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Abstract

Parameters describing soot particle processes are generally derived from a limited
number of experimental studies. These parameters then have to be carefully cali-
brated for different operating conditions in internal combustion engine applications.
This paper presents an innovative calibration procedure for soot simulation in Diesel
engines. A Diesel engine is simulated using the Stochastic Reactor Model (SRM)
engine code, which is implemented with the Moment Projection Method (MPM) for
handling the soot particle dynamics. The main advantage of the engine-soot model
is its low computational cost. The model is then coupled with an advanced statisti-
cal toolkit, Model Development Suite (MoDS), where the Hooke-Jeeves algorithm
is adopted to calibrate seven soot model parameters automatically based on the mea-
surement data. The ability of the integrated SRM-MoDS code for soot model cal-
ibration is evaluated by simulating the soot formation and oxidation processes in a
heavy-duty Diesel engine which is operated under 18 different conditions. Results
suggest that the integrated code is able to calibrate the soot model parameters effec-
tively. A significant improvement in the match between the simulation results and
experimental soot emission is obtained after calibration.

Highlights:

• The Moment Projection Method is used to simulate soot formation in engines.

• Seven soot model parameters are calibrated through Hooke-Jeeves optimisa-
tion.

• Measurements from a heavy-duty Diesel engine at 18 operating conditions are
used for calibration.

• Significantly improved agreement between model and experiment is obtained.
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1 Introduction

Compared with gasoline engines, the merits of Diesel engines are lower fuel consumption
and higher thermal efficiency [6, 7]. Diesel engines are therefore heavily relied upon for
power generation, seaborne and land transport for freight as well as for passenger cars.
However, due to the existence of rich high temperature zones leading to fuel pyrolysis,
Diesel engines tend to produce more soot and other particulate matter (PM) in the exhaust
gas which challenges its viability as more stringent emissions standards have been im-
posed [11, 12, 25, 50]. In order to improve our understanding of the soot formation and
oxidation mechanisms and to meet the demand for cleaner combustion strategies, mod-
elling and simulation of soot formation and oxidation in Diesel engines are of increasing
importance.

The formation and oxidation of soot is a rather sophisticated physical and chemical pro-
cess involving gas-phase chemistry, heterogeneous reactions on the particle surface and
particle dynamics depending on a wide range of parameters [7, 14, 20, 40, 44]. The major
processes considered important for soot formation in Diesel engines include: inception,
i.e. formation of the primary soot particles through collision of two polycyclic aromatic
hydrocarbon (PAH) molecules [49]; condensation, i.e. deposition of the PAH molecule on
the soot surface leading to soot mass growth [33]; coagulation, i.e. formation of large soot
particles due to collision and sticking among the small ones [23, 24, 36]; surface growth,
i.e. increase of soot mass following the hydrogen-abstraction and acetylene-addition
(HACA) mechanism [16], and oxidation where the soot particle is oxidised through het-
erogeneous reactions with molecular oxygen and hydroxyl radicals [16]. The evolution
of the soot particle size distribution (PSD) can be modeled by using population balance
equations (PBEs) which are in mathematics a set of partial differential equations [48].
However, parameters describing these soot process rates are derived from a limited num-
ber of experimental or theoretical studies. There is a lack of consensus within the literature
in terms of these parameters and the uncertainty ranges. Therefore, the soot model param-
eters usually have to be properly calibrated for different engine geometries and operating
conditions.

The purpose of calibration is to determine the model parameters to achieve the small-
est difference between the experimental measurements and the numerical simulation re-
sults with the minimum consumption of computation time. Manual calibration is time-
consuming, impractical and cannot always give the optimal results. To realise efficient
model-based engineering, it is vital to combine the physical-chemical model with ad-
vanced optimisation method to achieve the auto-calibration of the model parameters.
Pasternak et al. [43] present a self-calibration model for Diesel engine simulation. The
model consists of a stochastic reactor model (SRM) for Diesel engine in-cylinder pro-
cesses simulations and a package of optimisation algorithms (OPAL) for various opti-
misation problems. The genetic algorithms (GA) were adopted to determine the model
parameters for calibration against the measured in-cylinder pressure history and engine-
out emissions, including nitrogen oxides and unburned hydrocarbons. It has been shown
that the presented approach is able to efficiently calibrate the Diesel engine model. A
higher calibration accuracy is achieved compared to the manual calibration. Niu et al.
[41] propose a combination of GA and the ant colony algorithms for calibrating the com-
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bustion and heat transfer parameters including radiation coefficient, the combustion speed
and terminal angle. This new approach has been shown to satisfy the required accuracy
with a reduced number of simulation times. Prah et al. [47] propose a Hybrid Calibration
Method (HCM) for internal combustion engine (ICE) simulation. This method consists
of two steps. The first step comprises the determination of calibration parameters for ICE
sub-systems based on the direct search procedure. In the second step, calibration is per-
formed with a reduced number of calibration parameters for the entire ICE simulation.
The main advantage of HCM is its ability for the calibration of a large number of tuning
parameters in a robust, repeatable and time-efficient manner.

