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Abstract

We apply a hybrid particle model to study synthesis of particulate titania under repre-
sentative industrial conditions. The hybrid particle model employs a particle-number
description for small particles, and resolves complicated particle morphology where
required using a detailed particle model. This enables resolution of particle prop-
erty distributions under fast process dynamics. Robustness is demonstrated in a
network of reactors used to simulate the industrial process. The detailed particle
model resolves properties of the particles that determine end-product quality and
post-processing efficiency, including primary particle size and degree of aggregate
cohesion. Sensitivity of these properties to process design choices is quantified,
showing that higher temperature injections produce more sintered particles; more
frequent injections narrow the geometric standard deviation of primary particle di-
ameter; and chlorine dilution reduces particle size and size variance. Structures of a
typical industrial particle are compared visually with simulated particles, illustrating
similar aggregate features with slightly larger primary particles.

Highlights
• Hybrid particle model combined with overlapping spheres detailed particle

model

• Robust and efficient hybrid approach used to study industrially relevant condi-
tions

• Energy balance included to allow flexible reactor modelling framework

• Particle structure resolved by primary coordinate tracking compared with real
product
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1 Introduction

Understanding aerosol synthesis of particulates is challenging due to the complex interac-
tions between chemistry, heat transfer, fluid dynamics and particle structure, with particle
size and morphology determined by process conditions. In particular, control of heat
transfer and reaction processes is central to producing desired product structure in a pro-
cess that typically generates non-spherical, fractal-like aggregates [12, 47]. Need to target
specific product properties has motivated extensive study – see, for example, the review
of Li et al. [33]. Synthesis of pigmentary titanium dioxide (TiO2, titania) by the chloride
process [5] is a salient example and will be the focus of this paper.

Titanium dioxide is an important industrial product, with applications spanning pigments
[22] to photocatalytics [30, 63]. TiO2 powder is produced on the scale of millions of tons
per annum [52] and aerosol synthesis via the chloride process accounts for approximately
60 % of white pigmentary TiO2 [12]. The opacity of the product is governed by the size
and morphology of the pigment particles – thus understanding of the synthesis is crucial
as it can minimise expensive post-processing steps such as milling to achieve suitable
sizes [4, 15].

Experimental studies and acquisition of plant data are hindered by elevated temperatures
and pressures (>1000 K and several bar), residences times in the order of milliseconds
and the chlorine environment. However, useful laboratory studies exist, including the
early thin film studies of Ghoshtagore [21] and hot wall reactor of Pratsinis et al. [51] as
well as many more recent results [20, 23, 39, 60]. In addition to allowing direct study of
particulate properties, for example by imaging, such studies provide a means of testing
and building numerical models [1, 35, 56] which allows for rapid investigation of process
conditions that are expensive/challenging to realize experimentally.

Numerical studies require (i) a model for the particle type space, i.e. the mathematical
description of possible particle properties; (ii) a mechanism for formation and growth
processes, possibly combined with chemical kinetics for the gas-phase and heat/transport
processes; (iii) a numerical method with which to solve these constituent equations. Type
space models can be characterised as spherical [50], surface area/volume [64] and de-
tailed [36, 54], with increasing complexity attributed to particle models with more dimen-
sions/internal coordinates [28]. Detailed models are required to describe polydisperse
particle populations and systems with similar coagulation and sintering timescales [42].

Popular numerical methods for solving population balance equations include moment-
based [19, 38, 40], sectional [24, 29, 59] and Monte Carlo [2, 13, 27, 37, 49, 65] treat-
ments [53]. Although other methods can be optimised to accommodate several particle
internal coordinates [41], the stochastic approach is necessary when a detailed particle
model is used as this can extend to thousands of internal coordinates (resolving particle
connectivity as well as sizes). Direct simulation with a detailed particle model has been
used to study titania synthesis in previous work e.g. [34, 61], including studies that specif-
ically targeted understanding of industrially-relevant conditions using simpler particle [3]
and flow [7] models respectively. These studies highlighted the high computational cost
of simulating high-rate conditions.

In recent work [8], we proposed a new algorithm for a hybrid particle type space model,
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termed the particle-number/particle (PN/P) model, in the spirit of the approach of Babovsky
[6], and demonstrated its improvement of the efficiency and robustness of direct simula-
tion under high-rate conditions. The PN/P model supports the stochastic algorithm under
conditions of rapid particle formation and growth by tracking newly incepted primary
particles separately, freeing up space in the discrete particle ensemble for resolving ag-
gregates with a detailed particle model. This is in contrast to the hybrid approach proposed
by Bouaniche et al. [9] recently, which resolves the full particle size distribution (PSD)
using sectional and stochastic approaches to treat artificial diffusion for high growth rates.
The current work incorporates the new overlapping spheres, primary coordinate tracking,
particle model of Lindberg et al. [36] which provides further resolution in the particle
type space and eliminates assumptions on fractal dimension in calculating particle colli-
sion rates.

The purpose of this work is to develop new understanding of the particle structures
formed in industrial titania synthesis by combining two recently introduced models: a
more detailed particle model including primary coordinate tracking; and a hybrid particle
type space model that allows more efficient, robust simulation of the industrial process.
We revisit the reactor network approach [43] for modelling the industrial reactor [7], in-
cluding an energy balance to extend applicability to a wider range of configurations and
operating conditions. The PN/P model is used to handle rapid particle inception under the
industrial conditions and the detailed particle model is used to describe complex aggre-
gate structures that develop due to coagulation and surface processes with sufficient detail
to compare with features of the industrial product.

This paper is structured as follows: important features of the particle models and pro-
cesses are outlined in Sections 2.1 and 2.2 respectively. The modelling section ends with
a description of the reactor model in Section 2.3, including relevant mass and energy bal-
ance equations (2.3.1) and details with motivation for the cases to be considered (2.3.2).
The numerical method is discussed in Section 3, which highlights new features (3.1), lists
parameters (3.2) and illustrates performance (3.3). Results follow in Section 4, covering
an investigation of particle structure for base case conditions (4.1), a study of sensitivity
of particle structure to alternate process design choices (4.2), characterisation of fractal
structure (4.3), and comparison of visualisations of particle geometry (4.4). Finally, con-
clusions are stated in Section 5.

2 Model description

2.1 Particle models

The particle model is a key ingredient in the modelling framework because it determines
the maximum amount of information that can be obtained directly about product mor-
phology without requiring further assumptions on shape. We consider modelling particles
at two levels: primary particles (primaries), which consist of chemically bonded units
of TiO2 and are described by the number of atoms they contain, and aggregate particles
which are formed from multiple, independently-tracked primaries with arbitrary connec-
tivity. The particle type space provides a mathematical description of the particles: a
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Figure 1: Hybrid particle state space showing mass transfer between the gas-phase and
the particle systems and between the space of small primary particles with size
less than Nthresh and the space of aggregate particles [8].

particle has type x ∈ E, where E includes descriptions of all possible particles. This pa-
per uses a hybrid particle-number/particle (PN/P) model [8] which splits the particle type
space into small primary particles, x ∈M ⊂ E, and large/complex particles, x ∈ X ⊂ E,
(Fig. 1). Different levels of detail are required to describe particles in each sub-space.

