCAPE,
OntoEIP [30] is developed to model eco-industrial parks. Moreover, OntoCityGML, On-
toKin, and OntoEngine [12] are included to cover the field of city modelling, chemical
kinetics, and internal combustion engines. Those ontologies are used collectively to pro-

3http ://dbpedia.org/resource/Cambridge
4http ://dbpedia.org/page/Cambridge, _Massachusetts

http://dbpedia.org/resource/Cambridge
http://dbpedia.org/page/Cambridge,_Massachusetts

Agents

Agent composition
framework

; A :.7Compose ;
* Composition |

agent

A

&

Atomic

: Composite
’ agent

Berlin

}
Heizkraftwerk

agent Mitte
O ~
Composition Engirie009 Chimneyp02
agent agent I
O — Strea!'l004
4 Atomic Nitrogen Dioxide
Execution agent Emission Rate
agent
| OntoKin | | OntoCAPE | | OntoEngine | OntoCityGML
Agent ontology Domain ontologies

Figure 1: The JPS KG and agents: a) the JPS KG (blue layer) contains both the agent
ontology (left) and the domain ontologies (right). b) each ontology includes the
terminology (green boxes) and the instances (pink nodes for agent instances
and blue nodes for domain ontologies). c) the agent layer (pink layer) includes
an agent composition framework, which creates and executes composite agents.
d) agents in action are triangles. The black solid arrows represent the mapping
between the same agents on the two layers and the blue arrows denote the data
stream between the agents and the domain ontologies.

vide knowledge and data for cross-domain simulation and optimization.

However, those ontologies must be continuously managed and updated due to the dynam-
ical nature of the real-world components such as cities, eco-industrial parks and industrial
cooperation systems. Therefore, agents for data acquisition, optimization, simulation,
etc. are implemented to update and maintain the KG. To enable semantic access of those
agents for other components on the JPS platform, semantic individuals of the agents are
described by the OntoAgent [|] ontology. For an agent instance, OntoAgent describes its
I/O signature by assigning domain ontology concepts to its inputs and outputs, so that ma-
chines can interpret the agent’s function, discover agents according to I/O requirements,
and also make I/O based matchmaking between agents.

On top of the semantic description, an agent composition framework is implemented in
the JPS KG. Such a framework can automatically discover, select, and arrange agents
from the KG in order to generate a composite agent to fulfill complex tasks. Given a user
defined 1/0 requirement for the composite agent, the framework will iteratively discover
and match agents based on their I/O to fill the gap between the given 1/O requirement.
For example, the upper part of Figure 7 demonstrate the structure of a composite agent
that takes reaction mechanism and region as inputs and produces air dispersion as the
output. The atomic agents, which provide the intermediate steps in this complex task,
are connected according to their I/O to constitute a composite agent that simulates air
dispersion within a particular area.

However, in a composite agent generated by the framework, it is possible that there are
multiple agents providing the same functions. Therefore, an optimization module is also
implemented in the framework. The optimization module implemented for the framework
select out the optimal agent among functionally-identical ones by ranking the agents with
regard to their performance scores. However, due to the lack of scalable and secure ap-
proach to provide reference for agent selection, those functionally identical agents are
assigned with arbitrary performance scores before we successfully implemented the out-
come of this paper.

In addition, the framework comes with an execution agent, which is able to automati-
cally execute the composite agent after the optimization process. It executes the atomic
agents by constructing and sending HTTP request according to the semantically described
grounding information of the agents. By feeding the outputs of an upstream agent to the
connected downstream agents, the execution agent executes all the atomic agents in se-
quence to produce the output(s) of the composite agent.

2.2 Blockchains, Etheruem Smart Contracts and Oraclize

In this paper, we implement the Smart Contract-based agent marketplace on top of the
Ethereum blockchain to address the problem of supplying a credible agent performance
record in the JPS. Ethereum [5, 27] is a blockchain that designated to support the deploy-
ment of Smart Contract-based decentralized applications (DAPPs). The same as other
mainstream blockchains, the Ethereum blockchain is a chain of data blocks shared on a
P2P network. Each of the blocks contains the hashed transaction record or other general
data within a specified period as well as the hashed previous block, namely the previous

hash. As a result, if the data within a block is modified, its hash will then fail to match
to the subsequent block’s previous hash. Therefore, by iteratively verifying whether a
block’s previous hash accord with the prior block, which only takes minimal computation
power, a user on the blockchain could verify the integrity of all the record stored on a
blockchain. Consequently, to modify the data on a specific block while not failing the
integrity check, one must re-calculate the previous hash of all the subsequent blocks.

Besides, Ethereum and many other blockchains implemented proof-of-work systems to
increase the difficulty to re-calculate hashes of the whole blockchain. The proof-of-work
systems increase the amount of computation required to create a new block so that an enor-
mous amount of computational power or time is necessary to re-calculate the blockchain.
As a result, the historical records in the blockchain are secured.

Also, each node on the P2P blockchain network keeps a full copy of the blockchain, and
a new block can only be appended to the blockchain if the majority of the nodes have
verified the block. Therefore, the authority of validating new records can not be easily
seized by a malicious party.

Thus, by its design, the data stored on a blockchain is tamper-proof, and a blockchain
could be implemented without a centralized authority. Figure 3 illustrates the structure of
a blockchain. The tamper-proof and decentralized data storage of the blockchains enabled
a series of applications in the chemical industry. For instance, [23] proposed
a machine-to-machine electricity market in the context of the chemical industry built on
the MultiChain blockchain.

