
The inverse problem in granulation modelling – two different statistical approaches

Preprint Cambridge Centre for Computational Chemical Engineering ISSN 1473 – 4273

The inverse problem in granulation modelling –
two different statistical approaches

Andreas Braumann, Peter L. W. Man, Markus Kraft 1

released: 12 April 2010

1 Department of Chemical Engineering
and Biotechnology
University of Cambridge
New Museums Site
Pembroke Street
Cambridge, CB2 3RA
United Kingdom
E-mail: mk306@cam.ac.uk

Preprint No. 96

Keywords: parameter estimation, granulation, population balance

mailto:mk306@cam.ac.uk


Edited by

CoMo
GROUP

Computational Modelling Group
Department of Chemical Engineering and Biotechnology
University of Cambridge
New Museums Site
Cambridge CB2 3RA
United Kingdom

Fax: + 44 (0)1223 334796
E-Mail: c4e@cam.ac.uk
World Wide Web: http://como.ceb.cam.ac.uk/

mailto:c4e@cam.ac.uk
http://como.ceb.cam.ac.uk/


Abstract

This paper is concerned with parameter estimation for a multidimensional popu-
lation balance model for granulation. Experimental results were obtained by running
a laboratory mixer with sodium carbonate and aqueous polyethylene glycol solutions.
Subsequently, a prescan of suitable parameter combinations utilising the experimen-
tal results is performed, and a local surrogate model constructed around the best
combination. For the actual estimation of the parameters and their uncertainties two
different approaches are applied—a projection method and a Bayesian approach. It
is found that the model predictions with the parameters obtained through both meth-
ods are similar. Furthermore, the uncertainties in the model predictions increase as
the experimental uncertainties are increased. Studies of the marginal densities of
two-parameter combinations obtained through the Bayesian approach show a cor-
relation between the collision and breakage rate constant, giving potential hints for
further model development. Furthermore, a bimodal distribution of the compaction
rate constant is observed.
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1 Introduction

Granulation, or agglomeration, is a well established unit operation in the chemical in-
dustry, in which small particles are transformed into bigger entities, called granules [28].
The widespread use of granulation across industries, e. g. pharmaceutical, chemical and
food can be attributed to the range of benefits from the application of this unit opera-
tion. Granules usually feature enhanced handling and application properties compared to
the precursors. This means, they are not only better for storage and transport (flowabil-
ity, dustiness), they also show favourable features in the application (controlled release,
reduced segregation) [19].

If the assembly of fine powders into granules is aided by the addition of liquid, the process
is called wet granulation. This process is performed in a variety of apparatus such as
drums, fluidised beds and mixers [18, 40, 41, 46]. Systematic (experimental) studies
of wet granulation were performed as early as in the 1950s by Capes and Danckwerts
[10, 11], Newitt and Conway-Jones [30], and Rumpf [36, 37]. Over the decades numerous
other studies have been conducted, examining the influence of the material properties such
as particle size [35], binder properties [34] and binder addition method [1, 22], to name
but a few.

Besides experimental studies, mathematical descriptions of the granulation process have
also been pursued. Such a kind of description is eventually needed for the control of
the manufacturing process [14, 29]. Amongst others, population balance models are the
most widespread for the mathematical description of granulation processes, but can also
be found in modelling of other processes such as nanoparticle synthesis [12, 27, 47]. Pop-
ulation balance models take account of the properties of the individual particles making
up the bulk. Early models accounted for only one granule property, namely the volume
[21, 38], with only coalescence as a transformation. Advances in these models saw an
increase in the number of internal coordinates to three and more as well as the incor-
poration of transformations such as liquid addition, breakage, compaction, and reaction
[6, 13, 32, 42].

Irrespective of the kind of model used, one is faced with the problem that some model
parameters are unknown. In order to establish their values, experiments have to be con-
ducted and the inverse problem solved. For relatively simple models such as the coales-
cence of droplets in a rotating disc contactor, Monte Carlo based algorithms have been
applied for identification and sensitivity analysis [43–45]. A more fundamental algorith-
mic development for the sensitivity of coagulation only processes has been presented by
Man et al. [24] and Bailleul et al. [2]. Braumann et al. [7] presented an approach us-
ing a surrogate model in order to solve the inverse problem for a multivariate population
balance model for granulation. Given that experimental findings possess uncertainties,
the methodology was developed further [5, 9], in order to estimate the unknown param-
eters along with their uncertainties, building on findings by [39]. These uncertainties
then carry on through the model response, enabling further investigation such as model
discrimination. The existing methodology is somewhat restrictive in the sense that the
scientist concerned with the problem must have a good initial guess for the values of the
unknown parameters. However, in the absence of this knowledge, a more global approach
should be pursued. Secondly, the inverse problem might not have a unique solution, i. e.,
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Figure 1: Experimental setup

it is not identifiable. In addition, there might be correlations between the different model
parameters.