2.1.1 Particle-number model

In the particle-number type space, M, particles consist of only one primary particle, pi,
defined by a single internal coordinate, ηi, which tracks the number of units of the chem-
ical species contained,

pi = pi (ηi) . (1)

For titania, the internal coordinate η tracks the number of TiO2 molecules making up
the primary particle (Fig. 2(a)). Only particles smaller than a threshold size of Nthresh are
described by the particle-number model, i.e. x ∈ [1,Nthresh]. Particles are modelled as
spheres, thus the diameter of a particle dp can be computed from its mass m,

m(pi) =
ηiMW

NA
=⇒ dp (pi) =

(
6
π

m(pi)

ρ

)1/3

. (2)

Here, NA is Avogadro’s constant and the first expression converts the number of molecules
tracked by ηi to moles and multiplies by the molecular mass, MW, to yield mass. The
second expression converts mass to volume and thus finds the sphere-equivalent diameter
using the particle mass density, ρ .
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2.1.2 Detailed particle model

The detailed particle type space, X, describes primary particles larger than the threshold
and particles with more complex morphology. A particle, Pq, is modelled by a list of
constituent primary particles, pi, i = 1, . . . ,nq, and a data structure, Cq,

Pq = Pq
(

p1, . . . , pnq
,Cq
)

. (3)

Cq tracks the connectivity of the primary particles i.e. which primary particles are adjacent
in the aggregate. The value of each element, Ci j ∈ Cq, depends on the relative positions
of primary particles pi and p j (see Fig. 2(b)),

Ci j =

{
1 if pi, p j are adjacent
0 if pi, p j are not adjacent. (4)

Primary particles pi are described by their chemical composition ηi, their radius ri and
their position zi,

pi = pi (ηi,ri,zi) . (5)

The coordinates zi specify the location of the primary centre relative to the centre of mass
of the aggregate. This informs the centre-to-centre separation di j,

di j = |zi− z j| , (6)

which measures the degree of overlap between adjacent primary particles. The coordi-
nates also specify the centre-to-neck distance xi j and the radius of the neck ri j between
adjacent primaries pi and p j (see Fig. 2(c)). Extensive detail for computing these particle
properties is provided in the paper by Lindberg et al. [36].

The primary coordinates can also be used to compute the diameter of gyration, and thus
the collision diameter dc,

dc (Pq)
2 =

4
∑

nq

i=1 m(pi)

nq

∑
i=1

m(pi)
(
|zi|2 + r2

i

)
, (7)

can be defined without assuming a particular fractal structure to relate the aggregate com-
position to its size [36].
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Figure 2: TiO2 primary particle pi defined by its chemical composition with radius ri of
a volume-equivalent sphere. Particle, Pq, is composed of a list of primaries, pi,
connected as overlapping spheres according to their relative 3D coordinates
zi, with tracking of radii, separation distances and surface area [36].

2.2 Particle processes

The evolution of a particle population is governed by several formation and growth pro-
cesses. This work studies the chloride synthesis of TiO2, for which the important particle
processes are inception, surface growth, coagulation and sintering (described in Sections
2.2.1–2.2.4). The inception and surface growth processes transfer mass from the gas-
phase, following decomposition and/or oxidation of the precursor TiCl4. In this work,
the gas-phase mechanism developed by West et al. [61, 62], with subsequent extensions
[10, 11, 46], is used to describe the decomposition of the precursor, oxidation to form
titanium oxychlorides, and chlorine chemistry. The mechanisms for the particle pro-
cesses have also been described in much detail in previous publications, both for titania
[3, 7, 8, 34, 36, 61], and for other systems [54, 57, 58]; thus, only important features are
mentioned here. This work extends the energy balance presented by Celnik et al. [13] to
include heat release by particle processes in order to study the exothermic process under
conditions with more significant solid fractions.

2.2.1 Inception

Inception is the process by which particles form in the solid phase following collision
between gas-phase species. The inception mechanism used in this work includes 105
bimolecular collision reactions between titanium oxychlorides, producing a new spherical
primary particle as in [3, 61]. The numerical inception rate, I, is informed by the collision
rate for the free molecular regime. Inception alters the system temperature by heat of
gas-phase reaction and formation of the new particle surface.

Inception increases the particle-number count, adding a particle of type xinc ∈M which
is modelled by increasing the count at size ηinc, where ηinc refers to the number of TiO2
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units in the new particle. Because the primary particle model is univariate, this treatment
is exact compared to the single type space modelling approach [8].

2.2.2 Surface growth

Surface growth refers to the addition of mass to the surface of an existing particle by direct
oxidation of TiCl4, with the reaction rate assumed to be first order in TiCl4 and O2 as in
Akroyd et al. [3], with constants fitted from the hot wall reactor experiments of Pratsinis
et al. [51] by Lindberg et al. [34]. Surface growth also contributes to the energy balance
by exothermic gas-phase reaction and formation of new particle surface.

For particles described by the particle-number model with ηi units, surface growth is sim-
ply the addition of ηadd new units, modelled by increasing the count at size ηi +ηadd and
decreasing the count at size ηi [8]. Surface growth is more complex for aggregate parti-
cles since the addition of ηadd units changes the relative centres of mass of the primaries
and the primary separations, requiring the adjustments described by Lindberg et al. [36].

2.2.3 Coagulation

Coagulation is a collision process after which particles remain in lasting point contact.
Coagulation is treated as addition in the combined type space:

P(x)+P(y)→ P(x+ y) , (x,y) ∈ E. (8)

Coagulation is modelled using a ballistic cluster-cluster algorithm (BCCA) with a random
impact parameter as outlined by Lindberg et al. [36]. The collision direction is specified
by random choice of: rotation around the centre of mass of each particle and surface point
for contact on one of the particles. The random impact is applied by placing the second
particle at an arbitrary position in the plane perpendicular to the collision direction. And
the rate is informed by the coagulation kernel for the transition regime [8].

A particle tracked by the particle-number model is transferred to the detailed particle
model when it coagulates with any other particle, i.e. the coagulation kernel K : E2→ X.