The current literature on the engine model calibration is largely targeted at the engine in-
cylinder pressure. Very little is focused on soot emissions. In the few publications [29, 42]
where the soot emission is the calibration target, the adopted soot models are restricted
to over-simplified empirical ones [17, 18]. The main advantage of these empirical soot
models is the low computational cost. However, they do not account for the detailed soot
particle dynamics. As a result, limited information on the soot formation and oxidation
processes can be provided. By contrast, the detailed soot model is able to provide a deep
insight into the soot particle dynamics. The problem is that the PBEs describing the soot
particle processes usually take lots of computational resources, making the calibration
highly time-consuming given the fact that usually multiple simulation times are needed
to complete the calibration process. An efficient engine-soot code is therefore desired
for calibration of the detailed soot model parameters. Generally, there exist three ap-
proaches to handle the soot PBEs: stochastic method [4, 30], sectional method [1, 27, 28]
or method of moments (MOM) [15, 32, 34]. The stochastic method and sectional method
are accurate and able to provide the detailed soot PSD but suffer from a high computa-
tional cost. MOM is much superior to other methods in terms of computational efficiency.
With MOM, the soot PBEs are transformed into a set of moment equations and only a few
lower-order moments are solved for, thus reducing the computational cost significantly.
However, MOM suffers from some closure problems arising from the application of real-
istic collision kernels and particle depletion due to oxidation. Over the last three decades,
numerous moment methods have been proposed [10, 15, 31, 32, 34, 40, 57] trying to han-
dle these problems. Among them, the Moment Projection Method (MPM) [54, 55] is very
promising, having been shown to be able to handle all particle processes with satisfactory
accuracy.

The aim of this paper is to present an efficient calibration procedure for soot simula-
tion in Diesel engines. To achieve that goal, the Stochastic Reactor Model (SRM) en-
gine code [13, 26, 29, 37, 38, 42, 52] is used to simulate the combustion process in-
side Diesel engines. The Moment Projection Method is implemented to handle the soot
particle dynamics. The SRM code is then coupled with the Model Development Suite
(MoDS) [8, 39] where a direct search algorithm is adopted to calibrate the soot model
parameters automatically based on the measured soot emission data at different operating
conditions.

The paper is structured as follows. In the next section, the engine and soot models are
presented. The incorporation of the Moment Projection Method into the SRM framework
is explained followed by a brief description of the calibration algorithm. In section 3,
the performance of the integrated code for calibration of soot model parameters is tested
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by simulating a four-cylinder heavy-duty Diesel engine operated under 18 different con-
ditions which cover a wide range of soot emissions. Finally, some key conclusions are
summarised.

2 Model description

2.1 Engine model

The Stochastic Reactor Model (SRM) engine code is a spatially zero dimensional model
for physical and chemical processes, which is applicable for simulations of in-cylinder
combustion processes [26, 38]. The model is inspired by the Probability Density Function
(PDF) transport methods [45]. It employs detailed chemical kinetics and possesses sub-
models for heat transfer, turbulent mixing, piston movement, and fuel injection [29, 52].
An important concept in the SRM is the so-called “stochastic particle” which represents
a point in phase-space for the local scalar variables such as species concentrations, tem-
perature, and pressure [37]. The engine cylinder charge can be split into an ensemble of
stochastic particles to represent the distribution of these variables. These stochastic parti-
cles can mix with each other and exchange heat with the cylinder walls [13]. The num-
ber of stochastic particles determines the precision of the physical predictions. Higher
accuracy is achieved with a larger number of stochastic particles but at the expense of
computational cost. Usually 100 stochastic particles are sufficient for engine simulations.

