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Abstract

In this paper, a linked-data framework for connecting species in chemical kinetic
reaction mechanisms with quantum calculations is presented. A mechanism can be
constructed from thermodynamic, reaction rate, and transport data that has been ob-
tained either experimentally, computationally, or by a combination of both. This
process in practice requires multiple sources of data, which raises several issues. For
example, the same species may have been given different names by different au-
thors, whereas other species may have been given the same name even though they
are distinct entities. Secondly, thermodynamic, reaction rate, and transport data may
be inconsistent, with large variations outside stated error bounds between different
sources. A linked data-centric knowledge-graph approach is taken in this work to
address these challenges. In order to implement this approach, two existing ontolo-
gies, namely OntoKin, for representing chemical kinetic reaction mechanisms, and
OntoCompChem, for representing quantum chemistry calculations, are extended. In
addition, a new ontology, which we call OntoSpecies, is developed for uniquely rep-
resenting chemical species. The framework also includes agents to populate and link
knowledge-bases created through the instantiation of these ontologies. In addition,
the developed knowledge-graph and agents naturally form a part of the J-Park Simu-
lator (JPS) – an Industry 4.0 platform which combines linked data and an eco-system
of autonomous agents for cross-domain applications. The functionality of the frame-
work is demonstrated via a use-case based on a hydrogen combustion mechanism.
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Highlights
• A framework is built to link chemical species in mechanisms and quantum

calculations.

• Existing ontologies are extended to represent species interconnections and prove-
nance.

• OntoSpecies, an ontology for uniquely representing chemical species, is cre-
ated.

• Knowledge-representational agents are implemented to populate knowledge-
bases.

• A computational agent to calculate thermodynamic data for each species is
developed.
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1 Introduction

The current trend of boosting data exchange and automation in industry is frequently re-
ferred to as Industry 4.0. Major aspects of this include the Internet of Things (IoT) [4]
– devices and sensors that can interact and exchange data, and cyber-physical systems
(CPS) [36] – physical systems that are monitored and controlled by deeply integrated
software. Every item in an Industry 4.0 environment must be accompanied by a cor-
responding digital representation, often termed Digital Twin, that provides information
about the entity and that, crucially, can interact with others. This connectedness offers
tremendous potential, which has also been noted in the context of the Semantic Web,
where Linked Data [7] provides connections between previously unrelated information,
thus enhancing its accessibility and enabling it to be identified and processed by auto-
mated software agents.

Within Industry 4.0, this connectedness can increase productivity and resource efficiency,
leading to lower energy consumption and reduced emissions [34]. One aspect of this is the
reduction of the carbon footprint and emissions arising from the use of fuels for transport,
for instance in the shipping industry. In this case, a digital twin may include computa-
tional models to describe certain aspects of a ship’s behaviour quantitatively, such as the
production of pollutant emissions as a function of speed or choice of fuel. This requires
the digital twin to have access to chemical models, known as chemical mechanisms.

A major barrier to using chemical models in an Industry 4.0 environment is that there
is significant inconsistency between chemical mechanisms, both in terms of naming of
chemical species and in terms of thermodynamic, kinetic and transport data [16, 33].
In common file-formats, the species contained in a mechanism are identified by arbi-
trary string labels. This can cause two types of uniqueness problems. Firstly, the same
species may have different names assigned to them in chemical mechanisms developed
by different authors. Secondly, distinct species may be given the same name in different
mechanisms. For example, many mechanisms for the combustion of hydrocarbon fuels
include benzene. The USC mechanism II [55] refers to benzene as C6H6, its molecular
formula. However, other mechanisms such as the ABF mechanism [2], or the USC mech-
anism [35] refer to benzene as A1, in reference to its number of aromatic rings. While
systematic species naming conventions exist, such as SMILES [58] and InChI [25], they
are only partially successful in the sense that some uniqueness problems remain and that
for instance stereoisomers and electronic states (spin and excitations) cannot be distin-
guished. In order to circumvent these challenges, a common approach, taken for example
by the CAS registry [1] and PrIMe [16], is to introduce arbitrary but unique identifiers. In
addition to naming problems, reaction mechanisms often suffer from inconsistencies in
thermodynamic, kinetic and transport data, with different mechanisms sometimes show-
ing significant differences in what should purportedly be the same quantity [33]. This is a
problem because it means that alternative mechanisms for the same fuel may give incon-
sistent results, and because it makes it very difficult to combine chemistries from different
models.

The complexity of chemical mechanisms and the inconsistency problems are such that it
is infeasible to solve these problems by hand. Instead, a systematic and automated ap-
proach is required. A number of attempts have been made in the literature to automate
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the generation of mechanisms [19, 56] and the calculation of thermodynamic [28, 38]
and kinetic data [6, 52]. For instance, Keçeli et al. [28] have automated the prediction
of thermodynamic data for sets of species created by the Reaction Mechanism Genera-
tor (RMG) [19], purely from first principles, without involving existing experimental or
computational data, and have applied this methodology to n-butane combustion. By gen-
erating lists of species from scratch and using only a single source of data, this approach
avoids issues with provenance, curation of the ’best’ currently available data, or naming
and data inconsistencies.