2.2.4 Sintering

Sintering describes the growth of ‘necks’ between adjacent primaries as their degree of
overlap increases. For TiO2, the dominant mechanism is grain boundary diffusion [26].
Sintering reduces the centre-to-centre distance between primaries, with increase in the
primary radii and centre-to-centre distance of neighbouring pairs to conserve mass. The
equations for how these properties alter as particles sinter are provided by Lindberg et al.
[36]. The extent of sintering is assessed in term of the ‘sintering level’,

si j =
ri j

r j
, r j ≤ ri, (9)
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where ri j is the radius of the neck connecting primaries i and j and the sintering level si j

is defined in terms of the ratio of this neck to the radius of the smaller of the two primary
particles.

In theory, sintering also contributes to the heat flux because the surface tension changes as
the particles sinter [32, 66]; and this phenomenon is particularly important when particles
are very small (less than 10 nm [31]) because the heat loss warms the particle surface,
causing it to behave more like a liquid and sinter more rapidly. Here, we stipulate a
minimum diameter of dp,min = 4nm [12, 36] which increases the sintering rate for the
smallest particles. We also assume that primary particle pairs coalesce (forming a fully-
sintered/single-primary particle) if their sintering level exceeds 0.95 [36].

2.2.5 Flow

Particles also transit through the system by inflow/outflow [43] and this can contribute
mixing heat flux. Particle addition/removal effects both type spaces equally, with particle
flow increasing/decreasing the count at a given index for the particle-number model and
producing/eliminating ensemble particles for the particle model respectively [8].

2.3 Reactor model

The industrial titania reactor consists of a dosing zone to which a roughly equimolar feed
of reactants (TiO2 and O2) is injected stage-wise, perpendicular to the flow; a working
zone where reactions are completed; and a cooling zone or external cooler where the tem-
perature is reduced to minimise particle aggregation and sintering. Hot O2 gas, supplied
at the reactor inlet, is used to aid initial endothermic decomposition of the precursor.

We employ a reactor network approach to model the system, as in previous work [7]. This
includes continuously stirred tank reactors (CSTRs) in series with one reactant injection
per CSTR ‘stage’ for the dosing zone, and subsequent plug flow reactors (PFRs) for the
tubular working and cooling zones. The previous work modelled the reactor isothermally,
with a stipulated temperature profile in the working zone to model completion of the
exothermic reactions. This limited the model’s flexibility and constrained investigation of
different design choices. This motivated the inclusion of the energy balance in the current
work where the intention is to investigate process conditions and reactor configurations,
such as stream temperatures and dosing strategies respectively.

2.3.1 System equations

For each CSTR with characteristic residence time τCSTR, the two-phase system including
gas-phase reactants, intermediates and byproducts, and solid-phase particulate product is
described by coupled equations for the change in number density n(x) of particles of type
x, the change in concentration Ck of gas-phase species k, and the change in temperature
T due to both reactions and flow. In the following formulation, phase coupling includes
gas-phase expansion with the expansion coefficient Γ [13, 43].
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The particle number density evolves according to the population balance equation,

dn(x)
dt

=I (x,C,T )+
1
2 ∑

y,z∈E:
y+z=x

K (y,z)n(y)n(z)−∑
y∈E

K (x,y)n(x)n(y)

+ ∑
y∈E:

gSG(y)=x

βSG (y,C,T )n(y)−βSG (x,C,T )n(x)

+
1

τCSTR

Nin

∑
j=1

f [ j]
(

n[ j]
in (x)−n(x)

)
−Γ(n,C,T )n(x) ,

(10)

where gSG : E→ E describes change in particle type and βSG the rate of change in type due
to surface processes (growth/sintering), f [ j] is the volumetric feed fraction of inlet stream
j, j ∈ [1,Nin]. The gas-phase chemistry evolves according to the set of equations for each
species,

dCk

dt
=ẇk (C,T )+ ġk (n,C,T )+

1
τCSTR

Nin

∑
j=1

f [ j]
(

C[ j]
k,in−Ck

)
−Γ(n,C,T )Ck. (11)

ẇk and ġk are the molar production rates of species k by gas-phase and particle reactions
respectively at constant volume and C[ j]

k,in is the concentration in the jth inflow stream. The
energy balance for the system provides a description of the change in temperature, T ,

(
ρgCP,g +ρpCP,p

) dT
dt

=
Nsp

∑
k=1

[
−ẇk (C,T ) Ĥk− ġk (n,C,T ) Ĥk

]
− ġp (n,C,T ) Ĥp

+
1

τCSTR

Nin

∑
j=1

f [ j]
[

Nsp

∑
k=1

(
C[ j]

k,inĤk,in−CkĤk

)
+
(

C[ j]
p,inĤp,in−CpĤp

)]
.

(12)

Here, ρg and ρp are the gas-phase and particle molar densities respectively, CP,g and CP,p

are the bulk gas and the particle constant pressure heat capacities, Ĥk is the specific molar
enthalpy of species k and Nsp is the number of gas-phase species. Particle processes
contribute to the heat flux in the reaction terms (ġ·Ĥ·) and the particle flow term. Inter-
phase heat transfer is assumed to be instantaneous because of the large surface area to
volume ratio of small particles and the highly turbulent convective flow in typical reactor
conditions – this simplification neglects radiative and conductive heat transfer to avoid
modelling temperature in each particle separately. The particles are added to the thermal
bulk of the system by the term ρpCP,p. The effect of gas-phase molar density change is
included in the expansion coefficient, Γ,

Γ(n,C,T ) =
1
ρg

Nsp

∑
k=1

[ẇk (C,T )+ ġk (n,C,T )]+
1

τCSTR

Nin

∑
j=1

f [ j]
(

ρ
[ j]
g,in−ρg

)
+

1
T

dT
dt

, (13)
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The PFRs are modelled as batch reactors by changing the time/distance coordinates. The
mass and energy balances for a batch reactor take the same form as Eqs. (10)–(13),
without the flow terms (τ−1

CSTR× (. . .)). The thermodynamic data for rutile TiO2 is taken
from the NIST-JANAF thermochemical tables [14].

2.3.2 Reactor network configurations

The base case network has a four-CSTR dosing zone (Fig. 3, lower network), and is
used to investigate the predicted final particle structure, and to study sensitivity of the
particle structure to a 20 % increase/decrease in temperature of the injection streams ( f1–
f4). Subsequent studies investigate two aspects of dosing strategy that have influenced the
operation of the industrial process: injection spatial frequency and chlorine dilution. In
all cases, the network parameters are chosen such that the total mass of injected reactants
and reactor volume are conserved.

f0

f2 f3 f4f1

DOSING WORKING COOLING

f0

f2 f3 f4f1 f6 f7 f8f5

CSTR (1) CSTR (2) CSTR (4)CSTR (3) PFR (1) PFR (2)

CSTR (1) CSTR (2) CSTR (4)CSTR (3) CSTR (5) CSTR (6) CSTR (8)CSTR (7)

fCl2

Figure 3: Alternate reactor network configurations with four/eight CSTRs with reactant
injections f1– f4/ f8, hot oxygen flow f0 to CSTR (1), optional chlorine dilution
fCl2

to CSTR (4), and two subsequent PFRs for completion of reactions (1) and
cooling (2). Chlorine dilution only studied in four-CSTR network.