However, blockchains only provide the secure and decentralized storage of data. In or-
der to enable more complex blockchain-based applications, blockchains must also sup-
port secured and decentralized code implementation. Therefore, on top of these fea-
tures of proof-of-work blockchains, some blockchains start to support blockchain-based
Smart Contract. The major ones are Bitcoin [20] and Ethereum [18]. However, the
Bitcoin blockchain only provides a limited set of functionalities for their Smart Con-
tracts [8]. Therefore, we chose to implement the agent marketplace on top of the Ethereum
blockchain, which is of higher versatility. On the Ethereum blockchain, Smart Contracts
are bytecodes that are published on the blockchain via transactions; therefore, same as
other data on the blockchain, the bytecodes are inherently tamper-proof. Currently, So-
lidity’ is the main language used to develop Ethereum Smart Contracts. The Ethereum
blockchain inludes Ethereum Virtual Machines (EVM). The EVMs, which are installed
on each node locally, assures that for the same code executed, the same result is produced.
Therefore, with EVMs and the tamper-proof nature of the Smart Contracts code on the
blockchain, carrying out of the functions of the Smart Contract can not be intervened. As
a result, Smart Contracts serve as trustworthy and autonomous nodes to enforce activities
on the blockchain.

Identical to other nodes on the blockchain, Smart Contracts are assigned with blockchain
addresses (in the form of a hexadecimal number) so that they can receive transactions
from other nodes. Smart Contracts can possess Ether, the cryptocurrency on the Ethereum
blockchain, and make transactions to other nodes too. This a feature allows Ethereum
Smart Contracts to carry out tasks that involve financial transactions.

5https ://solidity.readthedocs.io/en/v0.5.11/

https://solidity.readthedocs.io/en/v0.5.11/

Another feature of the Ethereum Smart Contract is that they can store data. Each variable
declared in the code of the Smart Contract is assigned with an address on the blockchain.
By making a transaction, the Smart Contract updates the variable value, and the nodes
with permissions can read the value of the variable locally through the Smart Contract.
This feature allows the Smart Contracts to manage a database that stores general data. For
example, the performance scores of agents.

However, compared with traditional applications, the Smart Contract-based DAPPs have
some restrictions due to the blockchain infrastructure. For instance, Smart Contracts are
not allowed to make direct HTTP requests to the Internet, to guarantee the predictability
of activities on the blockchain. One of the criteria for the credibility of a blockchain is
that all the change of states on it can be precisely reproduced based on the transactions
records. However, an HTTP request may return different results with the same input. As
a result, the Smart Contracts can not receive any data, including the result of an HTTP
call, other than explicit transaction from other nodes on the blockchain.

Therefore, the Oraclize [3] service is used to make delegated HTTP requests for the Smart
Contracts. The Oraclize service sets up Smart Contracts to receive the call for making
HTTP requests, from other Smart Contracts. The Oraclize Smart Contract will then pass
the requests through transactions to the Oraclize servers, which are also nodes on the
blockchain, to make the HTTP requests off the blockchain. After the result of the HTTP
request is returned, the Oraclize server will deliver it to the Oraclize Smart Contract.
Finally, the Oraclize Smart Contract will return the result to the calling Smart Contract.
As a result, the Smart Contract could make HTTP request indirectly via the Oraclize
service.

In addition to the features of Smart Contracts themselves, some tools are implemented
to test and inspect Smart Contracts. Besides the Ethereum main blockchain network,
Ethereum also provided a test network named Rinkeby”. On the main network, Ethers
(the cryptocurrency used on the Ethereum) are acquired from mining and purchasing;
therefore, the Ethers are of real-world market value. To avoid financial losses while test-
ing Smart Contracts, we deploy and hence test our Smart Contract on the Rinkeby test
network. On the Rinkeby network, Ethers are arbitrarily assigned to accounts and there-
fore of no real-world value.

Moreover, websites such as Etherscan are tools for inspecting Smart Contracts. As shown
in Figure 2, through the Etherscan website, one can investigate the address and the byte-
code of the Smart Contract. If the developer has uploaded the source code of the Smart
Contract, it also verifies whether the source code accord with the bytecode published.

We have now introduced all elements to present our solution to the above defined problem
of a secure agent scoring system within our development platform JPS.

6https ://www.rinkeby.io

https://www.rinkeby.io

m’ Et,hePSCBIl All Filters ~ ~ Search by Address / Txn Hash / Block / Token / Ens n

Rinkepy Testnet Network Home Blockchain « Tokens ~ Misc ~ Rinkeby

8 Contract 0xa5F7f0b49861E4b26cE19F217b416a0a1c0931B7 © =

Transactions Contracts Events

Read Contract Write Contract

© Contract Source Code Verified (Exact Iatch) y:\

Contract Name Ballot Optimization Enabled Yes with 200 runs

Compiler Version v0.4.22+commit.4cb486ee Evm Version default

Contract Source Code (Solidity) ﬂ

< e o
* Source Code first verified at https://etherscan.io on Monday, May 27, 2019
(uie) =/

pragma solidity 4@.4.22;

- VSN

7 /// @title Voting with delegation.
8~ contract Ballot {
9 // This declares a new complex type which will

18 // be used for variables Later.

il // Tt will represent a single voter.

12~ struct Voter {

13 uint weight; // weight is accumulated by delegation
14 bool voted; // if true, that person already voted
15 address delegate; // person delegated to

16 uint vote; // index of the voted proposal

17 3

18

19 // This is a type for a single proposal.

20~ struct Proposal {

21 bytes32 name; // short name (up to 32 bytes)

22 uint voteCount; // number of accumulated votes

23 }

24

Figure 2: The screenshot of a Smart Contract information page: a) in the red box is the
addpress of the contract, which is a hexadecimal number. Knowing this address,
other nodes on the blockchain can make transactions to the contract or call its
functions. b) within the green box, it shows that this Smart Contract is verified,
in the sense that its compiled bytecode published on the blockchain accord with
the source code. c) in the gray box is the source code of this contract submitted
by the author, which is written in Solidity language.