The purpose of this paper is to create a single knowledge-graph that connects species
in chemical mechanisms to computational chemistry data. We achieve this by taking
a linked-data approach to the species naming inconsistency problems found in chemi-
cal mechanisms. This involves introducing an ontology and knowledge-base for unique
species, as well as suitably extending existing ontologies for chemical mechanisms and
quantum calculations. In this work, we consider only species which are intended to rep-
resent real physical molecules. Links to computational chemistry data enable the disam-
biguation of species beyond what is possible using methods such as InChI or SMILES.
The created knowledge-graph provides a means not only to identify inconsistencies be-
tween different data sets but also to derive many quantities, such as species thermody-
namic data, from first principles. The developed knowledge-graph and agents furthermore
form an integral part of the J-Park Simulator (JPS)1 – an intelligent simulation platform
that uses ontology-based linked data and reasoning in cross-domain applications. In this
paper, we consider an example based on hydrogen combustion.

The paper is structured as follows. Section 2 describes the J-Park Simulator (JPS), which
is the context of this work. Section 3 provides an overview of current chemical databases
and ontologies. Section 4 gives a detailed description of the proposed approach and frame-
work. Section 5 demonstrates an instantiation of the framework using a hydrogen mech-
anism. Strengths of the approach and shortcomings of the present implementation are
discussed in section 6. Conclusions are drawn in section 7.

2 J-Park Simulator (JPS)

The J-Park Simulator (JPS) [13, 45] is an Industry 4.0 application maintaining Digital
Twins of smart buildings (e.g. Cambridge CARES Lab in Singapore – equipped with
many sensors), energy networks (e.g. Jurong Island power network [11, 12]), and chem-
ical industry (e.g. a biodiesel plant [59]) amongst others within a knowledge-graph that
contains in particular also chemical models (i.e. chemical mechanisms) and software
agents [61] (e.g. computational agents). Connectivity among these physical and virtual
entities is established and maintained by autonomously operating software agents.

Figure 1 shows the conceptual diagram of JPS depicting real-world entities, their Digital
Twins as well as connectivity and interactions between them. An agent reads the status
of a real-world entity via a sensor and updates the Digital Twin of the entity by operating
on the knowledge-graph. Based on the new status, the agent uses the reasoning tool and

1http://www.theworldavatar.com
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deduces that an action has to be performed on the entity by involving other relevant agents.
Finally, the action is carried out via an actuator.

OntoCAPE OntoEIP
Onto

CityGML … …

Agents use

Solvers and Reasoners

Real Entity

SensorActuator

operate onKnowledge Graph

Figure 1: The JPS knowledge-graph and agents [61]. The former connects multiple do-
mains and the latter interact with the knowledge-graph and different software.

The knowledge-graph encompasses all Digital Twins that are part of the JPS, and is main-
tained by agents. The knowledge-graph accommodates the involved cross-domain knowl-
edge by means of several ontologies including OntoCAPE [39], OntoEIP [60], OntoCi-
tyGML [13], OntoPowSys [60], OntoKin [14] and OntoAgent [61]. In addition, several
knowledge-bases from the Linked Open Data (LOD) Cloud2 are used, such as DBpe-
dia3 [37]. OntoCAPE was created for representing chemical process knowledge, while
OntoEIP was designed for codifying resources, transportation networks and chemical
plants for managing an Eco-Industrial Park (EIP). The OntoPowSys ontology was de-
veloped for representing electrical power systems, whereas the OntoKin ontology was
designed for describing chemical mechanisms. OntoCityGML can describe cities and
landscapes, and OntoAgent can represent software agents developed for various purposes.

Figure 2 demonstrates an existing cross-domain use-case of the JPS to explain how mul-
tiple components are connected together. In this example, the components with the red
background represent agents and the components with the light-blue background are data
sources. The figure shows that JPS uses the SRM Ship, created by customising SRM En-
gine Suite [30, 32, 43, 53], a toolset designed and developed to model the performance of
and emissions from internal combustion engines, to estimate the exhaust emissions from

2https://lod-cloud.net/
3http://dbpedia.org/
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Figure 2: A cross-domain use-case demonstrating the atmospheric dispersion of pollu-
tant emission from ships, integrating real-time data of ship locations, combus-
tion simulation, chemical models, 3D-representations of buildings, live weather
data, and atmospheric dispersion models – all made interoperable through the
use of ontologies.

ships. JPS then uses ADMS [8], the Atmospheric Dispersion Modelling System, to sim-
ulate the dispersion of these emissions in the vicinity of each ship. The SRM simulations
use chemical mechanisms obtained via OntoKin and the corresponding knowledge-base.
The ADMS simulations use live weather data acquired from a public website through an
API to calculate the distribution of the emissions, which is then visualised in JPS as an
overlay on a 3D map. This example illustrates the potential of chemical models being
part of a knowledge graph, i.e. in the form of Linked Data, with the associated benefits of
semantics and interoperability, as well as the value of higher-quality chemical models, to
solve wider cross-domain problems such as environmental pollution.