The reactor network configuration is adjusted to achieve the stated research goals; how-
ever, in all studies the initial CSTR is supplied with hot O2 gas in stream f0 and the ith

CSTR is supplied with reactants in injection stream fi (injection conditions in Table 1
and flow conditions in Table 2). Injection spatial frequency is investigated by varying
the network length using: an eight-CSTR dosing zone, with CSTRs receiving half of
the successive original injections (Fig. 3, upper inset, flow conditions in Table 8); and a
twelve-CSTR dosing zone, with CSTRs receiving one third of the original injections (not
pictured, flow conditions given in Table 9). Chlorine dilution is investigated for the four-
CSTR configuration with chlorine injected into CSTR (4) at different flow fractions, fCl2

,
and temperatures (Fig. 3, dotted arrow, conditions in Table 3).
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Table 1: Stream conditions for all studies.

Temperature (K) TiCl4 mole fraction O2 mole fraction
Injection f1 600 0.26 0.74
Injection f2– f4/8/12 600 0.58 0.42
Hot oxygen f0 2750 0.0 1.0

Table 2: Volumetric feed fractions and residence times for 4 dosing-point study.

Injection fraction Main fraction Residence time (ms)
CSTR (1) 0.42 0.58 3.0
CSTR (2) 0.25 0.75 15
CSTR (3) 0.26 0.74 15
CSTR (4) 0.23 0.77 15
PFR (1) 0.0 1.0 160
PFR (2) 0.0 1.0 1500

Table 3: Flow fractions and chlorine temperatures for 4 dosing-point study.

Molar flow rate Injection f4 Chlorine fCl2
Temperature (K)

2× all TiCl4 added in f4 0.19 0.20 600
2× all TiCl4 added in f1– f3 0.15 0.33 600
1× all TiCl4 added in f1– f3 0.21 0.11 300

3 Stochastic numerical method

The gas and particle systems are treated separately using an operator splitting approach
[13] which allows solving the gas-phase kinetics (Eqs. (11)–(13)) with an ordinary differ-
ential equation (ODE) solver and evolving the particle size distributions (Eq. (10)) with
a Monte Carlo method. The hybrid particle type space models are incorporated using
an adapted direct simulation algorithm (DSA) [8] that handles particle choice from the
combined set of particles in the particle-number list and particle ensemble, and provides
machinery for performing particle processes for each type space. Simulation efficiency
is enhanced using majorant kernels [18, 49], doubling [37], the linear process deferment
algorithm (LPDA) [48], and a binary tree data structure [54].

3.1 Inclusion of heat release from particle processes

This work adds particle contributions to the energy balance by incorporating temperature
updates during stochastic events (see Alg. A.1). This mirrors how operator splitting treats
changes in concentration of the gas-phase due to particle events [13]. To do this, a discrete
update is needed.
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A simulation particle, Pq, represents a molar concentration of

C (Pq) =
1

Vsmp
· 1

NA

[
(particles)

m3 · mol
(particles)

]
,

in the sample volume Vsmp. For species k, the concentration change resulting from Nevent

particle events of a given type, j, is

∆Ck = ν
( j)
k

(
Nevent

VsmpNA

) [
mol
m3

]
.

Here, ν
( j)
k is the stoichiometry for the kth species in the jth process. From Eq. (12), this

triggers a discrete temperature change given by

∆T ( j) =−
(

1
ρgCP,g +ρpCP,p

)(
Nevent

VsmpNA

)( Nsp

∑
k=1

ν
( j)
k Ĥk +ν

( j)
p Ĥp

)
[K] , (14)

when j is a reaction process (i.e. inception or surface growth) and

∆T ( j) =

(
1

ρgCP,g +ρpCP,p

)(
Neventν

in
p

NAτCSTR

)(
Ĥp,in

V in
smp
−

Ĥp

Vsmp

)
[K] , (15)

when j is an inflow process (note that the inflow stream may have a different sample vol-
ume, V in

smp to the reactor sample volume) and ν in
p refers to the composition of the incoming

particle. The temperature is incrementally adjusted by ∆T ( j) for each event of type j.

3.2 Numerical parameters

All studies use the simulation parameters in Table 4. The number of ensemble particles
is chosen based on previous convergence studies for industrially representative conditions
[7, 8]. Small time steps and many splitting steps are required in the reactor stages due
to the strong coupling between the gas-phase kinetics and the particle growth dynamics.
Larger steps are possible for modelling the cooling stage because there is no significant
gas-phase coupling by this point (due to near-complete depletion of the precursor).
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Table 4: Simulation parameters used in all studies.

Value
Ensemble capacity, Nmax 213

Repeat runs, L 25

Particle-number threshold, Nthresh 105

Step size, ∆tstep (s) 10−5

Splitting steps per step, nsplits 102

Step size for cooling, ∆tcooler
step (s) 10−4

Splitting steps per step for cooling, ncooler
splits 101

3.3 Performance of the particle-number/particle model

A particle-number/particle model (PN/P) was proposed to improve robustness and effi-
ciency of the Monte Carlo simulation of particle synthesis for high rate conditions and the
previous study [8] demonstrated that it is significantly cheaper to store the small particles
in the particle-number model, which also reduces the risk of ‘contractions’ (random re-
movals triggered when there is no space in the ensemble for inception of new particles).
In the current work, we demonstrate robustness for representative industrial conditions
with physically meaningful kinetics (Fig. 4).

Figure 4: Number of particles stored in the particle-number list (PN) and the particle
ensemble (P) in each reactor in the network. Dotted line shows the ensemble
maximum (Nmax = 213).

Robustness of the PN/P model is illustrated by considering the particle loading (number
of particles stored in each sub-system model) across the reactor network. In the four
CSTRs, where fresh precursor triggers rapid inception of new particles, the majority of
particles in the system are small, single primaries that are stored in the particle-number
model (Fig. 4, dotted lines). In fact, the total number of particles in the system, especially
in CSTR (1) and CSTR (4), is frequently greater than would be tolerated using only an
ensemble pre-initialised with Nmax = 213 (Fig. 4, solid line). Thus, using a single particle
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model would necessitate random removals to reduce the sample volume until the numer-
ical inception rate could be accommodated, with each removal eliminating a particle that
had been resolved with computational effort.

CSTRs (1), (2) and (4) also demonstrates another advantage of the cheap storage of addi-
tional small particles – higher numerical inception rates during transient periods or tem-
perature increase can be handled more robustly. Aggregates become more common in
PFR (1), as many primaries collide and sinter. Here, the detailed particle model (Fig. 4,
dashed lines) incorporates the full complexity required to describe aggregate particles
fully, providing a ‘best-of-both-worlds’ approach. From the studies in Boje et al. [8],
the greatest improvement in efficiency is achieved in the CSTR network, where primary
particles can be updated and selected more efficiently using the particle-number represen-
tation.