10

3 Agent marketplace

In order to address the aforementioned fraudulent rating problem of the current feedback-
based reputation systems, we augment Smart Contracts, to provide quantified data with
the aim to, firstly, evaluate the trustworthiness of the agent, secondly, to select the optimal
agent among functionally identical ones and, thirdly, to introduce a payment mechanism
making financial transaction between participants after invocation of the chosen agent.
The two systems then constitute an agent marketplace that provides most of the core
functions for agent selection, evaluation, and employment as shown in Figure 3. The
Smart Contracts making up this agent marketplace is developed in the Solidity’ language
and published on the Ethereum Rinkeby test network.

Agent marketplace

Agent Record Agent Performace
Lookup Evaluatlon

Users \ /
Compensation Payment

Smart coptracts

Agents

Blockchain infrastructure

-94— —

E _Pre\r Hash __Timestamp E
Nodes

Figure 3: The Smart Contract-based agent marketplace: a) the agent marketplace (the
green layer) is established with Smart Contracts on top of a decentralized
blockchain infrastructure (the gray layer), which is updated and validated by a
number of connected nodes collectively. b) The Smart Contracts are compiled
bytecode published on a blockchain (black arrows). In this agent marketplace,
functions including transactions to users and agents, agent record lookup, and
agent performance evaluation are implemented with Smart Contracts.

7https://solidity.readthedocs.io/en/vo.4.24/

11

https://solidity.readthedocs.io/en/v0.4.24/

3.1 Reputation system

As mentioned above, building the reputation system on top of users’ feedback may lead
to frauds. However, the features of the tamper-proof code and the decentralized execution
of the blockchain-based Smart Contracts enabled a solution to this problem. With these
two features, Smart Contracts are used to call agents, to evaluate agent performance, and
to manage reputation records independently and hence to prevent fraudulent feedback.

As illustrated in Figure 4, to employ an agent, the user (the agent composition frame-
work) needs to call the invoke() function, providing the Etheruem address of the agent (a
hexadecimal number that points to the agent provider’s Ethereum account) and the input
data for the request. Subsequently, the Smart Contract will check the user’s deposit bal-
ance with the check_deposit() function. If the balance is sufficient, the Smart Contract
will make an HTTP call through function _call(), which will search for the agent URL
according to the given Ethereum address, compose an HTTP request, and finally delegate
the request to the Oraclize service. As introduced in the Background section, the Oraclize
service allows Ethereum Smart Contracts to make HTTP requests for the agents through
it. When the HTTP request for the agent returns the results, the reputation Smart Contract
will receive it via the __callback() function, which will then return the result to the user.

Simultaneously, the evaluate_performance() function will be triggered to evaluate the
performance of this agent invocation based on the result received. This function will
then calculate the performance score on top of a domain-specific agent evaluation matrix,
which varies between different reputation Smart Contracts for different agents, and the
returned result. For example, the weather agents are evaluated based on their comprehen-
siveness of data. In the agent composition case to create a composite agent to simulate
the pollutant dispersion in an urban area, weather agents are expected to provide a series
of weather data including the wind direction, wind speed, temperature, precipitation, efc.
Since the more factors are taken into consideration the more precise the simulation is,
whether a weather agent provides a comprehensive set of weather data is the most criti-
cal factor in its performance evaluation matrix. In this case, the evaluate_performance()
function goes through the semantically structured weather data and counts the URIs of
the data entries such as wo:hasPrecipitation®. The number of the data entries involved
would be the performance score in this simple example. Such an automated and inde-
pendent performance evaluation is only enabled when the agents that are parts of the KG.
As mentioned above, the agents within the KG share the common ground for data ex-
change and are inter-operable. As a result, agents from different sources do not have the
problem of heterogeneous I/O format. Therefore, the Smart Contracts to evaluate them
could evaluate them based on their outputs by the same method as shown in the function
evaluate_performance().

Subsequently, this function updates the reputation records of this agent and triggers the
payment mechanism, which the next subsection will introduce in details.

8https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/WeatherOntology.owl#hasPrecipitation

12

Composition

framework Contract Agent
A % ©
| invoke ':) ! :
| (agent_addr, data) I check_deposit (user_addr): I
' I L I
|Alternative . |
ﬂ-l e . ?fmd_url (agent_addr) : :
[Su |IC|ent eposit] : call (url, data) _I |
| I | call (url, data) |
| | |
[I | result |
: result_with_ L_ result_with_authenticity_proof _r_ O
| authenticity_proof ™ === | |
| T | [
| I evaluate_performance | |
: score (result, user_addr, } \
| : agent_addr) : :
: I . update_record I |
| (score,agent_addr) : :
e e N =

[Insufficient deposit]

: emit_insufficient_
| balance(user_addr)
[

Figure 4: UML diagram for the agent reputation system: a) the process of performance
evaluation start from the user making a request to invoke an agent, providing
the hexadecimal address of the agent (invoke(agent_addr,data)). b) with suf-
ficient deposit, the contract will delegate the invocation of agent to Oraclize
service, which returns the result with authenticity proof. Based on the result,
the Smart Contract will make an evaluation on the performance and then up-
date the new cumulative score. From this point, the payment mechanism will
be triggered, which is illustrated in Figure 5 c) with insufficient deposit, the
contract will notify the user.