Further examples exist where detailed chemical reaction mechanisms play a central role
as part of cross-domain applications that integrate multiple ontologies. These include
industrial air pollution scenarios, similar to the ADMS ship emissions example above,
involving power plants, namely “Heizkraftwerk Mitte” in Berlin and “Energiecentrale” in
The Hague [13].
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3 Chemical databases and ontologies

3.1 Chemical databases

The world’s largest freely accessible database of chemical information is PubChem [29],
which stores information in three primary categories: compounds, substances, and bioac-
tivities. Currently, PubChem has information on 97 million compounds, 242 million sub-
stances, and 280 million bioactivities. Information in PubChem can be queried by stan-
dard means, such as text search, molecular formula, chemical structure. For a common
molecule, such as benzene for example, PubChem contains a variety of properties. This
includes 2D and 3D structures as well as any crystal structures which can be downloaded
in standard formats such as JSON, XML, or CIF for crystal structures. PubChem also
computes the standard identifier for the species in question, such as the IUPAC name,
the canonical SMILES identifier, or the InChI format, as well as other vendor/chemical
agency identifiers. Key computed and experimental chemical and physical properties for
the structure, such as molecular weight, formal charge, melting point, boiling point, va-
por pressure and others are also provided, as is any available spectral (UV-Vis, NMR, IR,
Mass spectrometry) data that has been linked to the structure. PubChem also provides a
large amount of information on the biological aspects of such structures, including drug
information, solubility, toxicity, and biological activity.

Another major database for chemical data is Reaxys, run by Elsevier. Reaxys [22] con-
tains much of the same information as PubChem and other chemical databases, such as
structure, key identifiers, physical and chemical properties, spectral data, and biological
activity for various compounds. Reaxys’ query builder allows the user to search for in-
formation using a variety of methods, be it text search, or search by molecular formula,
chemical properties, structure, synthesis route, or chemical reactions the species of in-
terest is involved in. Reaxys has three key sets of information for a substance, namely
preparations, reactions, and documents. Preparations displays key synthesis routes that
can be used to prepare the substance in question. Similarly, the reaction set contains the
list of reactions in the Reaxys database which includes the substance the user has queried.
Finally, the documents set lists the journal publications, patents, conference papers, and
books that Reaxys has access to that are linked to the queried substance.

Databases that focus more on storing computational chemical information include the
Computational Chemistry Comparison and Benchmark DataBase (CCCBDB) [27] for
thermochemical properties of species from the National Institute of Standards and Tech-
nology (NIST). Information is queried by chemical name or molecular formula. The CC-
CBDB stores computed information in the following main categories: energy, geometry,
vibrations, electrostatics, entropy and heat capacity, and reaction. Energy contains a vari-
ety of energies related to the queried structure. This includes optimised ground state en-
ergies, internal rotation barriers, HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) energies, nuclear repulsion energies, correlation
data, vertical ionization energies, electron and proton affinities, as well as excited state
energies for both singlet and triplet states. Complete basis set extrapolations for energies
are also provided where available. The geometry category contains the optimised ground
state geometry of the structure, which can be extracted in bond order, cartesian, and Z-
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matrix format. Also included in this category is rotational information such as rotational
constant, moments of inertia, inertial defects, and any computed second moments, as well
as symmetry and point group information available for the queried structure. Frequen-
cies contains the computed vibrations and zero-point energies for the structure, as well as
recommended scaling factors for the computed data when used in further kinetic or ther-
mochemical calculations. Electrostatics contains the atomic partial charges in different
formats (Mulliken, ESP, AIM, CHELP), multipole values (dipoles and quadrupole val-
ues), polarizability tensor values, and spin densities for the queried structure. Entropy and
heat capacities are displayed as calculated at 298 K. Finally, the reactions category allows
the user to search for reaction energies at 0 K and 298 K, reaction entropies, transition
states, and isodesmic reactions for a given set of reactant structures. All of the computed
properties are displayed for different levels of theory that they have been calculated at.
This is split into four main categories: methods with pre-defined basis sets, methods with
standard basis sets, methods with effective core potentials, and single-point energy calcu-
lations. The first category includes semi-empirical methods such as PM6 as well as the
Gaussian series composite methods (G1, G2, G3, G4, etc.). The second category includes
standard methods with their corresponding basis sets, namely Hartree-Fock (HF), Density
Functional Theory (DFT), Møller-Plesset Perturbation (MP2 and MP4), Quadradic Con-
figuration Interaction (QCISD), and Coupled Cluster (CC) methods along with the stan-
dard basis set used (either Pople-type or Dunning-type). The third category is reserved
for basis sets where the core electrons are not described explicitly but instead replaced by
a pseudo-potential (or core potential). This is typically done for larger atoms where treat-
ing all electrons would be prohibitively expensive computationally and includes basis sets
such as LANL2DZ for example. Finally, single point energy calculations report any val-
ues computed using mixed methods, i.e. where the geometry was optimised at one level
of theory and the property was computed at another, typically higher level of theory. The
CCCBDB also crucially has a comparison feature, where the user can compare the results
of theoretical calculations to any available experimental data in NIST’s databases, as well
as look at the effect of calculation details like the integration grid in DFT calculations, or
even properties for very similar molecules.