4 Process modelling results

This work aims to contribute novel understanding of industrial titania synthesis through
detailed population balance modelling facilitated by enhanced robustness of the new hy-
brid type space approach. Understanding particle morphology is crucial because it deter-
mines the product properties and is controlled by process conditions that are challenging
to study experimentally. The proposed reactor model is now used to investigate particulate
properties for the base case conditions, and then to study sensitivity to different reactor
parameters as outlined in Section 2.3.

4.1 Baseline assessment of particulate structure

We consider several driving questions relating to particle morphology and the outlook
for controlling the synthesis process. Relevant features of particle morphology include:
collision diameter, primary particle diameter, number of primary particles, and degree
of sintering/neck formation. The geometric standard deviation (GSTD, σg) in primary
particle diameter is used to assess typical product character,

σg (Pq) = exp

(√
1
nq

nq

∑
i=1

(
ln
(

dp (pi)

dp,g (Pq)

))2
)

. (16)

The geometric mean primary diameter, dp,g, in Eq. (16) is computed for each particle Pq

from the product of its nq primary particle diameters,

dp,g (Pq) =

(
nq

∏
i=1

dp (pi)

) 1
nq

. (17)
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What is the primary particle size distribution in the aggregates?

The final aggregate particle size distribution is broad, spanning hundreds of nanometers
to several microns (Fig. 5(a)), with a mean diameter of 1.85 µm. The primary particles
are much smaller on average, with a mean diameter of 373 nm. This is relatively large
compared to the targeted industrial range of around 200 nm–300 nm given by Park and
Park [47]; however, it is within the bounds of other hot wall and flame studies they list
with similar temperatures and residence times. As this is an idealised representation of
the industrial reactor [7], some discrepancy is not surprising. The primary particles in
the cooled outflow are significantly polydisperse, with a geometric standard deviation in
diameter of 1.6.

What is the aggregate composition?

On average, cooled aggregates consist of 22 connected primary particles (Fig. 5(b)), al-
though free primary particles and many larger aggregates containing 50–150 primaries
also exist. Some free primary particles (see dotted line in Fig. 5(a)) have sizes signif-
icantly above the desired range; however, in general aggregate size increases with the
number of constituent particles and the marginal distributions of both primary particles
and aggregates have long tails.

How strongly connected are the primary particles?

When two particles coagulate, the resulting particle initially has point contact where the
collision occurred. When the neighbouring particles sinter or undergo surface growth
at temperatures relevant to this study, the area of their connection increases, rendering an
aggregate that is increasingly difficult to break down by mechanical force. There is limited
aggregate sintering in the dosing zone, where the sintering levels range between 0 (point
contact) and 1 (fully sintered/free primary). Neck growth occurs to a larger extent in the
PFRs, where there is also less inception of free primaries, and this yields a more compact
sintering level distribution with most particles somewhat sintered. The average sintering
level of the cooled product is 0.48, i.e. the final particulate product consists of strongly
bonded primaries (Fig. 5(c) – the absence of simulation particles with sintering levels in
the band 0.95–1.0 is an artefact of the model that enforces coalescence for particles with
si j > 0.95).

The cumulative distributions of primary and neck diameters (Fig. 6) demonstrate the high
level of sintering more quantitatively for the cooled product. Approximately 75 % of the
population has primary particle diameters in the range 100 nm–400 nm (indicated with
solid lines in Fig. 6); however, some 20 % of the neck diameters fall in this range too. The
neck diameter has severe implications for the ease of separation of particles to achieve a
desired size – crystals with significant necks may not be easily split into smaller primary
particles, whereas small necks are easy to break with post-process milling. Models for
milling of aggregate particles could be used to further inform process understanding and
such models could also consider other factors such as the distance of a primary pair from
the centre of mass of the particle to determine fragmentation efficiency [34].
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(a) Aggregate and primary sizes (b) Aggregate size and composition

(c) Aggregate size and cohesion

Figure 5: Joint property distributions with marginal kernel density estimates (band-
widths: 0.01) and histograms for the cooled particles. Dashed lines indicate
property mean values and dotted line indicates single primaries.
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Figure 6: Cumulative distribution of cooled particle primary and neck diameters with
100 nm–400 nm range indicated as solid vertical lines.

4.2 Sensitivity to process conditions and configuration

Ideally, a model for the industrial process should inform optimal process design, includ-
ing operating conditions and strategies to enhance product quality and minimise cost of
post-processing steps such as milling. The questions that follow illustrate the degree of
process/model sensitivity to such design choices.

What is the effect of injection temperature?

Reactor temperature is an important parameter: decomposition of the TiCl4 is endother-
mic, so energy is required to initiate the process. With the exothermic oxidation step,
there is a risk of thermal runaway or hotspot development, which would negatively affect
product quality. The reactant injections offer one means to control temperature. The base-
line injection temperature of 600 K is in the scope of what could be used in the industrial
process. The temperature range of 480 K–720 K chosen for this study is fairly broad and
is not likely to be plausible in the real process. These values were selected as the upper
and lower test points to provide an idea of the possible influence exerted by this process
parameter and asses the extent to which it is important for determining particle structure.

The outlet temperature from PFR (1) shows unsurprising correlation with increasing or
decreasing reactant injection temperature (Table 5), but only a moderate change was ob-
served in this study (increasing the temperature of the reactant stream reduces the thermal
cooling it can provide to the exothermic oxidation process); however, the reaction goes to
completion in all three cases. The hottest injection did not produce a ‘hot spot’ or runaway
temperature increase in the reactor.
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Table 5: Effect of injection temperature on reactor outlet temperature.

Injection temperature (K) PFR (1) outlet temperature (K)
480 1540
600 1630
720 1700

Effects of temperature on the particles are more difficult to analyse due to the complex
nature of interdependent processes that occur in the multi-injection system, with all parti-
cle processes accelerated by increasing temperature. The collision diameter distributions
in the CSTR network are slightly bimodal, with a small peak near the incepting particle
size (0.49 nm) and a larger peak in the 100 nm–1000 nm range. These peaks change with
temperature: the hotter system induced by a higher injection temperature (Fig. 7, dot-
ted line) has the largest inception mode and a slightly smaller mean aggregate size due
to higher inception rates, lower reactant concentration driving lower surface growth and
higher sintering, in the hotter system (cf. Fig. 7, dashed line).