The purpose of this paper is to present an integrated approach for estimating unknown
parameters in a multidimensional population balance model for granulation applied to a
process in a bench scale mixer, for which a set of experimental data has been obtained.
The paper is organised as follows. In section 2 we introduce the process setup along with
the experimental results, followed in section 3 by brief comments about the population
balance model that is applied to this process. In section 4 the theoretical foundation to
remove restrictions of the existing methodology is laid out. Firstly, a global search method
based on low discrepancy series is introduced and combined with the existing approach
for parameter estimation. Secondly, we lift the Gaussian assumption on the parameter
distribution by applying a Bayesian approach. Amalgamating the model, experimental
results and the extended methodology, results are presented and discussed in section 5.
Finally, conclusions are drawn in section 6.

2 Experiments

The subject of the current study is a wet granulation process. In such a process, powder(s)
and liquid(s) are mixed under certain conditions, resulting in particles consisting of differ-
ent materials. Here, we study the granulation of anhydrous soda carbonate with aqueous
polyethylene glycol (PEG) mixtures in a bench scale mixer.

Setup The experiments were carried out in a 5 litre laboratory ploughshare mixer (Ke-
mutec), with further details about its design given in [20]. The mixer with its horizontal
shaft is driven by a DC motor and can be operated at variable speed. A torque meter with
integrated tacho (DRBK-n, ETH Messtechnik, Germany) is mounted between the shaft
and the motor (Figure 1). Liquid (binder) is added to the powder in the mixing cham-
ber via a single fluid nozzle (Model 121, Düsen-Schlick, Germany), after being taken out
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Figure 2: Normalised cumulative mass and number size distributions of anhydrous
sodium carbonate

of the binder reservoir with a diaphragm pump (AD4/90, Totton Ltd., UK). The binder
flowrate is measured with a flowmeter (OG1, Nixon Flowmeters, UK). For data recording
and control purposes a LabView 7.1 application has been written, and the respective com-
munication with the devices was facilitated with data recording cards (6009 and 6601,
National Instruments). In order to control the speed of the motor driving the mixer, the
speed signal (from the torque meter) was put through a LabView application facilitating
the output of the required voltage to the motor by a DC motor controller (Model 506,
Parker SSD).

Materials The experiments were performed with anhydrous sodium carbonate and three
mixtures of deionised water and polyethylene glycol 4000 (Breckland Scientific). Sieve
analysis of the sodium carbonate yields the cumulative mass distribution Q3 shown in
Figure 2. A lognormal distribution is fitted to these experimental data and subsequently
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Figure 3: Measured density of aqueous PEG4000 solutions

converted into the number size distribution Q0,

Q0(L) =
1

2

[
erf

(
ln(L/µgeo,0)√

2 ln(σgeo)

)
+ 1

]
(L > 0) (1)

where µgeo,0 = 75µm and σgeo = 1.53.

Varying the composition of the aqueous PEG4000 mixtures results in a change of den-
sity and viscosity. These two properties have been determined for different mixtures with
a PEG4000 fraction between 10 and 50 wt%, and clear dependencies of the density and
viscosity on the composition can be observed (Figures 3 and 4). The viscosity measure-
ments were performed at shear rates between 11 and 700 s−1 and a Newtonian behaviour
for all examined solutions was observed.

Procedure Upon loading the mixer with sodium carbonate powder, the mixer was run
for roughly one minute to aerate the powder. At the same time the binder was pumped
from the reservoir through the nozzle into a cap in order to establish a constant spray
pattern. The cap was then removed and binder added for 5 minutes, while keeping the
shaft speed constant at 120, 150 or 180 rpm. The spray rate was chosen such as to give
25 wt% binder in the final mixture. After the 5 minutes, the spraying and mixing was
stopped and the material withdrawn from the mixing chamber. The material was then
split with a sample splitter and about 400 g of the product was analysed by sieving with a
standard

√
2 sieve stack (BS410).

Results A mass size distribution was deduced from the sieving results. In order to ease
comparison between the different scenarios, each result is represented by the geometric
mass mean size Lexp

m,geo,3,

Lexp
m,geo,3 = exp

(∑n
i=1mi lnLi∑n

i=1mi

)
, (2)
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Figure 4: Measured viscosity of aqueous PEG4000 solutions

Table 1: Experimental geometric mass mean size Lexp
m,geo,3 in µm for varying impeller

speed and binder composition at t = 300 s

PEG 4000 fraction [wt%]
impeller speed [rpm] 10 25 33

120 190.9 191.3 173.3
150 196.2 190.1 173.5
180 197.7 229.5 186.0

obtained from n classes, where mi is the mass of particles in the class i and Li the arith-
metic mean of the class i (calculated from mesh size of current and upper sieve). The
resulting values for the different operating conditions are summarised in Table 1.