2.2 Soot model

Within each stochastic particle, the soot model proposed by [2, 3] is adopted in this work
to describe the soot formation and oxidation processes. The soot is modelled as a popula-
tion of spherical particles composed of merely carbon atoms. The physical and chemical
processes considered to be important for the formation of soot particles are inception, co-
agulation, condensation, surface growth, and oxidation. The detailed description of these
processes can be found in [2, 3]. Here we only focus on the soot reaction kernels. We
have introduced a set of multipliers which are applied to these kernels so that the soot
reaction rates can be calibrated against the experimental soot emissions.

For inception, the reaction rate is expressed by using a collision efficiency model with the
collision kernel given as:

βg
i,j = xinεi,j

√
8πkBT

µi,j

(ri + rj)
2. (1)

εi,j is a size-dependent enhancement factor due to attractive or repulsive inter-particle
forces. kB is the Boltzmann constant, T is the temperature, µi,j is the reduced mass of
the collision species, and ri is the radius of the species of size i. xin is the multiplier
introduced to tune the soot inception rate.
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Table 1: Soot surface reactions. The rate parameters are taken from [2].

k = AT nexp(−E/RT )
A n E

No. Reaction [cm3/mol/s] [-] [kcal/mol] Multiplier

S1 Ci
soot-H + H 
 Ci

soot- + H2
4.2× 1013 13.0 -
3.9× 1012 11.0 -

S2 Ci
soot-H + OH 
 Ci

soot-∗ + H2O
1.0× 1010 0.734 1.43 -
3.7× 108 1.139 17.1 -

S3 Ci
soot-∗ + H→ Ci

soot 2.0× 1013 -
S4 Ci

soot-∗ + C2H2→ Ci+2
soot-H + H 8.0× 107 1.56 3.8 xg

S5 Ci
soot-∗ + O2→ 2CO + Ci−2

soot-H 2.2× 1012 7.5 xO2

S6 Ci
soot + OH→ CO + Ci−1

soot reaction probability = 0.13 xOH

S7 Ci
soot + PAH→ Ci+nPAH

soot reaction probability = 1.0 xcond

Coagulation refers to the formation of large particles through collision and sticking among
the population of soot particles. The process is modelled using the Smoluchowski’s equa-
tion [51]. The collision frequency is dependent on the Knudsen number. For the collisions
occurring under the continuum regime the coagulation kernel is given as

βc
i,j = xcontKc

[ 1

i1/3
+

1

j1/3
+K

′

c

( 1

i2/3
+

1

j2/3

)](
i1/3 + j1/3

)
, (2)

and for the collisions under the free-molecular regime the kernel becomes:

βf
i,j = xfreeKf

(1

i
+

1

j

)1/2(
i1/3 + j1/3

)2
. (3)

Kc,K
′
c andKf are the kernel factors which are functions of temperature, gas viscosity and

mean free path. xcont and xfree are the multipliers used to calibrate the coagulation rates.
It is suggested [19] that the collisions of soot particles under Diesel engine conditions
are usually in the transition region between the free molecular regime and the continuum
regime. Therefore, the harmonic mean value of the coagulation rates determined in the
two regimes is adopted as the coagulation rate in this work.

Table 1 lists the mechanism used for soot surface reactions. The soot surface growth
is modeled using the HACA mechanism [16]. The oxidation of soot particles via O2 is
described using the concept of soot surface radical sites while the oxidation by OH is
modeled through a collision theory between OH radical and soot particles. Condensation
is modeled as the deposition of a pyrene molecule from the gas-phase on the surface of
soot particles. For all these processes, the multipliers are introduced as listed in Table 1
to tune the corresponding reaction rates.

As already mentioned, these soot particle processes can be modeled by using PBEs. Since
the soot particles usually span a wide size range, an infinite number of partial differential
equations are needed to describe these processes. In order to reduce the computational
cost, the method of moments is adopted to handle the soot model. The moments are
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defined as

Mr =
∞∑

i=i0

irNi, r = 0, 1, . . . ,∞, (4)

where Ni is the number density of soot particles that contain i carbon atoms. i0 refers to
the smallest particle size. Mr is the rth order moment. The lower-order moments have
physical meanings, for example M0 represents the total soot number and M1 is related
to the total soot mass. One only needs to solve for a few lower-order moments which
are sufficient to provide the general information on soot particles. However, the soot
moment equations are usually unclosed. The application of the collision kernels leads
to the presence of fractional or even negative order moments that are not directly tracked
and have to be properly estimated. Another closure problem arises from the soot oxidation
process where the number of the smallest soot particles has to be approximated to evaluate
the depletion of soot particles. In this work, the Moment Projection Method (MPM) is
adopted to handle these problems. The basic idea of MPM is to approximate the PSD
with a set of weighted particles and directly track the number of the smallest particles by
fixing one of the weighted particle sizes at the smallest size. Please refer to [54, 55] for
the detailed numerical algorithm for MPM.