Downstream, in PFR (1), there is little/no evidence of an inception peak and the distribu-
tions are similar due to coagulation. The number density decreases along the network due
to coagulation, and the main difference in distributions is a reduction in number density
with increasing temperature. Assessment of the mean geometric standard deviation in pri-
mary size (Fig. 8(a)) across the network shows a similar homogenization in PFR (1). The
higher temperature systems seem to produce less disparate primaries throughout all stages
and this could help to yield a more consistent product; however, the final GSTD shows no
clear influence of temperature. The increase in GSTD between the CSTR network, which
models the dosing zone, and the end of PFR (1), which models the working zone, can be
attributed to additional surface growth and high-temperature sintering-to-coalescence in
the final reactor zone, which has an order of magnitude longer residence time.

The overlapping spheres particle model allows additional insight beyond comparing parti-
cle size distributions. The size distribution of the necks between connected primaries can
also be assessed (Fig. 9) and this highlights several interesting features of the relationship
between temperature and particle structure: (i) there are more particle inceptions at higher
temperatures, lowering the average neck size in the CSTR network (free primaries have
no necks and small particles coalesce rapidly); (ii) a bimodal neck distribution develops
in PFR (1) where most of the remaining free primary particles coagulate (cf. loss of the
small peak between Fig. 7(a) and Fig. 7(b)), with a large peak for necks less than 100 nm
in radius and a smaller peak for necks above this size; and (iii) the higher temperatures
increase the sintering rate, yielding a larger mean size for the small-radius mode with-
out significant change in the large-radius mode. Comparison of the separation between
connected primaries also highlights different sintering behaviour: primaries are closer to-
gether in the hotter (720 K) study (Fig. 8(b)). Insights about particle cohesion could be
used to choose process conditions that result in lower post-processing requirements to
separate primaries to achieve suitable pigment sizes.
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(c) After cooling

Figure 7: Scaled kernel density estimates (bandwidth: 0.1) of collision diameter distribu-
tions in the reactor network with different injection temperatures (note vertical
axis limits differ to resolve different number densities in the three reactors).
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(b) Separation

Figure 8: Mean GSTD of primary diameter and mean primary particle separation across
the reactor network with different injection temperatures.

How do dosing strategies alter particle size and polydispersity?

The dosing scheme is modified by increasing the number of CSTRs (each with a fresh
reactant feed) to achieve smaller, more frequent injections (cf. Fig. 3, upper/lower net-
works). This reduces the range of geometric standard deviations in primary diameters
in the aggregates and, to a lesser extent, produces smaller primary particles on average
(Fig. 10). These findings indicate that increasing the frequency of reactant injections pro-
duces a higher quality, more consistent product which is in keeping with observation of
the multi-injection, industrial process.

To study the differences further, five particles are extracted for each configuration using
‘k-mediod’ clustering [45] based on the property sets, Σq:

Σq =
{

dc (Pq) ,dp (Pq) ,nq (Pq) ,s(Pq)
}

.

Σq thus accounts for the aggregate collision diameter, average primary diameter, number
of primaries and average sintering level – the properties used to assess particle structure
for the base case conditions. The five clusters group the particle system according to prin-
cipal observations of these characteristics. Increasing the spatial frequency of injections
reduces the range of primary particle sizes, producing mediods with more similar primary
size properties and eliminating the large diameter centre, cluster 5, observed for the four-
injection configuration (Fig. 11(a)). The five clusters have disparate primary counts in all
cases (Fig. 11(b)), with clusters 1–3 containing fewer than ten primaries and clusters 4–5
including particles with more than ten primaries. The twelve-injection configuration has
the largest upper bound on primary count.
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(c) After cooling

Figure 9: Scaled kernel density estimates (bandwidth: 0.1) of neck radius distributions
in the reactor network with different injection temperatures (note vertical axis
limits differ to resolve different number densities in the three reactors). Free
primaries (“rneck = 0nm”)) not represented on the log scale.
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Figure 10: Mean and geometric standard deviation (GSTD) of primary diameters in each
aggregate for different reactant dosing frequencies at the end of the reactor
(i.e. after PFR (1)). The marker sizes reflect the relative number of primaries
in the aggregate. The dashed lines indicate the mean values for the sample.
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(a) Primary diameter clusters

(b) Primary count clusters

Figure 11: Comparison of 5 particle centres selected using k-mediod clustering. The
numbers above the boxes indicate the portion of the total sample in the cluster.
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Does chlorine dilution affect particle size and structure?

Synthesis of titania from TiCl4 produces chlorine as a by-product. The chlorine can be
recycled to the chlorination stage that produces TiCl4 or cooled and re-injected into the
reactor [5, 44] to reduce temperature, dilute the system or inhibit the surface oxidation
process, all of which target reduced particle size. Three chlorine dilution strategies are
assessed (Table 3): adding 20 % by volume at 600 K, adding 33 % by volume at 600 K and
adding 11 % by volume at 300 K. These cases assess some extremes on possible chlorine
strategies: dilution at the injection temperature versus dilution around room temperature;
dilution with double the flow rate of the stage injection, versus dilution with the maximum
chlorine produced up to this point.

The developed PSDs are altered in all three new schemes (Fig. 12). The injection of
chlorine produces a larger peak around the inception size in CSTR (4) (see dashed/dotted
lines cf. original in solid grey). In contrast to the base case, this is still present after
PFR (1) in all chlorine cases. The small-particle peak vanishes by the end of the cooling
stage due to coagulation; however, there is still discrepancy in the final distributions with
a smaller mean particle size, lower standard deviation and reduced range (Table 6).

The mean primary particle size is also reduced in all cases, although the difference is
smaller. Dosing with chlorine also shifts the particle neck distributions (Fig. 13), pro-
ducing a larger density of small necks (600 K injections) or reducing the mean size of
the small necks (large injections at both temperatures). Thus injection of chlorine could
be an effective strategy to control particle size and polydispersity. The most significant
reduction in mean and polydispersity is observed for the case with 33 % Cl2 at 600 K –
this suggests that cooling the separated chlorine to room temperature for this purpose is
less useful than increasing the chlorine flow rate.

Table 6: Effect of chlorine dosing on final particle collision diameter distributions –
range, arithmetic mean and standard deviation (STD) used for comparison, with
ratios computed using respective base case value as the denominator to demon-
strate relative effect.

