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Abstract

Over the last couple of decades, the scientific community has made large ef-
forts to process and store experimental and computational chemical data and in-
formation on the world wide web. This review summarizes several databases and
ontologies available on the web for researchers to use. We also discuss briefly
the categories of chemistry data that are stored, its main usage and how it can be
accessed and understood in the framework of the Semantic Web.

Highlights

• A review on web based data bases used to store chemical information.

• Discussion on the role of knowledge graphs in chemical model development.
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1 Introduction

As progress is being made in developing new and green chemical processes for a vari-
ety of industrial applications, an ever-growing amount of chemical information has been
published and stored in databases online. This includes both experimental and compu-
tational chemical data. As a result, understanding how to store, access, and manipulate
this vast amount of information is now key to further scientific progress. Increasingly,
information science and mathematical methods such as data mining and graph theory
are being used to guide various fields in chemistry and chemical engineering. Examples
include analyzing organic reaction networks to understand and plan new synthetic routes
for green chemistry [4, 9, 14, 32], and the use of process informatics to develop predic-
tive chemical kinetics for combustion chemistry [10]. In addition, various approaches
to access and generate chemical knowledge are being developed using, for example,
semantic web and network analysis. Semantic web technologies like knowledge graphs
offer additional functionality to represent chemical knowledge. In conjunction with se-
mantic web services the information available in chemical databases can be retrieved
and changed and allows the automation of model building [15, 24, 47]. The purpose of
this review is to describe some of the main current databases available to researchers
for data mining and review, as well as to discuss efforts to use ontologies as a general
model for the representation of chemistry data, the improvement of the quality of these
data, and the generation of resources to share consistent chemical data for a variety of
purposes.

2 Chemical Databases

Several large chemical databases are available in the chemistry literature, providing a
wealth of useful chemical information for researchers to use. The purpose of this sec-
tion is to summarize some of the key features of such databases, for example, what
information on chemical species they store and how this information can be queried.
The world’s largest freely accessible database of chemical information is PubChem
[33], which stores information in three primary categories: compounds, substances,
and bioactivities [20, 33]. Currently, PubChem has information on 97 million com-
pounds, 242 million substances, and 280 million bioactivities [20, 33]. Information in
PubChem can be queried by standard means, such as by text search, molecular formula,
or chemical structure. For a common molecule, such as benzene, PubChem contains a
variety of properties. This includes 2D and 3D structures as well as any crystal struc-
tures which can be downloaded in standard chemical formats such as JavaScript Object
Notation (JSON), eXtensible Markup Language (XML) [5], or Common Interchange
Format (CIF). PubChem also computes standard identifiers for the species in question,
such as the IUPAC name, the canonical SMILES identifier [34, 49], or the InChI format
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[17], as well as other vendor/chemical agency identifiers. These identifiers enable iden-
tification and comparison of species between databases, so are key to linking data for
the same species from different sources. Essential computed and experimental chem-
ical and physical properties for the structure are also provided by PubChem, as is any
available spectral data that has been linked to the structure. PubChem also provides
a large amount of information on the biological aspects of such structures, including
drug information, solubility, toxicity, and biological activity, which is key data for those
designing drugs or green synthesis routes.

Another major database for chemical data is Reaxys, run by Elsevier [13, 23]. Reaxys
contains much of the same information as PubChem and other chemical databases, such
as structure, key identifiers, physical and chemical properties, spectral data, and biologi-
cal activity for various compounds. What differentiates Reaxys is its focus on providing
data for developing synthetic routes. To this end, Reaxys has three key sets of infor-
mation for a substance, namely preparations, reactions, and documents. Preparations
displays key synthesis routes that can be used to prepare the substance in question. This
includes the main reactions, reaction conditions, catalysts and any other information
used in the synthesis routes. Each synthesis route also contains the source of the syn-
thesis, which usually comes from the Journals and Patent databases that are linked to
Reaxys via Elsevier. This enables the user to create a synthetic route for the substance of
interest using ReaxysâĂŹ synthesis planner. Similarly, the reaction set contains the list
of reactions in the Reaxys database which includes the substance the user has queried.
The reactions can be filtered by structure, reagent, reaction class, solvents, catalysts,
and yield among others, allowing the user to find reactions tailored to their application.
Finally, the documents class lists the journal publications, patents, conference papers,
and books that Reaxys has access to that are linked to the queried substance. This al-
lows users of Reaxys to have access to both the data and source to analyze and select
reactions.

Similar to Reaxys, the Chemical Abstracts Service (CAS) [1, 25] is a collection of
databases containing information on organic and inorganic chemical substances. This
information includes chemical structures, chemical names, and chemical reactions. In-
formation stored in these databases is extracted from a wide range of literature such
as patent records, journal publications, conference proceedings, Ph.D. theses, and web
sources. The CAS Registry databases contain chemical structures, names, and exper-
imental properties for more than 150 million molecules [1]. Building on the scope of
the CAS Registry, the CASREACT database [2] contains several million single- and
multi-step chemical reactions based on the molecules and the information stored in the
CAS database. Much like Reaxys, this is provided to help users find reactions for their
particular chemical application.