3.2 Payment mechanism

The payment mechanism is made after the invocation which is proportional to the perfor-
mance evaluated and is conducted automatically by the Smart Contracts. Such an imple-
mentation is enabled by the feature that the Ethereum Smart Contracts could receive and
transfer funds from and to other Ethereum accounts. Meanwhile, such a design enable
the payment mechanism to pay the users a compensation instead when the performance
is lower than a certain threshold or the agent failed to provide a service. This feature
further enhances the user’s trust for the agents as they would automatically receive finan-
cial compensation for bad agent performance. Figure 5 demonstrates the working flow
of the payment mechanism and the Appendix shows the Solidity source code of the
implementation. The payment system is based on a deposit system. Both the agents and

13

Composition
framework Contract Agent

A e JAN

I I I
Registration process

$ register_as_agent(deposit,url,price)

$ register_as_user(deposit)

_y__

Payment mechanism
: evaluate_performance
:] (result, user_addr,agent_addr)
| score

| |
| |
| |
| |
| |
: D calculate_payment(score) :
| I
| |
|
|
|
|
|

| payment

[pay the agent] deduce_deposit (user_addr, payment)
X I $ transfer(agent_addr, payment)

i
[Compehsatatheltiset deduce_deposit (agent_addr, payment)

§ transfer (user_addr, payment)

Figure 5: UML diagram for registration and payment mechanism: a) to register, the user
need to pay a deposit to the contract through the register_as_user(deposit)
function. (the $ sign denotes a payable function). b) an agent register with its
HTTP URL and its price for one invocation besides deposit. c) the transaction
is triggered when the invocation process is finished and the agent performance
is evaluated. Based on the score, the contract will calculate the amount of
payment or compensation and then conduct the transaction.

users are required to register and pay a deposit in order to join the agent marketplace.
The registration processes are implemented in function register_as_agent() and function
register_as_user. An agent must provide its URL and the price for each invocation to
register and pay an amount of deposit defined by the Smart Contract. The address of
Ethereum node that registers this agent will be recorded as the Ethereum address of the
agent, such an address will serve as the identifier of this agent within the agent market-
place. A user also needs to make a deposit. Subsequently, the Smart Contract will include
them in the agents or user list and update the list on the blockchain. These lists are also
accessible to other nodes on the blockchain through functions get_all_agents_address()
and get_agent_record() so that other nodes could lookup the agents reputation records.

Since the Smart Contract can make an unbiased evaluation and can not be manipulated, it
can be trusted to control the deposit of users and agents and make the payment by itself
through the blockchain’s secured financial transaction layer. When a call to the agent and
the according evaluation is completed, the Smart Contract will calculate out the amount of

14

payment with the function calculate_payment() and then make the transfer via the built-in
transfer() function of the Smart Contract.

4 Use case

This use case demonstrates how we implemented the agent marketplace in the JPS to
provide credible reference for performance-based agent selection.

As introduced in the background section , the JPS agent composition framework needs to
select the optimal agent when there are multiple functionally-identical ones available in
the JPS KG. However, before implementing the outcome of this paper, it faces the prob-
lem of the absence of credible sources of the agents’ performance and reliability. Because
of the vast number agents in the JPS KG, the distributed nature of their implementation,
the dynamic nature of their performance, and the automated nature of the composition
framework, it is impossible to evaluate their performance through an institute or to use
contracts to guarantee their performance. Although the feedback-based reputation system
offers a scalable solution for the problem, it is not suitable for the JPS agent composi-
tion framework as it is vulnerable to fraudulent ratings. A considerable number of JPS
agents are high-value simulation/optimization agents, such as ADMS and SRM". As a re-
sult, if a feedback-based reputation system is implemented for the JPS agent composition
framework, there is a high risk of rating frauds against it.

Therefore, the agent composition framework is connected to the the Smart Contract-based
agent marketplace for the access of agent performance records. As shown in Figure 6, the
Smart Contract-based agent marketplace will store and manage the performance record
of the agents within the JPS KG, provide the agent composition framework the access
to these records, and automatically evaluate the performance of agent after its execution
under the agent composition framework.

As shown in the Figure 7, in this use case the composite agent required has the inputs
reaction mechanism and region and it’s output is the type air dispersion . Such a com-
posite agent can be used to evaluate the suitability of proposed locations of installing a
new power plant or chemical plant or to assist evacuation planning in case of emergency
such as tank leakage. Eight agents are put into the composition result but there is a redun-
dancy when it comes to the agents that provide the weather data in a particular city. The
three weather agents built on top of AccuWeather' ', Yahoo Weather -, and OpenWeath-
erMap '~ accordingly. The agents wrapping around these web services take the URIs of
cities and return the detailed and semantically restructured weather data including the
wind velocity, the temperature, the precipitation, efc. However, despite of their identi-
cal I/O signature, there is a difference of the comprehensiveness of weather data, which
is the most critical evaluable factor affecting the quality of weather data and hence the
simulation. Therefore, we implemented a Smart Contract in the agent marketplace that

9https ://cmclinnovations.com/products/srm/

10which is temporarily represented by Table as the air dispersion concept is under development.
"nttps://www.accuweather. com/

12https ://www.yahoo.com/news/weather

13https ://openweathermap.org/

15

https://cmclinnovations.com/products/srm/
https://www.accuweather.com/
https://www.yahoo.com/news/weather
https://openweathermap.org/

Agents

QoS scores:
_-4.752
Agentcomposition e % 3087 S —
framework /C}
""""""""" ! N
A 00
! composition | !
agent ! o
A\ —H gA,,_AK._A:
Execution®]! .“_‘/_\,,/ T
agent : i
Agent marketplace lookup score
1
result =l = invoke
A
- | =
Smart contract
Blockchain infrastructure update score
Block 10] E
| Data || Nounce | Block 11
[Prev_Hash|(Timestamp | ['Data | Nounce] { Block 12

]
Prev_Hash ITimestamp] | ¥ Data
E [Prev_H

Nodes

Nounce
ash| Timestamp |

I

Figure 6: The integration with the JPS agent composition framework: the agent market-
place is then applied to the JPS project to provide performance score lookup,
performance evaluation, and transaction functions. a) the grey arrows rep-
resent the Smart Contracts reading QoS scores from or updating them to the
blockchain. b) the blue arrows denote the delegated invocation of agents
though the Smart Contracts.