2.3 Integrating the models

Diesel engine sub-models: Piston movement model; Injection model; 
Heat transfer model…...

Thermodynamics
Gas-phase 
chemistry

Soot particle 
dynamics

Inception

Coagulation

Condensation

Growth

Oxidation

Gas production rates 
adjustment

Update temperature (T), gas species concentrations (C) and soot moments (M) 

Mixing model

P1 P2 Pn…...

C, T, M

Figure 1: A schematic of the coupled engine-soot model.

Figure 1 shows the schematic of the integrated engine-soot model. The engine cylin-
der charge is split into an ensemble of stochastic particles that represent the distribution
of temperature, gas-phase species concentrations and soot moments. The main step of
integrating the soot model into the SRM code consists of associating the soot moment
equations with each of the SRM stochastic particles and solving them in every computa-
tional time step. Another key step is to link the gas-phase chemistry to the soot particle
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processes by identifying one or more species in the chemical mechanism as inception and
soot surface reaction species. The contributions to these gas-phase species due to soot
inception and surface reactions are fed back to the gas-phase chemistry to adjust the cor-
responding gas species production rates. After these unknowns are updated within each
stochastic particle, a mixing among the stochastic particles is conducted to generate new
distributions of temperature, gas-phase species concentrations, and soot moments inside
the engine cylinder which are fed as inputs into each stochastic particle and repeat the
above steps until simulation time ends. It should be noted that the selection of a proper
mixing model is very important. An inappropriate mixing of moments may violate the
realisability of the moment set, leading to unphysical results. Realisability refers to the
existence of an underlying particle size distribution (PSD) which corresponds to a set of
moments [9]. All the moments are linked to each other under very complex mathemati-
cal relationships. If these relationships are not preserved due to the mixing of moments,
the moment set can be unrealisable, indicating that no PSD can be represented by these
moments or they lead to unphysical distributions [53]. In this work the mixing of the
stochastic particles is described by Curl’s model [5] in which a pair of stochastic particles
is chosen at a time according to a certain probability law characteristic of the particu-
lar model and mixed to produce two new stochastic particles. The properties of the two
post-mixed stochastic particles are the mean of the properties of the original ones. Curl’s
mixing model has been proven in [5] to be able to maintain the consistency between the
PSD and the corresponding moments. As a result the realisability of the moment set is
ensured.

2.4 Soot model calibration

The seven soot model multipliers described in the previous section were calibrated auto-
matically through MoDS based on the experimental soot emissions obtained at N = 18
operating points. The accuracy of the model multipliers was evaluated using a least-
squares objective function:

f(x) =
N∑
i=1

[mi − m̃i(x)

σi

]2
, (5)

where x = (xin, xcont, xfree, xg, xO2 , xOH, xcond) refers to the vector of soot model multipli-
ers. mi and m̃i are, respectively, the experimental and simulated soot emissions for each
test case.

The local optimisation was done with the Hooke-Jeeves algorithm [21] which is a type of
direct search method. This algorithm is an extension of the basic discrete grid method,
both of which are described in [46]. In the basic version, at the kth iteration the algorithm
searches for

x∗k ∈ N (xk) : f(x∗k) < f(xk), (6)

where N (xk) is the set of points containing xk and its immediate neighbours on a grid
with spacing δxk, i.e.