3 Modelling of the granulation process

The granulation process shall be modelled with a multidimensional population balance
model for a concentrated system. In this, the temporal evolution of properties of entities
(here granules) of a population is tracked. The volumes of the five different components
of a particle are chosen as properties, i. e. as internal coordinates, thereby tracking the
particle composition. For this system, following transformations (physical and chemical
processes that move a particle in type space) are taken into account,

• Addition of liquid

• Coalescence of particles, with the collision rate constant K̂0

• Compaction of particles, with the compaction rate constant kporred
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Figure 5: Particle model and transformations in granulation process

• Breakage, with the kinetic constant k̂att

• Penetration, with the penetration rate constant k̂pen

• Chemical reaction, with the rate constant kreac ,

with a summary of the particle model and transformations being given in Figure 5. Full
mathematical details of the model are given in [8], and further physical reasoning about
the submodels is given in [6] and [7]. The population balance model is solved numerically
using the LPDA algorithm [31].

4 Parameter estimation theory

Given the mathematical model and the experimental data, we wish to estimate unknown
model parameters. In the current study, the rate constants for the coalescence, compaction,
breakage, penetration and reaction are unknown. These constants should be universal for
the studied system such as the process conditions are incorporated in the mathematical
descriptions of the transformations. Owing to experimental uncertainties, the estimates
for the model parameters will have uncertainties as well.

The solving of the inverse problem for a multidimensional population balance model for
wet granulation has been done in previous studies [5, 9], where the model parameters
were assumed to be normally distributed. Their defining parameters are then estimated by
linking the experimental observations and the model responses in an appropriate objective
function. The model responses are obtained from surrogate models, in this case second
order response surfaces constructed over ranges where the values of the unknown model
parameters are assumed to be found. These response surfaces allow for a much quicker
computation of the model response compared to an evaluation of the complex population
balance model. However, one needs to keep in mind that response surfaces are only
local approximations, so we propose an extension to the methodology. In a first step, we
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perform a search over a wide range of possible parameter values, identifying the “best”
parameter combination by means of an appropriate objective function. In the second step,
response surfaces are constructed around this point, so that the final estimates for the
unknown model parameters and their uncertainties can be made. For this estimation we
use a projection method and a Bayesian approach.

4.1 Prescan of suitable parameter combinations

When searching for a candidate for a “good” parameter combination, one is faced with
the problem of considering which points in the parameter space and how many of them
should be evaluated. Ideally these points are well spread out, and as dense as possible.
However, the evaluation of more points comes with additional computational cost.

A fixed grid for the points to be evaluated might be an obvious approach, but if additional
points should be added to the scheme their placement is not obvious, because the grid
size would change. Alternatively to this, one may want to spread the evaluation points
randomly across the parameter space. This would guarantee a uniform distribution of the
points, but only if the number of samples is sufficiently high. In cases where the number
of evaluation points is rather small, i. e., the parameter space would be sampled in a sparse
manner, both approaches fail. Hence, a third approach is chosen in the current study—
quasi-random sequences [33]. More specifically, Halton sequences [16] are used in the
current study.

Each element xk of the sample point x is bound by

xk ∈ [0, 1] (3)

with k = 1, . . . , K and K being the number of dimensions of the design. The connection
between these normalised/coded variables x and the actual physical parameters y is made
via an appropriate transformation. In order to do this, limits for the variables have to be
set and shall be denoted by xk,low, xk,up, yk,low, and yk,up. A logarithmic transformation
shall be used for the sampling of the parameter combinations, so that

yk = yk,up

(
yk,low
yk,up

) xk,up−xk
xk,up−xk,low

. (4)

Further details about this transformation as well as for the linear form can be found in the
appendix. For each parameter combination/sample point y the objective function ΦLD is
then evaluated,

ΦLD(y) =
J∑
j=1

(
Lm,geo,3,j(y)− Lexp

m,geo,3,j

)2
, (5)

with J as the number of scenarios. Among the set of sample points, the best one ybest is
chosen according to

ybest = argmin
y
{ΦLD(y)} . (6)
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4.2 Construction of local surrogate model

The parameter combination ybest serves as initial guess for the estimation of the unknown
model parameters and their uncertainties. For this, we need to construct a surrogate model
of the complex granulation model around ybest. The surrogate model is a second order
response surface, an approach that has already been used in previous work [9].

Choice of boundaries The parameter combination in the uncoded space, ybest has a
corresponding vector in the coded space, xbest. We define a distance ri of the sample
point i such as

ri =

√√√√ K∑
k=1

(xbest,k − xi,k)2 , (7)

with K being the number of dimensions of the parameter vector x. The shortest distance
is given by

rmin = min
i=1,...,NSP

{ri} , (8)

where NSP is the total number of sample points.

Centred around xbest, a hypercube with edge length a is set up. A possible choice for the
edge length is a = rmin, but there is scope for a less arbitrary choice of the parameter
space. For instance, gradient information could be taken into account in order to choose
the region for the surrogate model. Such a procedure would be iterative and shall neither
be discussed nor used in this paper. However, the edge length a is subject to constraints.
Firstly, no parameter combination of previously examined sample points shall be included
in the region of the surrogate model, i. e.,

a ≤ 2 min
i

(max
k
{|xbest,k − xi,k|}) . (9)

Secondly, no parameter combination of the surrogate model should lie outside the region
of parameter combinations in which the Halton sequence points where sampled,

a

2
≤ min

k
{xbest,k − xlow,k, xup,k − xbest,k} ∀ k = 1, . . . K . (10)