Other more specialised databases also exist. For example, the Alexandria library devel-
oped by Ghahremanpour et al. [20] consists of molecular properties for force field devel-
opment. Alexandria contains molecular structures and properties for 2704 compounds,
many of which contain functional groups common to biomolecules and drugs. Alexan-
dria contains similar information to CCCBDB such as enthalpies of formation, heat capac-
ities, entropies, zero-point energies, and frequencies. Alexandria contains more extensive
multipole and polarizability calculations, with calculations up to hexadecapole moments
provided, as well as electrostatic potentials and partial atomic charges in the various for-
mats (Mulliken, Hirshfeld, ESP, CM5). Key to Alexandria is also the fact that geome-
tries, vibrational, and electrostatic properties are all provided at the same level of theory,
namely B3LYP/aug-cc-PVTZ. High level calculations are also provided for thermochem-
istry properties (G2, G3, G4, CBS-QB3, W1U, W1BD). Most importantly, Alexandria
provides the Gaussian input and output files from the calculations, making reproducing
the stored information significantly easier.

In terms of more specialised databases, Hait and Head-Gordon [23] provide a bench-
mark database specifically for DFT calculations on dipole moments, spanning a variety
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of functionals in the process. The database by Simmie [50] is specifically for high-level
enthalpies of formation for nitrogen based compounds. The GDB-17 database [48] specif-
ically enumerates small organic molecules, using graph-theoretic methods to span 166 bil-
lion of such molecules with the aim of guiding new drug design. Ramakrishnan et al. [47]
provide the QM9 dataset, which is the main benchmark for training new machine learn-
ing potentials. It contains DFT calculations on around 134,000 molecules, mainly at the
B3LYP/6-31G(2df,p). The information in QM9 is standard, containing geometries, ther-
mochemistry, electrostatic properties, and vibrations. Geometries are cross-checked by
generating InChI and SMILES identifiers using Open Babel [44] and comparing to GDB-
17. B3LYP energetics are validated against higher level calculations for a small subset
of 100 molecules, enabling uncertainty estimates for the data provided in the databases.
The ANI-1 data set [51] uniquely contains non-equilibrium DFT calculations, that is for
molecules in conformers that are not their minimum energy ground state configuration
(hence non-equilibrium). Calculations are provided at the wB97x/6-31G(d) level of the-
ory and contains around 20 million molecular conformations for 57,462 molecules taken
from the GDB database. Goldsmith et al. [21] have presented first-principles thermochem-
istry for a collection of 219 small combustion-relevant molecules at the RQCISD(T)/cc-
PV∞QZ//B3LYP/6-311++G(d,p) level of theory. This highly accurate dataset has allowed
identification of discrepancies and errors in established databases.

In short, a variety of databases exist that contain both experimental and computational
chemical information for a variety of purposes, be it reactions, kinetics and thermody-
namics, method development in quantum chemistry, machine learning and big data ana-
lytics of chemical networks, or synthetic planning. The above databases do not appear to
support querying and reasoning capabilities based on a semantic language or formal logic,
although Reaxys’ smart query does give significant flexibility and combination possibil-
ities in what one wants to search. These capabilities can be supported and enhanced by
chemical ontologies.

3.2 Chemical ontologies

This subsection provides a brief description of chemical ontologies dealing with chem-
ical species and/or molecular entities. The ontologies are described from the following
perspectives: application, purpose, and focus.

Chemical Entities of Biological Interest (ChEBI) [10] is an ontology derived from a
database developed for standardising terminology and describing chemical structures of
molecular entities used in the biochemistry discipline. The applications of ChEBI include
its exploitation as background knowledge for data mining applications that take into ac-
count the semantic similarity between chemical entities [15]. In order to assess similarity,
these applications use the concept hierarchy and disjointness axioms of the ontology. The
ontology models cross-domain knowledge and is divided into four sub-ontologies called
molecular structure, biological role, application, and subatomic particle. ChEBI has been
employed as a chemical ontology in the widely-used Gene Ontology (GO) [3] and Pub-
Chem along with several other ontologies. The ontology focuses on ’small’ chemical
compounds with low molecular weight, selected based on their suitability to be applied in
researching biological functioning. Similarly to the parent database, the purpose of this
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ontology is to serve as a repository for such chemical compounds.

The BioChEBI ontology [26] is a biochemical semantic resource generated through the
integration of Gene Ontology and the chemical part of ChEBI. Gene Ontology has revo-
lutionised the way of performing the biological data analysis by introducing logical con-
nectivity between genes and proteins. The ontology has the potential to be applied as
background knowledge to data integration services that deal with biological and chemical
data to assist in drug discovery. The purpose of BioChEBI is to create a coherent rep-
resentation of chemical entities across GO and ChEBI. BioChEBI focuses on chemical
molecules which are observed in biological processes in genes.

Gainesville Core [54] is an ontology consisting of logic-based formal definitions and tex-
tual descriptions of computational chemistry vocabulary and logical axioms. This on-
tology has been applied to integrate data generated by different computational chemistry
software and packages. The purpose of the ontology is to offer a means to represent and
publish both computational chemistry data and its semantics. Gainesville Core focuses
on properties related to molecular systems (e.g. multiplicity and charge) and quantum
calculations (e.g. basis sets and spin types).

PubChemRDF [18] is an RDF representation of PubChem, which is a database containing
different types of entries including chemical entities and biological activities. One appli-
cation of PubChemRDF is to allow researchers to use Semantic Web technologies, e.g.
RDF triple stores for storage and SPARQL for querying. Another application is to inte-
grate PubChem with other biochemical semantic resources by using external ontologies
such as CHEMical INFormation ontology (CHEMINF) [24] for enhancing the data anal-
ysis experience of researchers. The purpose of PubChemRDF is to express the meaning
of PubChem data in a format that is interoperable with the Semantic Web. It focuses on
the representation of chemical substances, compounds and structures thereof.