evaluates weather agents based on their data comprehensiveness. To make both the agent
composition framework and the three weather agents members of the agent marketplace,
the agent framework is assigned with an Ethereum Rinkeby test network account with
an amount of mock fund. Three independent Rinkeby accounts are also set up for the
weather agents. Then, we manually registered the agent framework as a user and the
weathers agents as service providers and deposit a nominal amount of Ether for the user
(the framework) and the agents. In addition, to connect the agent instance in the JPS and
their records within the agent marketplace, we extended the OntoAgent onotlogy. A new

16

+ city WeatherCondition-- |

YahooWeather

Er_ily :WeatherCondition: -

ADMS Agent

City Query Agent A OpenWeatherMap RN NonReusable

" " a2 n ’/’ WasteProduct
Reaction 3 (= e Weather Conditon

Mechanism Score: 4.76

Region

SRM Agent

[R——
WasteProduct

Plant Query Agent Reacti
Mechanism
Building Query Agent

BTN

EnvelopeType

Buildi
dity uildings

Score updated to : 0x0B9056fcbfS9D283F 7c6B909Ea729182Bd69D36E
Agent : Service_ OpenWeatherMap (@Wed Nov 28 2018 15:52:04

Payvment made : 0x0B90356fcbf59D283F7c6B209Ea729182Bd69D36E
Agent : Service_ OpenWeatherMap (@Wed Nov 28 2018 15:52:16

@ htip.//www.theworidavatar.com/kb/
agents/Service__YahooWeather

@ http://www.theworidavatar.com/kb/
agents/Service__AccuWeather

@ nttp:// www.theworidavatar.com/kb/
agents/ Service__OpenWeather

0x0B9056fcbf59ID2B3FTc6BI09EaT2

L
01 c5046F71 8289680 7030638ceb0b330aThAEH10f

(x700B09317ddaCF44617371D8D00bB0IFED425H

Figure 7: A screenshot of the agent composition framework integrated with the agent
marketplace: a) the agent marketplace provides QoS scores for all three
weather agents for the optimization for the composition result (the upper part)
b) the new performance evaluation result will be updated to the contract (the
lower part). The pie chart demonstrates the market share of the three weather
agents.

property ontoagent:hasBlockchainAddr'* is added to OntoAgent, which stores the address
of the Rinkeby network address of the agent.

After such a setup, the framework can now lookup the performance records of three

14http ://www.theworldavatar.com/ontology/ontoagent/#hasBlockchainAddr

17

http://www.theworldavatar.com/ontology/ontoagent/#hasBlockchainAddr

weather agents (as shown in Figure 7) and execute them through the Smart Contract.
During the optimization process, the framework first queries the KG with SPARQL and
retrieve the agents’ Rinkeby addresses. With the addresses, the framework then calls the
Smart Contract to look up the scores of the agents and ranks the agents according to the
scores. Finally, the agent with the highest score will be kept. According to the cumulative
score generated based on previous evaluations, OpenWeatherMap agent is selected.

After the optimization of the composite agent, the framework proceeds to the execution
phase. To execute an agent, the agent composition framework sends the HTTP request
to invoke OpenWeatherMap agent to the Smart Contract. Through Oraclize, the Smart
Contract will make an HTTP request to the agent. In this use case, the Smart Contract
will pay the Oraclize an amount of service fee for this request. Therefore, the agent
invoked will be charged an extra fee by the Smart Contract.

When the Smart Contract receives the weather data provided by the OpenWeatherMap,
it will then make a performance evaluation based on the completeness of the data (e.g.,
some weather agent include the cloud coverage data but some do not). By going through
the weather data and compare the attributes included in the result with a predefined list,
the Smart Contract then comes up with a score reflecting the comprehensiveness of the
weather data. As shown from Line 36 in the Appendix , the Smart Contract searches
for the URIs of the data properties such as wo:hasHumidity and counts the number of data
properties contained in the result returned. Since the maximum number of data properties
returned is seven, the number of data properties will be divided by seven for normaliza-
tion. (In fact, Solidity currently only supports the storage of integers, the performance
scores are therefore in the form of large integers in the actual implementation. However,
to better demonstrate the design, we simplified the scores to float numbers in this paper.
Subsequently, the Smart Contract will calculate and update the new cumulative perfor-
mance score of the agent as shown in Line 38 in Appendix . The performance score
of this invocation is 4.28 out of 5 because the weather agent only returned 6 properties
out of 7. Therefore 85% of the price, which is 0.085 Ether, will be transferred to the
weather agent by the Smart Contract, as the Ethereum Smart Contracts are able to trans-
fer Ether to other nodes. Figure 7 contains a message showing that a payment is made
to the agent’s hexadecimal Ethereum account address by the Smart Contract. Moreover,
Figure & demonstrate the output produced by the composite agent.

18

Reduced_l.jRF_ERC -mechanism ¥

Less than 1.00e-12 pgim?® -

B 1.00e-12 to 1.18¢-10 pgim*
1.18e-10 to 1.3%-8 pgim?®
1.3%e-8 to 1.64e-6 pg/m*
1.64e6 to 1.94e-4 pg/m®
1.94e-4 to 2.2%e-2 pg/m®
2.2%9¢-2 to 2.70e+0 pgim®
2.70e+0 to 3.18e+2 pg/m?

. 3.18e+2 or more pg/m*

Figure 8: A screenshot of the visualization of the air dispersion simulated by the compos-
ite agent.

5 Outlook

In the future, the Knowledge Graph will include semantic instances of the agent market-
places for different types of agents. As mentioned before, we envision that for a certain
category of agents there will be a designated agent marketplace implemented, since the
standard for evaluating different type of agent will vary. Therefore, when there are mul-
tiple types of agents in the KG, the composition framework needs a way to automatically
locate the agent marketplace for a certain category of agents. We believe that by creat-
ing semantic instances of marketplace containing explicit indications about what type of
agents does the marketplace register, the agent composition framework will be able to
discover a suitable agent marketplace using the agent ontology.