Choice of points New coded variables x̃ are introduced for the creation of the response
surfaces, so that

x̃k ∈ [−1, 1] (k = 1, . . . , K) and x̃(xbest) = 0 , (11)

where the transition from x to x̃ is a simple linear transformation. We shall denote this
hypercube in which x̃ lies in as X . An uncoded variable y is then calculated by

y = yup

(
ylow
yup

)1− a

2
x̃− xbest

. (12)
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In addition to the 2K corner points, selected points within the bounds of the parameter
space shall be evaluated and used for the construction of the response surfaces. These are
the centre point xbest (x̃ = 0) and

x̃axis,1 = (0.5, 0, 0, 0, 0) , x̃axis,2 = (0, 0.5, 0, 0, 0) , x̃axis,3 = (0, 0, 0.5, 0, 0) ,

x̃axis,4 = (0, 0, 0, 0.5, 0) , x̃axis,5 = (0, 0, 0, 0, 0.5) .
(13)

The evaluations of the complex granulation model at these points are used to construct the
surrogate model—second order response surfaces with the model response η(x̃),

η(x̃) = β0 +
K∑
k=1

βk x̃k +
K∑
k=1

K∑
l≥k

βkl x̃k x̃l . (14)

The coefficients β0, βk, βkl of the response surface are obtained by fitting the surrogate
model to the evaluations of the population balance model fsim,

η(x̃) = fsim(x̃) + ε , (15)

with ε being the approximation error.

4.3 Parameter estimation with the projection method

For the estimation of the unknown model parameters x̃∗ and their uncertainties c∗ the ex-
perimental results and the surrogate model are brought together in the projection method
[5], so that the parameters are obtained through

{x̃∗, c∗} = argmin
x̃,c

(Φ(x̃, c)) , (16)

where Φ is the moment-matching objective function, identical to the one used in [9].

4.4 Parameter estimation with the Bayesian approach

In this section, we explain the Bayesian philosophy of modelling uncertainty [3, 4, 23].
First consider the following notation:

• x is the unknown parameter

• ηexp is a scalar experimental datum.

• η(x) is the model response which is dependent upon the unknown parameter x.

Earlier, it was explained that often one minimises an objective function such as that given
in eq. (5) to choose the unknown x which best fits the data ηexp, given the model η(x).
However, there are serious issues with this method. Consider Figure 6. In Figure 6a,
we have scalar data ηexp, η(x) and x. The solution to the least squares problem given
by eq. (5) is solved at the value of x for which the lines of η(x) and ηexp coincide. The
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Figure 6: Unimodal and bimodal belief distributions for unknown parameters

data ηexp have uncertainties σexp attached to them. In current methodologies, it is possible
to ‘map’ these uncertainties of the data through the model response η(x) to give some
indication of uncertainties in the parameter x due to the uncertainty in ηexp. However, in
that example, it so happened that there was a unique solution to the minimisation of the
objective function. However, it is easy to see that if there is a lack of identifiability of the
parameters given the data and model response, then there may be multiple solutions to
the minimisation problem, or at least many parameter values which give similar values to
the objective function, and thus the optimal solution could be extremely sensitive to slight
changes in the data values. An example of the lack of identifiability of the parameter
value x is given in Figure 6b. Since the model function is symmetric, there are exactly
two solutions to the minimisation problem—neither should be favoured over the other.
One could argue that we simply report both values of x. But what if the model function
were slightly asymmetric? One would expect in this situation that the optimal values are
slightly unequal in ‘weight’ in this situation due to the uncertainty in the data. But how to
weight the solutions? Man et al. [25] make an attempt at this by generalising the assumed
parameter distribution from a Gaussian distribution to a ‘multimodal’ Gaussian. Mean-
while, in both the examples above, it was assumed that the uncertainties in the data are
exactly known. What if they are unknown? What if we have some information about the
uncertainties, but not exact information about their values? What if something is already
known about x from previous experiments—the question would be how to incorporate
this existing knowledge, rather than starting from scratch.

To answer all these questions, we appeal to the Bayesian philosophy of statistics. In the
first place, the data are modelled as ‘noisy’, and thus attached with some uncertainty.
Typically, it is assumed that the data are realisations from a Gaussian distribution with
the mean being the unknown ‘true’ data. Arguably, this assumed randomness is not true
randomness, but purely our way of modelling uncertainty in the data, given that we are un-
able to control every aspect of our experimental procedures. If this is the case, one could
argue that uncertainties of any kind can be modelled in a similar way. This is precisely the
Bayesian view. Any unknown quantity is assumed to be random (in exactly the same way
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the data are assumed to be random), where the probabilities of the quantity taking cer-
tain values models our belief in the quantity taking those values. Thus, one sees that the
uncertainties in the data and the uncertainties in unknown quantities are put on an equal
footing—it is then easy to use the highly developed mathematical framework of probabil-
ity theory to make inference about our unknown quantities. Thus all the information about
our belief about the unknown quantities are encoded in the belief distributions, including
the means, variances and even correlations, etc. In other words, the notion of optimisation
is deemed unnecessary since it gives little information. However, it is also possible, at
the point of a gun, to provide an optimal estimate for the unknown quantities. We shall
attempt to answer some of the questions made above in the following subsections.