N (xk) =
{
x
∣∣∣∃i ∈ {1, . . . , D}, a ∈ {−δxk, 0,+δxk} : x = xk + aei,

}
⊂ RD, (7)
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where ei is the unit vector in the ith direction, and D = 7 in our case. If a better point
cannot be found in N (xk) then the search distance δx is reduced by multiplying it by
s < 1. That is, the next point is given by

xk+1 =

{
x∗k, if f(x∗k) < f(xk),

xk (and δxk+1 = sδxk), otherwise.
(8)

Hooke and Jeeves’ version extends this by suggesting that if xk is better than xk−1 then
taking another step in the same direction to yk = 2xk − xk−1 and searching for

y∗k ∈ N (yk) : f(y∗k) < f(xk), (9)

where N (yk) is defined as in Eqn. (7), might provide a further improvement. This gives

xk+1 =


x∗k, if f(x∗k) < f(xk) and f(y∗k) ≥ f(x∗k),

y∗k, if f(x∗k) < f(xk) and f(y∗k) < f(x∗k),

xk (and δxk+1 = sδxk), otherwise.
(10)

The algorithm terminates if either the number of iterations, k, reaches kmax or δxk is
reduced such that δxk < ε, where ε is a user-defined tolerance.

Initial soot model multipliers

SRM engine-soot model

Predicted soot 

emission

Model parameter accuracy

Check if the desired error 

tolerance is achieved

Yes

Output the final multipliers

Hooke-Jeeves 

algorithm

No

New guess of 

multipliers

Figure 2: The calibration workflow for the soot model multipliers in the coupled SRM-
MoDS model.

Figure 2 shows the calibration workflow for the soot model multipliers in the coupled
SRM-MoDS model. The values of the multipliers are initially set to 1.0. The predicted
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Table 2: Diesel engine specification.

Quantity Value

Bore 105 mm
Stroke 127 mm
Compression ratio 16.5:1
Displacement 4400 cm3

Table 3: Engine operating conditions.

Quantity
Value

Unit
Min Max

Pilot SOI -18.0 -7.3 CAD ATDC
Main SOI -10.0 -0.1 CAD ATDC
Main injection fuel mass 100.5 110.0 mg
Injection pressure 1550 2500 bar

soot emissions of the SRM engine-soot model are compared with the experimental mea-
surements to evaluate the accuracy of the soot model multipliers. If the predicted soot
emissions are within the user-defined error tolerance, the calibration process stops and
outputs the current multipliers as the final results. Otherwise, these multipliers are modi-
fied using the Hooke-Jeeves algorithm in order to minimise Eqn. (5). A set of new mul-
tipliers are then generated and sent to the SRM engine-soot model to repeat the above
procedures until the desired error tolerance for the soot emissions is achieved.

3 Results and discussion

In this section the integrated codes were used to simulate combustion in a four-cylinder,
series-turbo-charged heavy-duty Diesel engine from Caterpillar. A detailed kinetic model
for Primary Reference Fuel (PRF) [38] is employed to describe the gas phase chemistry.
The chemical mechanism contains 208 species and 1002 reactions. The formation of soot
precursors including Polycyclic Aromatic Hydrocarbons (PAHs) and other soot surface
reaction related species such as acetylene are all included. The simulated Diesel engine
has eight valves and a displacement of 4.4 litre with dual injection strategy. Further details
of the engine specification are listed in Table 2.

In total 18 test cases were adopted. The range of operating conditions are described in
Table 3. The Diesel engine was running at a constant speed of 2200 rpm. The pilot
injection fuel mass is always 2.91 mg for all the cases while different injection timings,
injection pressures, and main injection fuel mass are adopted. These cases cover a wide
range for soot emissions.

For all the cases, simulations were run with a time step of 0.2 CAD. 100 stochastic parti-
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Figure 3: Comparison between simulated and measured in-cylinder pressures as a func-
tion of crank angle. For each case, the pressure values have been normalised
by the maximum measured pressure Pmax.

cles were adopted in the SRM engine code. Figure 3 compares the simulated in-cylinder
pressure profiles with the experimental measurements for six representative test cases. As
can be seen the simulation results match the experimental data well. The predicted ig-
nition timings and cumulative heat releases are in good agreement with the experiments.
These results suggest that the combustion process inside the Diesel engine cylinder was
successfully simulated with the integrated code.

In order to evaluate the computational efficiency of the integrated code for soot simulation
in Diesel engines, for each test case the simulation was run twice: one considers both the
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Figure 4: Evaluation of the additional CPU costs induced by including the soot model in
the Diesel engine simulation. For each test case, the CPU time is normalised
by the result obtained where no soot particle dynamics are considered.

gas phase chemistry and the soot particle dynamics while the other one only considers
the gas phase chemistry. The CPU time spent for these cases is shown in Fig. 4. Note
that for each test case the CPU time is normalised by the result obtained where only gas
phase chemistry is considered. As can be seen, the inclusion of the soot model in the
code increases the CPU cost by around only 20% for all the test cases owing to the high
computational efficiency of MPM. This is very promising given the fact that traditionally
the treatment of the soot model using the stochastic method usually makes the Diesel
engine simulation prohibitively expensive.