OntoCAPE [42] is an ontology designed for capturing different aspects of chemical pro-
cess engineering. The application of this ontology is manifold, including the annotation of
documentation and specifications produced for process engineering tasks, automatic com-
position of software components for process modelling, and ontology-supported computer-
aided process modelling. The purpose of OntoCAPE is to produce machine-readable and
interpretable models of chemical processes for enhancing automation in relevant indus-
tries. The ontology focuses on the modelling of chemical processes and plants from the
perspectives of their design and development. OntoCAPE includes the ontological mod-
elling of chemical species and molecular entities.

OntoKin [14] is an ontology providing the Description Logic (DL)-dependent expressivity
for representing gas-phase and surface-phase chemical mechanisms. The application of
this ontology includes the development of a queryable reaction mechanism knowledge-
base, a simulation tool to estimate the atmospheric dispersion of emissions from diesel
generators, and a tool to visualise mechanisms represented on the Semantic Web. The
purpose of the ontology is to move a stage closer to solving the data inconsistency issues
across reaction mechanisms. The focus of the ontology is to model a reaction mechanism
based on the phases it contains, reactions that occur within these phases, and species that
participate in these reactions.

The OntoCompChem ontology [31] extends the Gainesville Core ontology by incorpo-
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rating concepts from CompChem [46]. CompChem is a data format which is built upon
Chemical Markup Language (CML) and is intended for the codification of generic chemi-
cal data semantics. OntoCompChem is thus able to represent quantum chemistry calcula-
tions as performed by the Gaussian [17] software in a fully CML-compliant manner. The
application of CompChem is effective storage, management and retrieval of fast-growing
quantum chemistry data originating from the extensive use of related software. Its purpose
is to represent semantics of computational chemistry calculations. This enables the reuse
of already performed calculations, hence reducing the computational resource consump-
tion time. The focus of CompChem is the representation of computational chemistry
calculations needed for analysing thermochemistry, whereas OntoCompChem has been
applied to support interoperability between quantum chemistry and thermochemistry cal-
culation tools. Similarly to CompChem, the purpose of the OntoCompChem ontology is
to manage the storage of computational chemistry calculations along with their semantics
to enable easy retrieval and greater reuse. The ontology focuses on the representation of
quantum chemistry and thermochemistry calculations of chemical species.

4 A knowledge-graph for chemical species

4.1 Ontological resources

This subsection describes a formal approach based on the use of ontologies to link data
about the species in chemical mechanisms with data about the species derived from com-
putational chemistry calculations. We propose a new ontology called OntoSpecies as a
core component of this approach.

Our approach includes the application of the OntoSpecies, OntoKin and OntoCompChem
ontologies to meet both the data and semantics representational requirements for the suc-
cessful execution of the knowledge-graph generation task. OntoSpecies has been devel-
oped from scratch while OntoKin and OntoCompChem have been extended to reach the
end goal. The reason for the use of these ontologies in this work is their logical and
infrastructural capabilities to manage different types of properties of chemical species.
OntoSpecies has been designed to capture generic information about species, such as em-
pirical formula and molecular weight. OntoKin, on the other hand, supports the encoding
of properties that are relevant to chemical mechanisms, such as thermodynamic data and
transport data. OntoCompChem covers features related to computational chemistry cal-
culations of various properties of species, such as functional and basis set.

Figure 3 depicts these ontologies with their concepts, data properties and relations which
are crucial to describe the aforementioned data linking approach. OntoSpecies helps re-
solve the naming issues described in section 1. The way it does so is that there is a set of
unique entries, each of which corresponds to a unique real-world species. It also provides
an infrastructure to link data about species derived from different sources with different
levels of granularity; in this case, chemical mechanisms and computational chemistry
calculations.

The figure includes the following concepts of OntoSpecies: Species, Empirical Formula,
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Figure 3: Core concepts and properties of the OntoSpecies and extended OntoKin and
OntoCompChem ontologies with implicit and explicit links between elements of
these ontologies. OntoKin and OntoCompChem contain many more concepts
and relations, which are omitted here for simplicity.

Element Number and Element. The Species concept allows for the creation of a real-world
species via instantiation. The Empirical Formula concept is provided to model the type
and number of elements available in a species. Element is defined to codify the instance
of an element or an atom, while Element Number connects an element with its multi-
plicity within a species. The data properties that belong to OntoSpecies are dc:identifier,
skos:altLabel and hasNumberOfElement. By adopting best practices in ontology devel-
opment, the identifier was reused from Dublin Core (dc) [57] as was altLabel from Simple
Knowledge Organisation System (skos) [41]. The unique identifier of species is codified
using dc:identifier, and alternative names are codified using skos:altLabel. The hasNum-
berOfElement data property has been defined to codify the amount of an element or an
atom in a species. The speciality of this modelling choice is that it separates the names
of a species from its identity. As a result, a species which has multiple names can still be
recognised uniquely via its identifier. Not shown in the figure are concepts and properties
for the standard enthalpy of formation as well as the corresponding reference temperature.
The OntoSpecies ontology is available on the web4.