4.4.1 Bayesian preliminaries

Given that we are modelling uncertainties via randomness, we must attach belief probabil-
ity distributions to each unknown quantity. This necessitates that we have an initial belief
distribution—we call this the prior distribution. Thus, any a priori information known
about our unknown quantities gained from previous experiments or experts can in princi-
ple be incorporated into our data analysis, rather than wasting this useful information. In
keeping with our notation, the unknown quantities denoted by (the possibly vectorial) x.
The probability density function corresponding to the prior distribution shall be denoted
by p(x).

Given we have this prior belief in x, how can we use the experimental data to update
our belief distribution of x? As stated earlier, we assume that the data are noisy, and thus
‘random’, and so we must state the distribution of the data. This is given by the probability
density function p(ηexp|x), which is typically a Gaussian density with the mean being the
‘true’ data. Note that this distribution depends on the unknown parameter x. The examples
above show this—it was assumed that the ‘true’ mean of the data is given by the model
response η(x) which depends on x.

Armed with this information, it is now possible to use probability theory to form our
new belief distribution for the parameter x—we call this the posterior distribution whose
density is denoted by p(x|ηexp). To find this, simply apply the famous Bayes’ Theorem:

p(x|ηexp) =
p(ηexp |x) p(x)∫
p(ηexp |x′) p(x′) dx′

∝ p(ηexp |x) p(x) ,

(17)

noting that we have removed the denominator as a constant of proportionality since it
is independent of x. Given the posterior p(x|ηexp), it is now possible to extract modes,
means, variances, etc., thus providing the user complete information about x.

4.4.2 Application to granulation process

In the granulation example, we are given the following information:

• x̃ are the K-dimensional unknown (coded) parameters of interest.
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• ηexp
j := Lexp

m,geo,3,j for j = 1, . . . , J are the experimental data.

• (σexp
j )2 are the variances (known or unknown) of the noise of the data ηexp

j .

• ηj(x̃) is the response from the surrogate model (response surfaces) for the j th sce-
nario.

Likelihood As stated in section 4.4.1, we first need the data distribution, which can be
taken to be Gaussian with mean being our model response. Thus, we have that

ηexp
j ∼ N

(
ηj(x̃), (σexp

j )2
)

independently ∀ j = 1, . . . , J , (18)

which provides us with the following probability density for the data (given the unknown
parameter x̃ and the possibly unknown (σexp

j )2 values):

p(ηexp | x̃, (σexp
1 )2, . . . , (σexp

J )2)

=
J∏
j=1

{
(2π(σexp

j )2)−
1
2 exp

[
− 1

2(σexp
j )2

(
ηexp
j − ηj(x̃)

)2]}

= (2π)−
J
2

(
J∏
j=1

(σexp
j )2

)− 1
2

exp

[
−1

2

J∑
j=1

1

(σexp
j )2

(
ηexp
j − ηj(x̃)

)2]
. (19)

Prior distribution—known (σexp
j )2 The next component required for a Bayesian anal-

ysis of the unknown values are the prior distributions. This is a non-trivial choice, and one
must be careful how this is chosen as it can affect the posterior distribution greatly. How-
ever, for our granulation problem, it may be reasonable to consider a uniform distribution
over our hypercube X (recalling that this is the region in K-dimensional space such that
x̃k ∈ [−1, 1] for all k = 1, . . . , K). In the first instance, we shall deal with the case that
the (σexp

j )2 are known a priori. Thus, we have that the prior probability density for x̃ is

p(x̃) =
1

|X |
1{x̃∈X} (20)

where | . | denotes the size/volume of a set and 1{condition} is the indicator function (i. e., it
is equal to unity if ‘condition’ is true, and zero otherwise).

Posterior distribution—known (σexp
j )2 Using eq. (17), the posterior density is now

easy to compute (up to a constant factor) as follows:

p(x̃ |ηexp)

∝ p(ηexp | x̃) p(x̃) by eq. (17)

∝ (2π)−
J
2

(
J∏
j=1

(σexp
j )2

)− 1
2

exp

[
−1

2

J∑
j=1

1

(σexp
j )2

(
ηexp
j − ηj(x̃)

)2]
.

1

|X |
1{x̃∈X}

∝ exp

[
−1

2

J∑
j=1

1

(σexp
j )2

(
ηexp
j − ηj(x̃)

)2]
1{x̃∈X} (21)
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Prior distribution—unknown (σexp
j )2 We make the assumption that our uncertainty

in x̃ is independent from our uncertainty in the (σexp
j )2, which are also assumed to be

mutually independent from each other. This gives us the following expression for the
prior distribution:

p(x̃, (σexp
1 )2, . . . , (σexp

J )2) = p(x̃)
J∏
j=1

p((σexp
j )2) (22)

where the p((σexp
j )2) are our prior densities for the (σexp

j )2. In the case of having no prior
information about these, we use the well-used Inverse Gamma non-informative prior [15],
given by

p((σexp
j )2) =

β
αj

j

Γ(αj)

(
1

(σexp
j )2

)αj+1

exp
[
− βj

(σexp
j )2

]
, (23)

where αj and βj are usually taken be small but positive values such as 0.001. Prior speci-
fication remains very much an open question.