Figure 5 shows the distribution of temperature and equivalence ratio in a plot at several
crank angles throughout the cycle for case 1. At CAD = -50, it can be seen that all the
stochastic particles are located at a low temperature with a fuel/air equivalence ratio of
zero since no fuel has been injected yet and the cylinder has been charged with air. At
CAD = -20, these particles are found to be moved to a higher temperature region due
to compression while the equivalence ratio still remains zero. Then at CAD = -5 where
the pilot injection has already started, the burning of the fuel leads to a fast increase in
temperature. Note that the particles with equivalence ratios close to stoichiometric reach
the highest temperature as expected. Some stochastic particles start to be present in the
NOx peninsula. As the injection continues, the mixture becomes richer. Starting from Top
Dead Center at CAD = 0, some stochastic particles start to enter the soot peninsula and
become the source of soot formation. The stochastic particle with the highest equivalence
ratio belongs to the area that surrounds the fuel injector where very little air exists. During
the main combustion period from CAD = 0 to CAD = 30, the stochastic particles span a
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Figure 5: Time evolution of equivalence ratio and temperature distribution as a function
of crank angle for case 1 obtained using the integrated code. The soot and NOx

iso-lines are adopted from [22].
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wide range of equivalence ratios and temperatures, leading to the continuous formation
of both NOx and soot. Then from CAD = 50, a shift of these stochastic particles towards
lower temperature and smaller equivalence ratio is observed as the fuel is burned out.
These particles start to leave the soot and NOx peninsula. The formation rates for soot
and NOx are expected to decrease.
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Figure 6: Comparison between the simulation results and experimental measurements for

NOx emissions for the 18 test cases. Values are normalised by the maximum
experimental NOx emission value. The solid line indicates a 1:1 relation.

The simulation results and experimental measurements for NOx and soot emissions are
compared in Figs. 6 and 7, respectively. As can be seen the predicted NOx emissions
by the integrated code are in good agreement with the experimental measurements both
qualitatively and quantitatively for all 18 test cases. By contrast, the soot emissions are
largely over-predicted by the uncalibrated soot model where all the soot process multi-
pliers are set as 1.0. This indicates that the formation and growth rates for soot particles
under Diesel engine combustion conditions have been overestimated with the original soot
model parameters.

The calibration of the soot model multipliers was completed after 156 simulation runs.
The finally accepted multipliers determined by the Hooke-Jeeves algorithm are shown
in Fig. 8. It can be seen that only the multipliers for soot surface growth, oxidation
via molecular oxygen and free-molecular coagulation are changed significantly while the
multipliers for other soot particle processes remain almost unchanged. In particular, xfree

has been increased by around 327 times. The predicted soot emissions with the calibrated
soot model are compared with the uncalibrated results and the experimental data in Fig. 7.
A much better agreement between the simulation results and the experimental measure-
ments is observed with the calibrated soot model compared with the uncalibrated one,
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suggesting that the soot formation rates have been tuned to be more reasonable. However,
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in Fig. 7 we could still observe some discrepancies between the experimental measure-
ments and the simulation results obtained with the calibrated soot model. For example the
soot emissions in cases 2, 4, 8, 10, and 12 are over-predicted by around two orders with
the new multipliers. These discrepancies might be a consequence of the inherent defects
of the adopted soot model for describing the soot formation and oxidation processes. The
detailed soot formation mechanism is far from being fully understood. Take inception as
an example, the inception mechanism adopted in the current soot model is a very simple
one which assumes the pyrene molecule to be the only soot precursor. The inception rate
is determined through a simple collision equation. However, several studies [2, 56] indi-
cate that PAHs larger than pyrene might act as the soot inception species. Furthermore, it
has been suggested that the soot inception process should be reversible which is not the
case in the adopted soot model. A better agreement between the experimental data and
the simulation results can be expected if a more accurate soot model is adopted. It should
be noted that the purpose of this paper is not to develop a new soot model but to present
an efficient calibration procedure for soot simulation in Diesel engines. The proposed
engine-soot model in this work has the advantage of low computational cost. The soot
model multipliers have been successfully calibrated via the coupled SRM-MoDS code.
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Figure 9: Comparison of the time evolution of the total soot mass as a function of crank
angle obtained before and after calibration of the soot model for case 1.