Moreover, the agents within the marketplace are currently restricted to those represent-
ing cyber resources such as capacity for simulation or optimization. This is because of
the lack of measures to collect untampered data to evaluate agents representing physical
resources. For example, in order to evaluate the performance of a transportation agent
sensors for location and status of the cargo are needed; however, it is difficult to prevent
fraudulent behaviours such as manipulation of sensor signal. We propose that by embed-
ding Smart Contracts into the firmware of physical devices such as sensors and integrating
them into the blockchain network, the sensors could serve as unbiased estimators of the
performance of a physical activity (e.g., whether a storage tank has been filled) in the
future. Consequently, the scope of the agent marketplace could be further extended.

6 Limitations

Firstly, although the blockchain-based Smart Contract has been widely applied in many
fields, it is still a rather immature technology. Take the Ethereum framework and the
Solidity language as examples, both of them are criticized for a series of known bugs [1].

19

The immaturity of the technology raises risks for the agent marketplace. For example,
the Solidity language is still under development and this may lead to possibility of being
hacked, hence Smart Contracts may not be reliable. However, we trust that this technology
will be largely improved in the future since it is promising.

Secondly, although the transparency of the Smart Contract enhanced the users’ trust for
the agent marketplace, it also exposes the marketplace’s loop hole if there is any. Never-
theless, with the advent of more testing and validation tools, the Smart Contracts could be
further improved in the aspect of resistance against attacks.

Thirdly, this work is built on the assumption that the agents representing cyber resources
can be evaluated by computer programs given the data returned by the agents. However,
such an assumption is not applicable for all scenarios. For example, to evaluate an agent
that forecasts the prices on the stock market, the accuracy of the forecast is the most criti-
cal parameter for its evaluation. However, it is not possible to calculate the accuracy based
on the data returned by the agents. As a result, some agents can not be included in the
agent marketplace without some further consideration, e.g. considering past performance.

Lastly, the proof-of-work mechanism of the blockchain inevitably causes time delay for
transaction because the updating to the blockchain must be validated. Consequently, when
the agent marketplace is implemented on top of a proof-of-work blockchain, it is not
suitable for agents that are response-time sensitive.

7 Conclusion

This paper presents the Smart Contract-based agent marketplace, which is able to provide
access for the agent composition framework to estimate the reliability of agents within a
KG. By its design, the agent marketplace is clearly compatible with the highly automated
nature of agent composition framework, invulnerable from the fraudulent ratings from
both other users and administrators, and scalable enough to fit the vast number of agents
within a KG. Also, the paper demonstrates the application of the agent marketplace within
the JPS in order to support the JPS agent composition framework for agent selection and
payment.

Acknowledgements

This project is supported by CMCL Innovations and the National Research Foundation
(NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise(CREATE) programme. Markus Kraft acknowledges the support
of the Alexander von Humboldt foundation.

20

List of abbreviations

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator
URI Uniform Resource Identifier
UML Unified Modeling Language
JPS J-Park Simulator

KG Knowledge Graph

SPARQL SPARQL Protocol and RDF Query Language

21

References

(1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Solidity v0.4.24 — list of known bugs, 2018. URL https://solidity.
readthedocs.io/en/v0.4.24/bugs.html. Accessed March 11th, 2019.

Mol-Instincts, 2019. URL http://cccbdb.nist.gov/. Accessed September
13th, 2019.

Oraclize, 2019. URL http://www.oraclize.it/. Accessed September 19,
2019.

P. Buerger, J. Akroyd, S. Mosbach, and M. Kraft. A systematic method to estimate

and validate enthalpies of formation using error-cancelling balanced reactions. Com-
bustion and Flame, 187:105 — 121, 2018. doi:10.1016/j.combustflame.2017.08.013.

V. Buterin. Ethereum: A next-generation smart contract and decentralized ap-
plication platform, 2013. http://ethereum.org/ethereum.html. Accessed
September 19, 2019.

D. Calvaresi, A. Dubovitskaya, D. Retaggi, A. F. Dragoni, and M. Schumacher.
Trusted Registration, Negotiation, and Service Evaluation in Multi-Agent Systems
throughout the Blockchain Technology. In 2018 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI). IEEE, 2018. doi:10.1109/wi.2018.0-107.

D. Carboni. Feedback based Reputation on top of the Bitcoin Blockchain. CoRR,
abs/1502.01504, 2015. URL http://arxiv.org/abs/1502.01504.

P. Cuccuru. Beyond bitcoin: an early overview on smart contracts. In-
ternational Journal of Law and Information Technology, 25(3):179-195, 2017.
doi:10.1093/1jlit/eax003.

R. Dennis and G. Owen. Rep on the block: A next generation reputa-
tion system based on the blockchain. In 2015 10th International Confer-
ence for Internet Technology and Secured Transactions (ICITST). IEEE, 2015.
doi:10.1109/icitst.2015.7412073.

A. Devanand, M. Kraft, and I. A. Karimi. Optimal site selection for modular nu-
clear power plants. Computers & Chemical Engineering, 125:339 — 350, 2019.
doi:10.1016/j.compchemeng.2019.03.024.

A. Eibeck, M. Q. Lim, and M. Kraft. J-Park Simulator: An ontology-based platform
for cross-domain scenarios in process industry, 2019. Submitted for publication.

F. Farazi, J. Akroyd, S. Mosbach, P. Buerger, D. Nurkowski, and M. Kraft. On-
toKin: An ontology for chemical kinetic reaction mechanisms, 2019. Submitted for
publication.