Posterior distribution—unknown (σexp
j )2 The posterior density (up to a constant fac-

tor) is computed as follows:

p(x̃, (σexp
1 )2, . . . , (σexp

J )2 |ηexp)

∝ p(ηexp | x̃, (σexp
1 )2, . . . , (σexp

J )2) p(x̃, (σexp
1 )2, . . . , (σexp

J )2)

∝ p(ηexp | x̃, (σexp
1 )2, . . . , (σexp

J )2) p(x̃)p((σexp
1 )2, . . . , (σexp

J )2)

∝ (2π)−
J
2

(
J∏
j=1

(σexp
j )2

)− 1
2

exp

[
−1

2

J∑
j=1

1

(σexp
j )2

(
ηexp
j − ηj(x̃)

)2]

× 1

|X |
1{x̃∈X} .

J∏
j=1

β
αj

j

Γ(αj)

(
1

(σexp
j )2

)αj+1

exp
[
− βj

(σexp
j )2

]

∝ exp

[
−

J∑
j=1

1

(σexp
j )2

{
βj +

1

2

(
ηexp
j − ηj(x̃)

)2}]

× 1{x̃∈X} .
J∏
j=1

(
1

(σexp
j )2

)αj+
3
2

. (24)
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Furthermore, the (σexp
j )2 are nuisance parameters—they are not of primary interest to the

user. Thus we can consider the marginal posterior for x̃, which is computed as follows:

p(x̃ |ηexp)

:=

∫ ∞
0

. . .

∫ ∞
0

p(x̃, (σexp
1 )2, . . . , (σexp

J )2 |ηexp) d(σexp
1 )2 d(σexp

2 )2 . . . d(σexp
J )2

∝
∫ ∞
0

. . .

∫ ∞
0

exp

[
−

J∑
j=1

1

(σexp
j )2

{
βj +

1

2

(
ηexp
j − ηj(x̃)

)2}]

× 1{x̃∈X} .

J∏
j=1

(
1

(σexp
j )2

)αj+
3
2

d(σexp
1 )2d(σexp

2 )2 . . . d(σexp
J )2

∝
J∏
j=1

Γ(αj)[
βj + 1

2

(
ηexp
j − ηj(x̃)

)2]αj+
1
2

1{x̃∈X}

∝ 1∏J
j=1

[
βj + 1

2

(
ηexp
j − ηj(x̃)

)2]αj+
1
2

1{x̃∈X} . (25)

Next step What do we do with these expressions for the posteriors? In the first in-
stance, notice that we only have the expressions for the posteriors up to a constant positive
factor—these factors can in principle be computed (numerically or perhaps analytically)
using the fact that the posterior densities are probability density functions which must
integrate to unity. However, for higher dimensional x̃, the normalising factor may be
hard to compute, and furthermore, it is hard to visualise the scalar posterior function as a
function of high-dimensional space. Thus we opt to sample from the posterior distribu-
tion. From the sample, it is possible to estimate any number of quantities of interest such
as the means, variances or even correlations between unknown quantities. Furthermore,
visualisation of posterior is made easier since we can easily estimate1 all possible joint
posterior densities of pairs of unknown quantities. In the above granulation examples,
this translates to estimating p(x̃k1 , x̃k2 |ηexp) for all k1, k2 ∈ {1, . . . , K}.

Sampling from the density Remembering that we (only) have access to an analytic
expression for the posterior density but only up to a constant positive normalisation factor,
we seek an algorithm which can sample from this density given this information. The
most famous algorithm for this task is the Metropolis-Hastings algorithm [17, 26]. This
algorithm works by forming a continuous space discrete time Markov Chain which has a
stationary distribution which is identical to the distribution that we want to sample from—
call the density π(x). In simple terms, this means sequentially choosing values of x (these
values of x are called states in Markov Chain language) to move in such a way as to visit
the state x with frequency density π(x). Skipping all the details of why it works, we give
the algorithm at its simplest and most generic form in Algorithm 1. Notice that eq. (27)
has the factor π(x′)/π(x) implying that we need only the density π(x) up to a constant

1using kernel density estimation
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normalisation factor. Hence, if we wish to sample from the posteriors given in eq. (21) or
(25), we need only substitute π(x) for those expressions.

In the case of eq. (25), Algorithm 1 generates the following sequence: (x̃(t))t=1,...,T . Since
this is a (albeit correlated) sample from the marginal posterior p(x̃ |ηexp), we can estimate
any quantity of interest. For example, the posterior mean of x̃k is estimated by:

E [x̃k |ηexp] ≈ 1

T

T∑
t=1

x̃
(t)
k . (26)

Furthermore, estimation of the joint marginal posterior density p(x̃k1 , x̃k2 |ηexp) can be
estimated using kernel density estimation on the restricted sample ((x̃

(t)
k1
, x̃

(t)
k2

)>)t=1,...,T ,
i. e. the sample (x̃(t))t=1,...,T , but ignoring all components of x̃(t) except the components
k1 and k2.