Figure 3 shows the following concepts of OntoCompChem: G16, Geometry Optimisa-
tion, Molecule and Atom. From the aforementioned four concepts, G16 deals with the
modelling of electronic structure calculations, while Geometry Optimisation, on the other
hand, allows for the modelling of the molecular geometry of both stable minima and tran-
sition state species. Molecule enables the modelling of the constituent parts and data
properties of a molecular entity. By contrast, Atom can model the data properties of a
chemical element. The hasCoordinates object property is used for the codification of the

4http://www.theworldavatar.com/ontology/ontospecies/OntoSpecies.owl
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3D geometry of a molecule. OntoCompChem is extended in this work by a data property
called hasUniqueSpeciesIRI. The hasUniqueSpeciesIRI data property links computational
chemistry calculations of a species to its corresponding representation in OntoSpecies by
means of an IRI (Internationalised Resource Identifier).

The concepts of OntoKin shown in Fig. 3 are Mechanism, Species and Thermo Model.
OntoKin contains many more concepts and relations than shown in the figure, in partic-
ular concerning kinetic and transport data, but since the aim of this work is to establish
links to quantum chemistry calculations, we focus here mainly on the concepts affected
by this. The Mechanism concept was defined to model the data and metadata including
the reference of a chemical mechanism. The Species concept can be employed to model
data properties and relations of a chemical species. Thermo Model allows for the codifi-
cation of thermodynamic models that can be defined for a chemical species. OntoKin is
extended in this work by two data properties: hasQuantumCalculationIRI and hasUnique-
SpeciesIRI. The hasQuantumCalculationIRI data property is an IRI specified to establish
a link between the thermodynamic model and computational chemistry calculations of
a chemical species, whereas the hasUniqueSpeciesIRI data property is an IRI defined to
link a species in a mechanism with its corresponding representation in OntoSpecies.

The relation drawn between the Mechanism and Species concepts is called hasSpecies,
which connects an instance of the former concept to an instance of the latter. Similarly,
the relation that exists between Species and Thermo Model is termed hasThermoModel
and can connect the instances of these concepts. The relations in OntoSpecies and the
extended OntoCompChem have similar interpretations.

4.2 Linking between ontologies

This subsection describes how data resulting from computational chemistry calculations
is linked to chemical mechanisms, and how this extends to linking multiple pieces of data.
The description is based around a conceptual example that uses the ontological concepts
and properties presented in the previous subsection.

Figure 4 shows how a species belonging to a mechanism can be linked to multiple compu-
tational chemistry calculations, each generated at a different level of theory and the same
species belonging to multiple mechanisms can be linked to the same computational chem-
istry calculation. The knowledge-bases ‘OntoSpecies KB’, ‘Extended OntoKin KB’ and
‘Extended OntoCompChem KB’ were created for populating with instances of the con-
cepts belonging to the OntoSpecies, extended OntoKin and extended OntoCompChem
ontologies, as described in the previous subsection, respectively.

OntoSpecies KB was populated with a group of species including H2O and H2, each with
properties such as the unique ID, alternative labels (names) and the empirical formula.
Ideally, each real-world species appears exactly once in this knowledge-base. On the other
hand, the extended OntoCompChem KB was populated with computational chemistry cal-
culations for the same group of species. The extended OntoKin KB was populated with
a collection of mechanisms including Mechanism 1 and Mechanism 2, each containing a
set of species. Both Mechanism 1 and 2 contain the species H2O and H2, each codified
with a set of properties including hasUniqueSpeciesIRI and hasQuantumCalculationIRI.
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Figure 4: Links between individuals in the OntoSpecies, extended OntoKin, and extended
OntoCompChem knowledge-bases. Instances of quantum chemistry calcula-
tions at various levels of theory as well as instances of species within mech-
anisms are connected to unique species by means of IRIs. Similarly, ther-
modynamic data associated with species in mechanisms can be connected to
quantum calculations through IRIs.

The hasUniqueSpeciesIRI property links H2O in Mechanism 1 and 2 to the unique repre-
sentation of H2O in OntoSpecies KB. Similarly, the representations of H2 in these mech-
anisms and OntoSpecies KB are linked. Each link uses the IRI of the corresponding
unique species. The hasQuantumCalculationIRI property, on the other hand, links H2O
in Mechanism 1 to H2O in the extended OntoCompChem KB to refer to multiple cal-
culations performed at the levels of theory PVQZ and PVTZ. In these links, the IRIs of
the calculations were used. The hasUniqueSpeciesIRI property of H2O in the extended
OntoCompChem KB contains the IRI of H2O in OntoSpecies KB.

This approach is consistent with the data linking approach proposed by Berners-Lee [5].
IRIs are used to identify all concepts, instances, data properties and relations. In order
to make the IRIs resolvable, they are appended to the base address of a HTTP server and
converted to HTTP IRIs. HTTP IRIs of species, computational chemistry calculations and
mechanisms show meaningful information when they are looked up. Finally, to enable
agents to discover more knowledge about the objects of interest, species in mechanisms
are linked to the generic information about species and their computational chemistry
calculations.
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4.3 Computational and representational agents

We want to populate the knowledge-graph and use the computational chemistry data to
calculate thermodynamic properties for each species, and link the thermodynamic prop-
erty data such that it can be used in the context of the chemical mechanisms. This is
performed using a mixture of manual and automated tasks conducted by computational
agents. The long-term intention is that all processes will be automated.