Case Range (nm) Mean (nm) STD (nm) Mean ratio STD ratio
0 % Cl2 base case 7710 1850 913 1.00 1.00
20 % Cl2 at 600 K 6830 1750 876 0.948 0.959
33 % Cl2 at 600 K 6351 1550 784 0.841 0.858
11 % Cl2 at 300 K 7040 1640 818 0.891 0.896
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(c) After cooling

Figure 12: Kernel density estimates (bandwidths: 0.1) of collision diameter distributions
immediately after CSTR (4) (where chlorine is injected), after PFR (1) and
after PFR (2) with solid line showing 0 % addition for comparison (note axis
limits differ).
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(c) After cooling

Figure 13: Scaled kernel density estimates (bandwidth: 0.1) of neck radius distributions
in the reactor network with different chlorine injections (note vertical axis
limits differ to resolve different number densities in the three reactors). Free
primaries (“rneck = 0nm”)) not represented on the log scale.
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4.3 Characterisation of fractal structure

The fractal-like nature of aerosol particles can be characterised by relating the primary
and aggregate diameters with the number of primary particles in the aggregate,

nq (Pq) =

(
dg (Pq)

dp (Pq)

)Df

. (18)

Df is the fractal dimension, kf is the fractal pre-factor and dg (Pq) is the radius of gyration
of particle Pq (Eq. (7)). The fractal dimension is often used to classify particle structure,
with a fractal dimension of 3.0 corresponding to a spherical particle and lower fractal
dimensions indicating more open, linear particle shapes. Fractal dimensions can be de-
fined by simulating coagulation for populations of coagulating monodisperse (uniform
properties) and polydisperse (distribution of properties) primary particles [16].

For monodisperse primary particles BCCA should produce a fractal dimension of 1.9.
Polydispersity has been shown to alter fractal structure [17]. Eggersdorfer and Pratsinis
[16] found that, for a BCCA coagulation model, increasing primary particle polydispersity
(as measured by the GSTD) produces decreasing fractal parameters in the GSTD range
1.0–2.0, with approximate corresponding parameter values in the ranges 1.4–1.1 for kf and
1.9–1.7 for Df. The fractal structure of particles has been shown to be a strong function
of the particle growth processes. Schmid et al. [55] found significant dependence on the
relationship between the coagulation and sintering processes and Eggersdorfer et al. [17]
note that sintering tends to increase the fractal dimension (particle aggregates more com-
pact/spherical) whilst polydispersity decreases the fractal dimension (particle aggregates
more open). Aerosol particles typically have a fractal dimension in the range 1.6–2.5 [17].
Elucidating the fractal structure relationship is important because it provides information
about the particle geometry, which governs product properties such as light scattering
propensity but also determines local chemical activity and heat transfer properties [17].

The polydispersity is classified using the geometric standard deviation in primary parti-
cle diameters. In other work, this has parametrized the lognormal distribution of primary
particles used as a starting point in simulations to determine fractal dimension. The advan-
tage of the current work is that it provides sufficient detail in the particle model to estimate
the fractal structure of particles that have polydispersity arising from real processes (e.g.
sintering, surface reaction) in the industrial reactor. The fractal structures created in the
different test cases presented in this work were characterised by fitting (Fig. 14) the sim-
ulation data using Eq. (18). In general, the relationship observed by Eggersdorfer and
Pratsinis [16] was found to hold (Table 7) for fractal dimension, with lower Df values
predicted for the cases with higher polydispersity. The prefactor values are higher than
reported in the previous study. However, the prefactors and fractal dimensions are sensi-
tive to the minimum primary particle count cut-off used in the fitting, with larger values
of Df and smaller values of kf resulting from exclusion of aggregates with only a few pri-
maries. There is a trade-off in prediction uncertainty as points are excluded in this cut-off
(Fig. 14, density histogram). The fractal fit provides a reasonable description of the full
set of aggregates, in spite of weaker agreement at the edges of the spectrum due to low
number density of particles with the largest primary counts and reduced applicability of
fractal models to particles with few primaries.
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Figure 14: Fitted fractal relationship (dashed line) between the logarithms of number of
primary particles per particle and particle-to-primary diameter ratio for the
base case simulation data. The interquartile range (IQR, i.e. middle 50 %) is
indicated by the filled area and the fitted slope and intercept parameters are
shown in context as the exponent and prefactor of the equation in the lower
right. The histogram indicates density of data for different aggregate sizes.

It is useful to relate the simulated particle properties to a well-known, mean structural
property because this provides a simple method of assessing how process conditions af-
fect particle geometry – a relationship that can be challenging to investigate experimen-
tally. However, it should be noted that the BCCA model used here applies best to particle
coagulating in the free-molecular, rather than the transition, regime. For larger particles,
a diffusion-limited cluster-cluster model would be more appropriate. Lindberg et al. [36]
reported that no appreciable difference was observed when testing these two coagulation
models in hot wall reactor simulations. There is further a relatively narrow gap between
the fractal dimensions predicted by ballistic and diffusion-limited aggregation. Thus, this
caveat is not expected to undermine the utility of the current study assessing the trend in
geometries predicted for different process design choices.

Table 7: Fitted fractal parameters and mean geometric standard deviation (GSTD) in
primary diameters from simulation data.

Case Fractal dimension Fractal pre-factor GSTD
Df kf σg

600 K, 4 injections 1.7 1.4 1.6
480 K, 4 injections 1.7 1.4 1.6
720 K, 4 injections 1.7 1.4 1.6
600 K, 8 injections 1.8 1.5 1.4

600 K, 12 injections 1.8 1.5 1.4
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4.4 Comparison of simulated and real particle images

The model data can be used to simulate scanning electron microscopy (SEM) images,
providing a view of the developed particles that is directly comparable with images of
real particles coming out of a titania reactor. Comparison of a real particle image (Fig. 15)
with the simulated images (Fig. 16) shows qualitatively similar properties such as highly
non-spherical aggregate structures comprised of many smaller, partially sintered primary
particles; however, these images also highlight the many relatively large primary particles
produced in the simulations, especially for the non-diluted case (Fig. 16(a)).

This observation supports the preceding comments on size ranges compared to those re-
ported for the industrial process. The simulations undertaken in this study employed
industrially representative conditions, but are not a perfect match for the exact conditions
used to generate the real particles from which the image is created. There is uncertainty
in the numerical rates used – associated with generation of constants from first-principles
calculations and by fitting to data from less severe process conditions – which is ampli-
fied by the high rates and fast dynamics of this process. Images with and without chlorine
dilution (Fig. 16(a) cf. Fig. 16(b)–16(d)) do, however, illustrate effectiveness of inject-
ing cool chlorine in reducing particle/aggregate size by cooling and diluting the system –
which is likely closer to the industrial operation in any case. These simulated SEM images
highlight the utility of the detailed particle model in providing morphological information
about the particles for visualisation.

5 Conclusion

This work has used the recently proposed particle-number/particle algorithm to aid de-
tailed simulation of titania synthesis under industrially-relevant conditions. Robustness
and efficiency of this algorithm enable the study of rapid particle inception and growth
using a complex type space model, even in the presence of exotherms and transience.