We have just discussed how to sample from some arbitrary density π(x) for some arbitrary
states x. To apply Algorithm 1 to the granulation example, we need only set the states
x to be x̃ and the density of interest to be the posterior density p(x̃ |ηexp). In the results
in the next sections, we use the proposal density q(x → x′) (as explained in Step 1 of
Algorithm 1) to be q(x → x′) = q(x̃ → x̃′) = 0.2 1

|X |1{x̃′∈X} + 0.8 ∗ 1
|X (x̃)|1{x̃′∈X (x̃)},

where X (x̃) is the intersection of the hypercube X and the hypercube with edgelength
0.1 centred at x̃. The idea behind this choice was to jump (with small probability 0.2)
completely uniformly in X so that long jumps are made, but jumping far can often result
in a rejection, so to ensure that not too many rejections are made, we jump (with large
probability 0.8) somewhere nearby to the current position in X .
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Algorithm 1: Metropolis-Hastings algorithm

1 Choose a proposal density q(x→ x′) which is a probability density function for
choosing a new state x′ given that we are currently positioned in the state x.

2 Set t = 0. Start with any initial state x(0) for x.

while t < T do

3 Propose a new state x′ sampled from (any) proposal density q(x→ x(t)).
4 Compute the quantity

αaccept :=
π(x′) q(x′ → x(t))

π(x(t)) q(x(t) → x′)
(27)

5 Perform a rejection step, i. e. with probability r := min{1, αaccept}, accept the
proposed state x′, i. e., set x(t+1) = x′, otherwise, set x(t+1) = x(t).

6 Set t← t+ 1.

7 STOP.
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Table 2: Limits of coded and uncoded variables

Parameter
Transformation uncoded coded limit coded uncoded unit
Coalescence K̂coag x1 low 0 1.0 · 10−11 m3

up 1 1.0 · 10−8 m3

Compaction kcomp x2 low 0 0.01 s/m
up 1 0.6 s/m

Breakage k̂att x3 low 0 1.0 · 109 s/m5

up 1 1.0 · 1012 s/m5

Penetration k̂pen x4 low 0 1.0 · 108 kg1/2 s−3/2 m−7/2

up 1 1.0 · 1012 kg1/2 s−3/2 m−7/2

Reaction kreac x5 low 0 1.0 · 10−10 m/s
up 1 1.0 · 10−6 m/s

5 Results and discussion

The theory outlined in the previous section is now applied to the granulation process.

5.1 Prescan

200 parameter combinations based on Halton sequences and the boundaries given in Ta-
ble 2 were evaluated. Through evaluation of the objective function (5) the parameter
combination of sample point 69 was identified to be most applicable to the studied prob-
lem,

xbest = xSP69

= (0.633, 0.284, 0.936, 0.901, 0.322) ,
(28)

which corresponds to the parameter combination ybest,

ybest =


7.925 · 10−10 m3

0.0320 s/m
6.427 · 1011 s/m5

4.018 · 1011 kg1/2 s−3/2 m−7/2

1.941 · 10−9 m/s

 . (29)

5.2 Surrogate model construction

Response surfaces around sample point 69 were constructed. The corner points of the
hypercubes and additional points for these experimental designs and their corresponding
parameter values were chosen according to eqs. (11), (12), and (13).

The distance between the sample point xbest and the nearest other sample point is

rmin = 0.3540 . (30)
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The edge length of the hypercube a may be chosen as a = rmin. However, this is not
possible in the current case as the sample point 69 is close to the boundaries of the design,
so that a is limited by constraint (10), leading to

a = 0.1280 . (31)

5.3 Parameter estimation results

In this section we estimate the unknown parameters and their uncertainties using the pro-
jection method and the Bayesian approach. For the former one we apply eq. (16) along
with the moment-matching objective function. In order to do so, the uncertainty in the
experimental results has to be known. Due to a lack of repetitions, we assume the experi-
mental uncertainties to be,

σexp
j = ςexprel L

exp
m,geo,3,j (j ∈ [1, . . . , J ]) . (32)

The unknown parameters are estimated using a relative experimental uncertainty of ςexprel =
0.02, 0.05, 0.10. Model predictions from the surrogate model with these parameter esti-
mates are computed and compared to the experimental results for the different operating
conditions in Figure 7. Although all nine scenarios (operating conditions) are used for
the parameter estimation without any weighting between the scenarios, differences in the
agreement between predictions and experimental results for the different scenarios can be
observed. It appears that better agreement with the estimated parameter set is achieved
for lower impeller speeds and less PEG in the binder. Irrespective of this finding, it is no-
ticeable that the predictions for the geometric mean sizes are very similar for estimation
of different experimental uncertainties.