22

https://solidity.readthedocs.io/en/v0.4.24/bugs.html
https://solidity.readthedocs.io/en/v0.4.24/bugs.html
http://cccbdb.nist.gov/
http://www.oraclize.it/
http://dx.doi.org/10.1016/j.combustflame.2017.08.013
http://ethereum.org/ethereum.html
http://dx.doi.org/10.1109/wi.2018.0-107
http://arxiv.org/abs/1502.01504
http://dx.doi.org/10.1093/ijlit/eax003
http://dx.doi.org/10.1109/icitst.2015.7412073
http://dx.doi.org/10.1016/j.compchemeng.2019.03.024

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Fraga, Z. Bankovic, and J. M. Moya. A taxonomy of trust and reputation
system attacks. In 2012 IEEE 1l1th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications, pages 41-50. IEEE, 2012.
doi:10.1109/trustcom.2012.58.

A. Jgsang. Trust and Reputation Systems. In Foundations of Security Analysis and
Design IV, pages 209-245, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-74810-6_8.

M. Klems, J. Eberhardt, S. Tai, S. Hértlein, S. Buchholz, and A. Tidjani. Trust-
less Intermediation in Blockchain-Based Decentralized Service Marketplaces. In
Service-Oriented Computing, pages 731-739. Springer International Publishing,
2017. doi:10.1007/978-3-319-69035-3_53.

E. Koutrouli and A. Tsalgatidou. Taxonomy of attacks and defense mechanisms in
P2P reputation systems - Lessons for reputation system designers. Computer Science
Review, 6(2-3):47-70, 2012. doi:10.1016/j.cosrev.2012.01.002.

S. Liu, H. Yu, C. Miao, and A. C. Kot. A fuzzy logic based reputation model
against unfair ratings. In Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, pages 821-828. International Foundation
for Autonomous Agents and Multiagent Systems, 2013. http://dl.acm.org/
citation.cfm?id=2484920.2485051. Accessed May 23rd, 2019.

D. Macrinici, C. Cartofeanu, and S. Gao. Smart contract applications within
blockchain technology: A systematic mapping study. Telematics and Informatics,
35(8):2337 — 2354, 2018. doi:10.1016/j.tele.2018.10.004.

J. Morbach, A. Wiesner, and W. Marquardt. OntoCAPE: A (re) usable ontology for
computer-aided process engineering. Computers & Chemical Engineering, 33(10):
1546-1556, 2009. doi:10.1016/j.compchemeng.2009.01.019.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https://
bitcoin.org/bitcoin.pdf. Accessed May 23rd, 2019.

R. D. Johnson III (ed.). NIST Computational Chemistry Comparison and Bench-
mark Database, NIST Standard Reference Database Number 101, Release 19, 2018.
URL http://cccbdb.nist.gov/. Accessed September 13th, 2019.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems.
Communications of the ACM, 43(12):45—48, 2000. doi:10.1145/355112.355122.

J. J. Sikorski, J. Haughton, and M. Kraft. Blockchain technology in the chemical
industry: Machine-to-machine electricity market. Applied Energy, 195:234-246,
2017. doi:10.1016/j.apenergy.2017.03.039.

Y. Sun and Y. Liu. Security of Online Reputation Systems: The evolution of
attacks and defenses. [EEE Signal Processing Magazine, 29(2):87-97, 2012.
doi:10.1109/msp.2011.942344.

23

http://dx.doi.org/10.1109/trustcom.2012.58
http://dx.doi.org/10.1007/978-3-540-74810-6_8
http://dx.doi.org/10.1007/978-3-319-69035-3_53
http://dx.doi.org/10.1016/j.cosrev.2012.01.002
http://dl.acm.org/citation.cfm?id=2484920.2485051
http://dl.acm.org/citation.cfm?id=2484920.2485051
http://dx.doi.org/10.1016/j.tele.2018.10.004
http://dx.doi.org/10.1016/j.compchemeng.2009.01.019
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://cccbdb.nist.gov/
http://dx.doi.org/10.1145/355112.355122
http://dx.doi.org/10.1016/j.apenergy.2017.03.039
http://dx.doi.org/10.1109/msp.2011.942344

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Thomas R Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993. doi:10.1006/knac.1993.1008.

A. Whitby, A. Jgsang, and J. Indulska. Filtering out unfair ratings in Bayesian repu-
tation systems, 2004. https://www.csee.umbc.edu/~msmith27/readings/
public/whitby—-2004a.pdf. Accessed February 15th, 2019.

G. Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.
http://gavwood.com/paper.pdf. Accessed June 1st, 2019.

Y. Yang, Y. L. Sun, S. Kay, and Q. Yang. Defending online reputation systems
against collaborative unfair raters through signal modeling and trust. In Proceedings
of the 2009 ACM symposium on Applied Computing, pages 1308—1315. ACM, 2009.
doi:10.1145/1529282.1529575.

Y. Zhang, J. Bian, and W. Zhu. Trust fraud: A crucial challenge for China’s e-
commerce market. Electronic Commerce Research and Applications, 12(5):299—
308, 2013. doi:10.1016/j.elerap.2012.11.005.

L. Zhou, C. Zhang, I. A. Karimi, and M. Kraft. An ontology framework towards de-
centralized information management for eco-industrial parks. Computers & Chemi-
cal Engineering, 118:49-63, 2018. doi1:10.1016/j.compchemeng.2018.07.010.

X. Zhou, A. Eibeck, M. Q. Lim, N. Krdzavac, and M. Kraft. An agent composition
framework for the J-Park Simulator - a knowledge graph for the process industry,
2019. Submitted for publication.