Next, the influence of the soot model multipliers on the soot formation and oxidation
processes are discussed. Figure 9 compares the time evolution of the predicted total soot
mass as a function of crank angle for case 1 obtained before and after the calibration of
the soot model multipliers. As can be seen, at the beginning inception dominates the
soot particle processes, leading to a fast build-up of soot mass inside the engine cylinder.
The total soot mass keeps increasing until around CAD = 50 after which oxidation starts
to dominate over the soot formation process. During the whole combustion process less
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soot mass is predicted using the calibrated soot model compared with the original one.
Especially during the late combustion stage the soot mass predicted with the calibrated
soot model exhibits a sharp decrease while the uncalibrated model leads to a slow change
of the soot mass.
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Figure 10: Time evolution of the soot inception and surface reaction rates as a function
of crank angle for case 1 obtained using the integrated code.

The predicted soot formation and oxidation rates for case 1 obtained before and after
calibration of the soot model are shown in Fig. 10. The coagulation rate for the total
soot mass is zero, therefore it is not shown in the figure. From Fig. 10 it can be seen
that the oxidation rate via OH is much larger than that via O2, suggesting that the soot
oxidation process is mainly governed by the external burning process. During the main
combustion stage from 0 CAD to 60 CAD, the soot inception rates, condensation rates
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and surface oxidation rates predicted by the calibrated and uncalibrated soot models are
almost the same. By contrast, the calibrated soot model leads to a lower soot surface
growth rate compared with the uncalibrated model, which is the main contributor for the
less soot mass obtained by the calibrated soot model as observed in Fig. 9. During the
late combustion stage (> 60 CAD), the calibrated soot model predicts a lower rate for
not only the surface growth but also the inception and condensation processes compared
with the uncalibrated soot model, which leads to a faster decrease in the total soot mass
as observed in Fig. 9.

One significant weakness of the method of moments is that it can only provide the bulk
quantities of soot particles while the detailed soot PSD is lost. In order to perform a com-
prehensive study on the soot particle dynamics, the maximum entropy (ME) approach [35]
is adopted in this work as a post-process technique to reconstruct the soot PSD based on
the obtained moments at each simulation step. The basic idea of ME reconstruction is to
approximate the PSD using a series of exponential polynomials, which is given as

N(i) = exp
(
−

K∑
j=0

λji
j
)
, (11)

where λj (j = 0, . . . , K) are Lagrange multipliers. The reconstructed PSD has to meet
the requirement that the first K + 1 moments are equal to the moments of the real PSD:

imax∑
i=imin

irNK(i) =
imax∑

i=imin

irexp
(
−

K∑
j=0

λji
j
)

= Mr, r = 0, . . . , K. (12)

The key problem is to determine these Lagrange multipliers. To achieve this, a convex
potential is introduced:

∆ =
imax∑

i=imin

[
exp
(
−

K∑
j=0

λji
j
)
− 1
]

+
K∑
j=0

Mjλj. (13)

One just needs to minimise this potential to find its stationary points. Please refer to [35]
for the detailed ME algorithm.

The reconstructed soot PSDs as a function of crank angle for case 1 obtained before and
after calibration of the soot model multipliers are compared in Fig. 11. As can be seen,
at the beginning inception dominates the soot formation process, the PSD exhibits a delta
distribution. An increase in the total soot number is observed from CAD = -5 to CAD = 0
as injection continues. From CAD = 4, the soot PSD starts to exhibit a bimodal distribu-
tion. The first mode arises from the continuous particle inception while the second mode
is due to the particle growth and coagulation processes. As more and more particles are
formed, the PSD is becoming wider. At the same time, the inception process is weakened
as most fuels have been burned out and a shift of the PSD from bimodal to unimodal dis-
tribution is observed at the late combustion stage accompanied by a continuous decrease
of the total soot number. Compared with the uncalibrated soot model, the calibrated soot
model predicts a narrower soot PSD during the main combustion period from CAD = 4 to
CAD = 35. This is mainly attributed to the decrease in the soot surface growth multiplier
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Figure 11: Predicted time evolution of the soot particle size distributions for case 1 ob-
tained before and after calibration of the soot model multipliers.

after calibration, which leads to a slow accumulation of soot particles at large sizes. In
addition, the increase of the soot oxidation multiplier after calibration results in an overall
lower soot number through the whole particle size range compared with the uncalibrated
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soot model. During the late combustion stage, the coagulation process starts to dominate
the particle process as the soot surface reactions become weakened. Since the coagulation
multiplier has been increased after calibration, a faster increase in the soot particle size
range is induced by the calibrated soot model compared with the uncalibrated one.