The overlapping-spheres particle model was used to provide insight into the development
of complex aggregate structures in the industrial synthesis of pigmentary titania. The final
particle population exhibits broad aggregate size distributions, with a range of sintering
levels (necks) and primary numbers, and this has implications for ease of post-processing
to achieve a desired product specification. The average primary particle size is slightly
above the desired size of approximately 300 nm and it is noted that this could be due to
simplification of the flow field which produces idealised mixing. There may further be
discrepancy in how particle size is measured in industry compared to in the model. The
neck radius and degree of primary separation were studied in addition to properties of
the particle size distribution, and it was shown that changing reactant dosing temperature
alters particle attachment characteristics that are important for post-processing efficiency.

Reactant dosing strategy is also important – with more frequent dosage creating a nar-
rower range of particle properties. Of course, in practice there may be reactor design
limitations on the number of feasible injection points and the studies shown here should
be supported by insights from computational fluid dynamics studies of mixing behaviour
(realistically the computational cost of performing these studies simultaneously is cur-
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Figure 15: Real particle SEM (image courtesy of, and with permission from, Venator).

(a) 0 % Cl2 base case (b) 20 % Cl2 at 600 K

(c) 33 % Cl2 at 600 K (d) 11 % Cl2 at 300 K

Figure 16: Simulated SEMs for cooled particle product.
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rently infeasible; thus mixing is commonly studied independently without detailed par-
ticle models [25, 67]); however, in general the reduction in particle size and geometric
deviation for increasing injection points agrees with industrial practice where multiple in-
jection points are employed. Chlorine dosage was also shown to reduce the average size,
standard deviation and range of the distribution of particles, providing another option for
achieving desired sizes in the industrial process. Comparison of simulated images with
an SEM image from a titania plant provides a useful qualitative assessment of model pre-
dictive capacity. Simulated imaging also allows investigation of morphology developed
under different conditions.
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Nomenclature

Upper-case Roman
A Surface area [m2]
C Concentration [molm−3]
C Connectivity matrix

CP Constant pressure heat capacity [JK−1 mol−1]
Df Fractal dimension
Ĥ Specific molar enthalpy [Jmol−1]
I Inception rate [molm−3 s−1]

K Coagulation kernel [m−3 s−1]
L Number of repeat runs

M Number of time steps
M0 0th number moment [m−3]

MW Molecular weight [gmol]
N Number

NA Avogadro’s constant [mol−1]
P Particle
R Rate [process specific]
T Temperature [K]
V Volume [m3]

Lower-case Roman
d Diameter [nm]

di j Centre-to-centre distance of primary particles i and j [nm]
f Volumetric feed fraction
g Surface growth type-change function
ġ Molar rate due to particle process [molm−3]
kf Fractal prefactor
m Mass [kg]
n Particle number concentration [m−3]

nq Primary count for particle Pq

p Primary particle
r Radius [nm]
s Sintering level
t Time [s]

ẇ Molar rate due to particle process [molm−3]
x Particle type variable

xi j Centre-to-neck distance from primary particle i to j
y Particle type variable
z Particle system
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z Primary centre of mass coordinates [nm]

Upper-case Greek
Γ Gas-phase expansion coefficient
Σ Property set

Lower-case Greek
β Surface growth rate [m2 m−3 s−1]
η Number of components
ν Stoichiometry
π Pi (constant)
ρ Mass/molar density [kgm−3/molm−3]
σ Standard deviation
τ Residence time [s]

Subscripts
add Added

c Collision
coag Coagulation

g geometric
i Index variable

in inflow
j Index variable
k Index variable

max Maximum
out Outflow

p Primary particle
q Index variable

SG Surface growth
smp Sample

sp Species
split Splitting time

thresh Threshold

Symbols
E Generic particle type space
M Small particle type space
X Large particle type space

Abbreviations
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BCCA Ballistic cluster-cluster algorithm
CSTR Continuous stirred tank reactor

DSA Direct simulation algorithm
(G)STD (Geometric) standard deviation

IQR Interquartile range
LPDA Linear process deferment algorithm

ODE Ordinary differential equation
PBE Population balance equation
PFR Plug flow reactor

PN/P Particle-number/particle
PSD Particle size distribution
SEM Scanning electron microscopy
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A Algorithms

Algorithm A.1: Simplified Strang operator-splitting scheme with heat release due to particulate
processes added in the particle solver step (emphasised in bold italics).

Input: State
(
(C0,T0,Γ0) ,

(
zM,0,zX,0

))
a, sample volume Vsmp,0, time t0, final time t f

Output: State
((

C f ,Tf ,Γ f
)
,
(
zM, f ,zX, f

))
, sample volume Vsmp, f

Set t← t0, ∆t←
(
t f − t0

)
, (C,T,Γ)← (C0,T0,Γ0), (zM,zX)←

(
zM,0,zX,0

)
, Vsmp←Vsmp,0.

while t < t f do
Solve gas-phase chemistry for

[
t, t + ∆t

2

]
→ update (C,T,Γ).

Set tprocess← t.
Scale sample volume for gas-phase expansion Γ.
Compute total process rate R(zM,zX).
while tprocess < t +∆t do

Choose update time τ ∼ exp(R).
if tprocess + τ < t +∆t then

Choose and perform a particle process→ update (zM,zX).
Compute changes to gas-phase→ update (C,T,Γ).
Scale sample volume for gas-phase expansion Γ.
Increment tprocess← tprocess + τ .

end
end
Set t← tprocess.
Solve gas-phase chemistry for

[
t + ∆t

2 , t +∆t
]
→ (C,T,Γ).

Scale sample volume for gas-phase expansion Γ.
Increment t← t +∆t.

end

aComponents zM and zX refer to the particle systems for the type spaces M (the particle-number model)
and X (the detailed particle model) respectively. This notation was introduced in Boje et al. [8].

36



B Flow fractions in alternative reactor networks

Table 8: Reactor volumetric feed fractions and residence times for 8 dosing-point study.

Injection fraction Main fraction Residence time (ms)
CSTR (1) 0.26 0.74 1.9
CSTR (2) 0.21 0.79 1.5
CSTR (3) 0.15 0.85 8.6
CSTR (4) 0.13 0.87 7.5
CSTR (5) 0.15 0.85 8.6
CSTR (6) 0.13 0.87 7.5
CSTR (7) 0.13 0.87 8.6
CSTR (8) 0.12 0.88 7.5

Table 9: Reactor volumetric feed fractions and residence times for 12 dosing-point study.

Injection fraction Main fraction Residence time (ms)
CSTR (1) 0.19 0.81 1.4
CSTR (2) 0.16 0.84 1.2
CSTR (3) 0.14 0.86 1.0
CSTR (4) 0.10 0.90 6.0
CSTR (5) 0.09 0.91 5.5
CSTR (6) 0.08 0.92 5.0
CSTR (7) 0.11 0.89 6.1
CSTR (8) 0.10 0.90 5.5
CSTR (9) 0.09 0.91 5.0
CSTR (10) 0.09 0.91 5.9
CSTR (11) 0.08 0.92 5.4
CSTR (12) 0.08 0.92 5.0
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