24

http://dx.doi.org/10.1006/knac.1993.1008
https://www.csee.umbc.edu/~msmith27/readings/public/whitby-2004a.pdf
https://www.csee.umbc.edu/~msmith27/readings/public/whitby-2004a.pdf
http://gavwood.com/paper.pdf
http://dx.doi.org/10.1145/1529282.1529575
http://dx.doi.org/10.1016/j.elerap.2012.11.005
http://dx.doi.org/10.1016/j.compchemeng.2018.07.010

W N =

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27

28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43

A Appendices

A.1 Solidity code for the reputation system

event Insufficient_deposit (address user_address, uint256 balance);
event Callback_Received(address requester_address, bytes32 query_id,
result) ;

function _call (address _agent_address, string memory _data) public({
string memory _URL = agent_map[_agent_address] .URL;
bytes32 _query_id = oraclize_query ("URL", Jjoin_URL(_URL, _data));

function _ callback (bytes32 _myid, string memory _result, address
_sender_address) public {
require (msg.sender == oraclize_cbAddress());
emit Callback_Received(_sender_address, _myid, _result);

function invoke (address agent_address, data) {
if (check_deposit) {
call (agent_address, data);
}
else(
emit Insufficient_deposit (msg.sender, user_map[msg.sender].
deposit_balance);

function check_deposit (address _user_address, address _agent_address)
private returns (boolean sufficient) {

return user_map[_user_address] .deposit >= agent_map[_agent_address].

price;

function evaluate_performance (string memory _result, address _user_address,

address _agent_address) private {

/ *

Domain specific algorithm for evaluation
*/
uint score = 0;

if (_result.find("wo:hasHumidity")) {

score = score + 1;

}

if (_result.find("wo:hasWindDirection")) {
score = score + 1;

25

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80

function join_URL (string memory _URL,

if (_result.find("wo:hasWindSpeed")) {

score = score + 1;

}

if (_result.find("wo:hasCloudCoverage")) {
score = score + 1;

}

if (_result.find("wo:hasTemperature")) {
score = score + 1;

}

if (_result.find("wo:hasPrecipitation")) {
score = score + 1;

}

if (_result.find("wo:hasAtmosphericPressure")) {
score = score + 1;

}

score = score / 7 * 50000;

agent_map[_agent_address].invocation_counter
agent_map[_agent_address].invocation_counter + 1;

calculate_payment () ;

agent_map|[_agent_address] .total_score =

agent_map|[_agent_address] .total_score + score;

user_map[_user_address].invocation_counter

user_map[_user_address] .invocation_counter + 1;

returns (string memory result) {

return string(abi.encodePacked(_URL,_data));

string memory _data)

private pure

A.2 Solidity registration and transaction

uint public minimum_deposit_for_agent = 2 ether;
uint public minimum_deposit_for_user =0.2 ether;

0NN AW =

—
W = O 0

uint public default_score = 45000;
address|[] agent_address;

mapping (address=>agent) agent_map;
mapping (address=>uint) vuser_deposit_map;

struct agent {

26

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57

58
59
60
61
62
63
64
65

uint score;

uint deposit_balance;

uint invocation_count;

string URL;

bool validity;

uint price;

function register_as_agent
public payable returns

(string memory _URL,
(bool _succeed) {

if (msg.value >= minimum_deposit_for_agent) {

if (!agent_map[msg.sender] .validity)

{ // register the new vendor

agent_map [msg.sender]
agent_map [msg.sender]
agent_map [msg.]
agent_map [msg.sender]
agent_map [msg.]
agent_map [msg.sender]

.price =

agent_address.push (msg.sender) ;

return true; }

}

return false;

function register_as_user()

{

return user_deposit_map[msg.sender] =

uint public commission_charge = 0.01 ether;
uint public compensation_charge = 0.1 ether;
uint public default_score = 45000;

uint public full_payment_score = 40000;

uint public half_payment_score = 30000;

uint public compensation_score = 20000;

function calculate_payment (uint score,
address payable _agent_address)

uint price =

if (score >= full_payment_score)

private(

.deposit_balance =

public payable returns

address payable

uint _price)

msg.value;

.validity = true;
sender] .URL = _URL;

.invocation_count = 0;
sender] .score = default_score;

_price;

msg.value;

agent_map[_agent_address] .price;

make_payment_or_compensation

_payment

deduce_deposit (user_map,

price + commission_charge;
_user_address,

_agent_address.transfer (price);

}
else if
_payment

(score >= half_payment_score) {

price/2 - commission_charge;

27

// make full

_payment) ;

(bool _succeed)

_user_address,

66
67
68
69
70
71
72
73
74
75
76

77

78
79
80

81
82
83
84

85
86
87
88
89
90
91
92
93

deduce_deposit (user_map, _user_address, _payment);
_agent_address.transfer (price/2);

lelse(
_payment = compensation_charge - commission_charge;
deduce_deposit (agent_map, _user_address, _payment);
_user_address.transfer (compensation_charge) ;

function deduce_deposit (mapping _map, address _payer_address, uint _payment

) private {
_map[_payer_address] .deposit_balance = _map|[_payer_address].
deposit_balance - _payment;

function get_all_ agents_address () public view returns (address[] memory
_vendors_address)
{ return agent_address; }

function get_agent_record(address _agent_address)
public view returns (uint _score, uint _invocation, bool _validity, uint
_price) {
return (agent_map[_agent_address].score,
agent_map[_agent_address] .invocation_count,
agent_map[_agent_address] .validity, agent_map[_agent_address].price);

function top_up_deposit () public payable({
agent_map [msg.sender] .deposit_balance =
agent_map [msg.sender] .deposit_balance + msg.value;

28

	Introduction
	Background
	J-Park Simulator
	Blockchains, Etheruem Smart Contracts and Oraclize

	Agent marketplace
	Reputation system
	Payment mechanism

	Use case
	Outlook
	Limitations
	Conclusion
	References
	Appendices
	Solidity code for the reputation system
	Solidity registration and transaction