1

Extended 
OntoCompChem

Extended OntoKin OntoSpecies

OntoKin Agent

OntoCompChem
Agent

Linking Agent

Thermodynamic 
Property Agent

Knowledge Graph

Figure 5: The computational and representational agents interacting via the knowledge-
graph.

In Fig. 5, it is illustrated how the computational chemistry and knowledge-representational
agents interact via the knowledge-graph to carry out cross-domain tasks and at the same
time contribute to the enrichment and evolvement of the knowledge-graph with infor-
mation that will enhance the performance of computational agents. Three knowledge-
representational agents have been designed and deployed to populate the knowledge-bases
built using the aforementioned ontologies. A computational agent has been developed to
calculate thermodynamic properties and data for each chemical species. We have imple-
mented these four agents such that they seamlessly integrate with the OntoAgent [61]
ontology and thus extend the existing agent eco-system of the JPS. More specifically, the
agents can be briefly described as follows, where we use the same agent classification,
into Types 0, 1, . . . , 4, as in previous work [13]:

• OntoKinInp Agent: Adds chemical mechanisms (represented in the extended On-
toKin KB) to the knowledge-graph. This agent is an input agent and hence of
Type 0.

• OntoCompChemInp Agent: Adds the results of computational chemistry calcula-
tions (represented in the extended OntoCompChem KB) to the knowledge-graph.
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At this stage, we assume computational chemistry calculations are already com-
pleted. This agent is another input agent and hence also of Type 0.

• Linking Agent: Links computational chemistry data in the knowledge-graph by
linking entries in the extended OntoCompChem KB to OntoSpecies KB. This agent
modifies the structure of the knowledge-graph (by creating new links) and hence is
a Type 2 agent.

• Thermodynamic Property Agent: Calculates thermodynamic properties for each
species using computational chemistry data, and links the thermodynamic property
data such that it can be used in the context of the chemical mechanisms. This
requires a number of computations:

– Partition function calculations are required to calculate the thermochemical
properties (e.g. entropy, heat capacity, enthalpy) [40]. The standard enthalpy
of formation and its associated reference temperature, both of which are needed
as inputs to the agent, are taken from the corresponding species instance in the
OntoSpecies KB.

– The calculated thermochemical properties must be parameterised in a form
that is suitable for chemical mechanisms (in this case 7-coefficient NASA
polynomials).

– The parameterised thermochemical properties must be added to the knowledge-
graph where they are represented in the extended OntoKin KB.

As a calculation agent, this agent is of Type 1.

We link mechanism data in the knowledge-graph by manually linking entries in the ex-
tended OntoKin KB to OntoSpecies KB.

This approach is how we perform data conversion, as per the principles proposed by
Berners-Lee [5]. The goal is to produce standardised well-linked data. By publishing
mechanisms, unique chemical species, and computational chemistry calculations using
OWL and RDF, we achieve four stars, where the highest rating is five stars, which is
awarded when four-star data is linked to external sources. We reach the five-star rating
by having linked this four-star data to NIST, thus producing data that allows the agents to
gather more knowledge about chemical species and further extend the knowledge-graph.

5 A hydrogen-mechanism use-case

We have selected the hydrogen combustion mechanism for the use-case mainly for three
reasons. Firstly, it is the simplest gas-phase combustion system that can be considered.
Secondly, it forms the basis of all hydrocarbon combustion mechanisms. Finally, for the
above reason, it is also the most well-established mechanism in terms of species, reactions,
thermodynamic data and kinetic data.

The hydrogen combustion mechanism used in this work consists of 10 species and 40
reactions [9]. To have a consistent thermodynamic and kinetic data for the mechanism,
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DFT calculations were performed on all species in the mechanism using Gaussian 16 [17].
The widely applicable DFT functional B3LYP was used for all of the calculations. Ge-
ometry optimizations were performed using the tight convergence criteria. Frequencies
were calculated for molecules to ensure that a minimum on the potential energy surface
was located. To test the effect of basis set, three different Dunning-type basis sets were
used: cc-PVDZ, cc-PVTZ, and cc-PVQZ. All log files for the calculation were set to the
‘verbose’ print standard so that as much information was included in the log file as possi-
ble. The resulting Gaussian 16 log files were parsed by Thermodynamic Property Agent,
enabling the calculation of thermodynamic properties and NASA polynomial fittings for
thermochemical data of the mechanism.

The mechanism 
cloud. Each node 
represents one 
mechanism in the 
knowledge graph.

1.

All reactions in 
the queried 
mechanism.

3.

The reactants and 
products in the 
queried reaction.

5.

Computational 
chemistry  calculations 
for H2O, HO2 and H2O2.

6.

A query acting on the 
knowledge graph returned 
a specific mechanism.

2.

A specific reaction in the 
queried mechanism.

4.

3dda46f3-1b3f-318f-9ede-80a5b9dfc0ad

IRI for a specific computational 
chemistry calculation for HO2

7.HO2
H2O

H2O2

Figure 6: Annotated screenshot demonstrating how chemical species in reaction mech-
anisms are connected to computational chemistry calculations via the linked-
data approach. Clicking on individual nodes expands the visible part of the
knowledge-graph. Most of the node-labels have been suppressed to aid legibil-
ity.