The predicted evolution of the soot PSD within the engine cylinder seems reasonable.
Unfortunately there is no available experimental measurement for engine in-cylinder soot
PSD for comparison. Once again, it should be noted that the purpose of this paper is not
to develop a new soot model to account for the soot formation and oxidation processes
precisely. The aim here is to present an efficient approach for soot simulation in Diesel
engines over a wide range of operating conditions. The integrated code proposed here
can be used to handle the soot model with little CPU cost. It enables an auto-calibration
of the model parameters which represents a significant improvement over the manual
calibration which is time-consuming and impractical. Furthermore, a detailed analysis on
the soot particle evolution inside the engine cylinder can be provided.

4 Conclusion

In this work, a calibration procedure for soot simulation in Diesel engines is developed
and presented. The procedure is based on the integration between the engine-soot model
and an advanced optimisation method. The Stochastic Reactor Model (SRM) engine code
is adopted to describe the combustion process inside Diesel engines. The Moment Projec-
tion Method (MPM) is implemented into SRM to account for the soot particle dynamics
including inception, condensation, coagulation, surface growth, and oxidation. The SRM
code is then coupled with the Model Development Suite (MoDS) where the Hooke-Jeeves
algorithm is adopted for the automatic calibration of the soot model parameters based on
the experimental measurements for soot emissions.

The performance of the integrated code has been tested by simulating the soot formation
and oxidation processes in a four-cylinder heavy-duty Diesel engine operated under 18
different conditions which cover a wide range for soot emissions. Results suggest that the
integrated code is very efficient. The inclusion of the soot model in the engine code leads
to an increase of CPU cost by only around 20%. The auto-calibration of the soot model
parameters is completed after 144 simulation runs. A much better agreement between the
simulation results and the measured soot emissions is achieved with the calibrated soot
model compared to the original one, suggesting that the Hooke-Jeeves algorithm success-
fully finds the desired parameters. It is found that the major changes to the soot model
parameters after calibration are the surface growth multiplier, O2 oxidation multiplier, and
free-molecular coagulation multiplier. A detailed investigation on the influences of these
multipliers on the soot formation and oxidation processes in Diesel engines is provided.
With the integrated code, not only the bulk soot quantities such as total soot number and
mass but also the evolution of the detailed soot PSDs can be generated, enabling a com-
prehensive study on the soot particle dynamics in Diesel engines.
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Nomenclature

Upper-case Roman
A Pre-exponential factor
C Gas species concentration
E Activation energy
K Kernel
M Moment
N Number
P Pressure
R Universal gas constant
T Temperature

Lower-case Roman
e Unit vector
k Rate constant
kB Boltzmann constant
ri Radius of particle of size i
m Mass
x Multiplier

Greek
β Collision kernel
∆ Convex potential
ε Tolerance
ε Enhancement factor
λ Lagrange multiplier
µ Reduced mass

Superscripts
g Gas
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c Continuum regime
f Free-molecular regime

Symbols
x̃ Approximation of x
x∗ New guess of x

Abbreviations
CAD Crank angle degree
EOI End of injection

EVC Exhaust valve closing
EVO Exhaust valve opening

GA Genetic algorithm
HACA Hydrogen abstraction and acetylene addition

HCM Hybrid calibration method
ICE Internal combustion engine
IVC Inlet valve closing
IVO Inlet valve opening
ME Maximum entropy

MoDS Model development suite
MOM Method of moments
MPM Moment projection method
OPAL Optimisation algorithm

PAH Polycyclic aromatic hydrocarbon
PBE Population balance equation
PDF Probability density function
PM Particulate matter

PRF Primary reference fuel
PSD Particle size distribution
SOI Start of injection

SRM Stochastic reactor model
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