A key database for thermochemical data is the Active Thermochemical Tables (ATcT),
developed by researchers at the Argonne National Laboratory [40, 41]. The principle
behind the ATcT is the thermochemical network approach, which makes use of both
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experimental and theoretical reaction and formation enthalpies to yield estimates for the
enthalpy of formation of the species in the network. The ATcT describes thermochem-
istry using a graph theoretic approach, with primary vertices being the enthalpies of
formation of species, secondary vertices being the reaction enthalpies, and the directed
edges indicating a reaction occurring between species in the network, with the weight
determined by stoichiometry. A statistical approach is then used to analyze and solve
for the optimal thermochemical values that yield a self-consistent solution. Typically,
this is possible because there are multiple measurements or calculations for a given for-
mation or reaction enthalpy, providing the extra degrees of freedom necessary. This
also means that the solution given by the ATcT can help to identify measurements that
are potentially inconsistent with others in the network. Data computed by the ATcT
can be found and queried online. Crucially, the reactions which contribute to the ATcT
enthalpy of formation are displayed, as are uncertainties in the estimate of enthalpy of
formation provided, making it clear which data is used and its degree of reliability.

On the computational chemical database side, the largest database is the Computa-
tional Chemistry Comparison and Benchmark DataBase (CCCBDB) for thermochemi-
cal properties of species from the National Institute of Standards and Technology (NIST)
[19]. Information is queried by chemical name or molecular formula. The CCCBDB
stores computed information in the following main categories: energy, geometry, vi-
brations, electrostatics, entropy and heat capacity, and reaction. All of the computed
properties are displayed for the different levels of theory at which they have been cal-
culated, with the data split into categories based on the type of computational chemical
method used. The CCCBDB also crucially has a comparison feature, where the user
can compare the results of theoretical calculations to any available experimental data
in NIST’s databases, as well as look at the effect of different theoretical methods on
calculated properties.

Other more specialized databases also exist. For example, the Alexandria library devel-
oped by van der Spoel et al. consists of molecular properties for force field development
[30]. Alexandria contains molecular structures and properties for 2,704 compounds,
many of which contain functional groups common to biomolecules and drugs. Alexan-
dria contains similar information to the CCCBDB, but crucially provides more extensive
multipole and polarizability calculations to guide researchers who want to develop po-
tentials and force fields. Importantly, all properties in Alexandria are provided at the
same level of theory and the Gaussian input and output files from the calculations are
also given, making reproduction of the stored information significantly easier. Even
more specialized databases for computational chemists exist, such as Head-Gordon and
Hait’s benchmark database specifically for DFT calculations on dipole moments, span-
ning a variety of functionals in the process [28]. The database from Simmie et al. is
specifically for high-level enthalpies of formation for nitrogen based compounds [42].
The GDB-17 database specifically enumerates small organic molecules, using graph-
theoretic methods to span 166 billion such molecules with the aim of guiding new drug
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design [39]. Ramakrishnan et al. provide the QM9 dataset, containing DFT calcula-
tions on around 134,000 molecules for training new machine learning potentials [38].
The ANI-1 data set uniquely contains non-equilibrium DFT calculations, that is for
molecules in conformers that are not their minimum energy ground state configuration
[43]. ANI-1 contains around 20 million molecular conformations for 57,462 molecules
taken from the GDB database. There is clearly a wide variety of chemical data, both
experimental and computational, that is available to researchers in a variety of fields in
chemistry. This data is ever growing, and methods to store, access, and act on this data
automatically are becoming more valuable for progress to be made.

3 Ontologies for Computational Chemistry

Given the variety of chemical data available, developing a consistent framework to store
and access it is crucial, even more so as the amount of data available is expanding
rapidly. Further data processing will increasingly rely on automation allowing machines
to interpret, integrate, share, and perform reasoning with data of various formats.

One of the early efforts in storing chemical data in a standard format was the introduc-
tion of Chemical Markup Language (CML) pioneered by Murray-Rust and coworkers
[11, 26, 27, 48]. The CML format is based on XML, which is suitable for storing data
of any level of complexity while providing semantic information to the data stored.
CML allows the representation of complex chemical objects by employing the hierar-
chical tree structure of XML using chemical name tags which cover different aspects of
chemistry. Over the past 20 years, CML has been developed to represent most aspects
of chemistry, including CMLReact for chemical reactions [18], CMLSpec for spectral
data [22], CML for crystallography [7], and CML for polymers (PML) [3] along with
the standard labels and definitions for physical properties.