Chemical species thermodynamic data was obtained using the Thermodynamic Property
agent. The agent calculates heat capacities, enthalpies and entropies from the species
molecular partition functions using the rigid-rotor harmonic-oscillator treatment (RRHO),
which includes translational, vibrational, rotational and electronic energy contributions.
Standard enthalpies of formation, together with their reference temperature, are also pro-
vided as inputs to the agent for each species.

Figure 6 illustrates the functionality of the proposed linked-data compliant knowledge-
graph approach. The hydrogen mechanism was represented using OWL and published
on the mechanism cloud, which forms part of the knowledge-graph. A SPARQL query
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was performed on the knowledge-graph to visualise the hydrogen mechanism. An in-
teractive interface was designed to navigate through the reactions and species. As an
example, when the reaction OH+H2O2
H2O+HO2 is expanded, its reactants and prod-
ucts are visualised. These reactants and products are linked to the corresponding species
in OntoSpecies KB and these species are linked to computational chemistry calculations
performed at different levels of theory for each species. The figure shows three different
quantum calculations associated to three of the species involved in the selected reaction.
We remark that the reason reactions appear here, even though they do not feature directly
in the links between species in mechanisms and quantum calculations, and hence in the
discussion in section 4, is simply that this is one out of several possible ways how a user
might ‘explore’ a chemical mechanism.

6 Discussion

The connectivity offered by a linked-data approach is a critical prerequisite for automated
processing by autonomous pieces of software. It has long been recognised that in order
to be feasible in practice, chemical model generation or problem resolution with exist-
ing ones inevitably has to be systematic, repeatable, and hence automated, because the
tasks involved would be too time-consuming or error-prone to conduct manually. For this
reason, several attempts at automating chemical model creation have been made in the
literature or are currently in progress. All attempts known to the present authors have
in common, though, that no reference to the outside world is made, and no integration
with existing models or data, in particular experimental data, or more generally external
sources is considered. Hence, the necessity of a linked-data approach also extends to the
automated creation of chemical models.

Similarly, in our wider review of existing chemical databases and ontological approaches,
we have found a wealth of data, however also a near-ubiquitous lack of interoperability
and linked-data principles. In this work, we have developed a framework which integrates
ontologies, knowledge-bases, and agents into a single knowledge-graph and thus we have
taken a first step towards realising linked data for chemical models. The knowledge-
graph is the core component of the developed framework. In assembling it, we followed
the linked-data principles as proposed by Berners-Lee [5], which are broadly applicable
to data conversion, linking, and sharing [49], and recommend to make the semantics of
data explicit [7].

The developed framework allows links between chemical species and computational chem-
istry calculations to be established. In order to avoid problems with naming species
uniquely, as encountered by standard naming conventions such as SMILES and InChI,
we introduced arbitrary but unique identifiers – an approach also taken for instance by the
CAS registry and PrIMe. This, of course, does not address the problem of which unique
identifier should be associated with an existing species in a mechanism for example. This
remains an open problem and is an area of ongoing research [33]. The linked nature of the
framework enables it to be used to curate existing knowledge, and furthermore to address
data inconsistencies between multiple sources.

While developing the ontological component for representing thermodynamic data of
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species, a choice needed to be made as to where to accommodate this. In principle, any
of the three ontologies, OntoKin, OntoCompChem, or OntoSpecies, are potential candi-
dates, and a case can be made for each of them as they all include in some way a concept
of species. Being post-processed from quantum calculations might suggest to include
thermodata into OntoCompChem, whereas it is common (e.g. [27]) to curate thermodata
alongside unique species, thus suggesting OntoSpecies. Ultimately, we made the choice
to represent thermodynamic data within OntoKin simply for practical reasons, mainly
because the necessary concepts and relations were already present, but also for ease of
importing, exporting, and reusing parts of chemical mechanisms. However, this choice
may be revisited in the future.

Since the focus of this paper is to establish proof-of-principle of a linked-data approach,
the partition function calculations conducted by the Thermodynamic Property Agent we
have created for deriving thermo-data from quantum chemistry calculations are relatively
basic, ignoring for example hindered rotors. This, however, can in some cases lead to
substantial errors. In order to achieve a thermochemical knowledge-base of high quality,
it would be necessary to employ more advanced treatments of anharmonicities [28].

7 Conclusions

In this paper, we have connected species occurring in chemical kinetic reaction mecha-
nisms to quantum chemistry calculations in a single knowledge-graph. We have achieved
this by creating a new ontology, called OntoSpecies, and integrating it with extended
versions of OntoKin, an ontology for mechanisms, and OntoCompChem, an ontology
for quantum chemistry calculations. We have implemented four software agents – three
knowledge-representational ones which add mechanisms and quantum calculations to the
knowledge-graph and create links between them, and a computational one which deduces
thermochemical data from quantum calculations. Using these four agents, we have in-
stantiated the three ontologies, i.e. created and populated knowledge-bases for them, for
an example use-case of a hydrogen combustion mechanism. The created knowledge-
graph and agents seamlessly integrate into the knowledge-graph and eco-system of au-
tonomously operating software agents, respectively, of the J-Park Simulator (JPS) – an
intelligent Industry 4.0 simulation platform built upon ontology-based linked data. The
use of agents for evolving the knowledge-graph in an automated manner is also briefly
discussed. Whilst we have chosen here an example from combustion, the methodology is
equally applicable to atmospheric chemistry and other areas.
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