Building on this established format for representing chemical data, Phandungsukanan
and coworkers developed a sub-domain for storing quantum chemistry calculations data
based on CML, termed CompChem [37]. The main goal of CompChem was to introduce
a stricter structure into CML-based documents so that software tools know exactly how
to validate and process information related to computational chemistry. To this end, the
semantics of data stored in the CompChem based documents is modelled based on the
typical nature of computational simulations or calculations, containing information on
the job type, input parameters, and output parameters that one would expect in these
calculations. This enables the storage of a variety of output data from ab initio quantum
chemistry calculations such as the results of geometry optimization, single point energy
calculations, and frequency calculations, among others. The storage and access of this
data was realized through a MolHub web service [37]. However, the original MolHub
did not allow for semantic inter-operability between different chemistry software tools,
provide an efficient query engine, or guarantee the consistency of data.
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To alleviate these shortcomings, a novel OntoCompChem ontology has been developed
by extending the Gainesville Core (GNVC) ontology [36] while supporting the Com-
pChem convention of CML [31]. The OntoCompChem ontology is currently populated
by Gaussian quantum chemistry calculations through an updated version of the MolHub
semantic web service (https://como.ceb.cam.ac.uk/resources/molhub/). The
OntoCompChem knowledge graph forms part of a more general knowledge graph called
the J-Park Simulator (JPS) [21]. This architecture supports semantic inter-operability
between different domains and allows the use of propositional logic, formal query lan-
guage, and Semantic Web tools such as the HermiT [12] reasoner to check the consis-
tency of data within the JPS knowledge graph. More recently, the OntoKin ontology
[8, 29] has been developed as a component of the JPS to represent gas phase elementary
reactions, which are the building block of large reaction mechanisms found in com-
bustion and atmospheric chemistry models. The ontology allows inference engines to
detect inconsistencies in chemical mechanisms and to perform semantic queries across
mechanisms stored in the JPS knowledge graph. At present, both the OntoKin and
MolHub frameworks are missing an intelligent system that automatically establishes
semantic inter-operability between quantum chemistry calculations and kinetic mech-
anisms. To achieve this goal, we are currently developing a formal framework that is
based on reinforcement learning formal tools [46], modal logic [6], and a propositional
logic framework with binary metric operators [45] to provide formal language support.

In addition to the JPS efforts, other semantic frameworks are currently in use. The
Chemical Semantics Framework (CSF) [35] stores results of quantum chemistry calcu-
lations. The core of the CSF is the GNVC ontology which forms the knowledge com-
ponent of the framework. However, the ontology does not support all of CompChem’s
conventions for CML features. For example, some keywords in the CML format such as
geometry type are not supported. In addition, the CSF does not support semantic inter-
operability between different computational chemistry tools. However, the framework
allows web agents to access and, in principle, act on data stored in the CSF, representing
a step towards automation of the knowledge graph. The ChEBI database stores molecu-
lar entities focused on ’small’ chemical compounds, that is part of the Open Biomedical
Ontologies effort. It uses the ChEBI ontology as a common model for classification
of chemical compounds in the biomedical field. The ontology provides models for
molecular structures such as hydrocarbons, common chemical roles for the molecules
in the ontology, as well as for information pertaining to subatomic particles [16]. The
ChEBI database can be explored using an advanced search interface, but semantic inter-
operability and web agent access is currently not supported.

The review of ontologies for chemistry makes it clear that plenty of effort is being
put towards developing methods for storing, accessing, and interpreting the available
chemical data in an intelligent way. Key to the success of these efforts will be the de-
velopment of standards for the publication and reporting of chemical data. By having
a standard format for reporting chemical data, linking this information to a semantic
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framework or ontology becomes substantially easier and less error prone. Efforts to this
end include the work of the InChI consortium [17], the Allotrope Foundation’s work
on developing a standard data format, and the work of Cronin and coworkers on de-
veloping a chemical programming language that can be used to represent experimental
organic chemistry [44]. These standards will help inspire the definition of classes in
chemical ontologies. In conjunction with this, the development of tools for establish-
ing semantic frameworks, as well as agents that can act on this data automatically, is
still in process. This will eventually enable a self-consistent and ever-growing chemical
knowledge graph based on ontologies and automated by web agents.

4 Summary and Outlook

In this review, we have discussed how the rapidly increasing amount of chemical infor-
mation available to researchers has necessitated the development of automated methods
to query, store, and share this information for a variety of applications. We have dis-
cussed some of the main databases and the usage of ontologies in the chemistry domain.
Moving forward, it is hoped that more tools will be developed to provide more intelli-
gent ways to create, update, retrieve, and maintain distributed chemical information via
the Web. It is also necessary to develop tools to support more advanced community
involvement, bridging data silos, and identifying "best" data for the solution of a par-
ticular problem. Eventually, the chemical knowledge graph will be fully automated and
self-improving to provide, for example, new synthesis routes and more reliable chemical
models built on the experimental and chemical data provided in the variety of databases
online.
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