If the Bayesian approach is applied to estimate the unknown rate constants of the gran-
ulation model, predictions after parameter estimation are computed and compared to the
experimental results too (Figure 8). The agreement between the predictions and the ex-
perimental results looks similar to those for the projection method. However, the uncer-
tainties in the predictions with the parameters obtained through the Bayesian approach
are smaller than those for the projection method. Although this might be surprising in
the first instance, it can be explained by the fact that we try to match the experimental
uncertainty and the model uncertainty in the moment-matching objective function used
for the parameter estimation in the projection function.

From the parameter distribution obtained through the Bayesian approach, it is possible
to deduce two-dimensional (marginal) distributions of any combination of parameters.
These distributions are plotted in Figures 9-11 for relative experimental uncertainties of
ςexprel = 0.02, 0.05, 0.10. Firstly it can be observed that the distributions become more
spread out as the experimental uncertainty increases (as one would naturally expect). Sec-
ondly, most distributions are unimodal with respect to one parameter, except the distribu-
tions in x̃2, the compaction rate constant, for which a bimodal behaviour can be observed.
This means, essentially two solutions can be obtained for the inverse problem. A very
simplistic physical explanation for this behaviour could be the following—if the system
is in a state with a low compaction rate (constant), internal liquid (inside the pores) is
less likely to be squeezed out onto the external surface. Hence, not so much binder is
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Figure 7: Experiments vs. predictions with parameters from projection method for differ-
ent impeller speed and binder composition
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Figure 8: Experiments vs. predictions with parameters from Bayesian approach for dif-
ferent impeller speed and binder composition
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Figure 9: Estimates of joint marginal posterior densities p(x̃k1 , x̃k2 |ηexp)—known
(σexp

j )2 values, set with relative errors ςexprel = 0.02: Pairs of parameters
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Figure 10: Estimates of joint marginal posterior densities p(x̃k1 , x̃k2 |ηexp)—known
(σexp

j )2 values, set with relative errors ςexprel = 0.05: Pairs of parameters
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Figure 11: Estimates of joint marginal posterior densities p(x̃k1 , x̃k2 |ηexp)—known
(σexp

j )2 values, set with relative errors ςexprel = 0.10: Pairs of parameters
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Table 3: Estimated parameters (coded form) for different experimental uncertainties ςexprel

(a) Projection method

ςexprel x̃∗
1 [-] x̃∗

2 [-] x̃∗
3 [-] x̃∗

4 [-] x̃∗
5 [-] c∗1 [-] c∗2 [-] c∗3 [-] c∗4 [-] c∗5 [-]

0.02 -0.3647 -1.0000 -0.9398 1.0000 0.0044 0.0000 0.5499 0.0000 0.0000 0.0000
0.05 -0.4448 -1.0000 -1.0000 1.0000 0.0084 0.0000 1.0000 0.0000 0.4918 0.0000
0.10 0.0778 -1.0000 -0.3600 1.0000 -0.0174 0.2238 1.0000 1.0000 0.7545 0.0000

(b) Bayesian approach

ςexprel x̃∗
1 [-] x̃∗

2 [-] x̃∗
3 [-] x̃∗

4 [-] x̃∗
5 [-] c∗1 [-] c∗2 [-] c∗3 [-] c∗4 [-] c∗5 [-]

0.02 -0.2021 -0.5494 -0.2922 0.3425 -0.0066 0.2786 0.7879 0.6246 0.4808 0.2101
0.05 -0.0887 -0.1645 0.0891 0.0660 -0.0128 0.4762 0.7315 0.5498 0.5702 0.4473
0.10 -0.1047 -0.0756 0.1006 0.0155 0.0098 0.5190 0.6156 0.5456 0.5860 0.5505
none -0.0883 -0.0738 0.0666 0.0540 0.0136 0.5028 0.5719 0.6138 0.5604 0.5487

present on the external surface, and coalescence between particles is not so likely. In con-
trast, a higher compaction rate (constant) will lead to an increased squeezing of internal
liquid out onto the external surface of the particle, thereby increasing the binder amount
that will promote coalescence, i. e. particle growth. However, the transfer of the binder
from the interior of the granules to the external surface increases the likelihood of particle
breakage, which counteracts the increased coalescence. These bimodal distributions in-
dicate a lack of identifiability for the given model and the experimental data. In addition
to bimodal distributions, a positive correlation between the collision rate constant x̃1 and
the breakage rate constant x̃3 can be spotted. Such behaviour can be somewhat expected
as coalescence and breakage are antagonistic processes. However, the frequency of these
events happening also determines how the liquid (binder) is spread within the particle en-
semble. Interestingly, such a correlation between the parameters can also be observed in
the marginal density when the parameters are estimated without any experimental uncer-
tainties known (Figure 12). From the marginal densities for all four settings, it is apparent
that parameters such as the reaction rate constant x̃5 are neither multimodal nor correlated
with other parameters. Hence, it is likely that unique estimates for its values can be found,
but it has to be kept in mind that any marginalisation is an averaging operation that may
remove higher-order correlations, etc.

In order to allow further comparison of the results obtained through the projection method
and the Bayesian approach, the mean and the uncertainty for each single parameter x̃i are
summarised in Table 3. Looking at the results from the projection method first (Table 3a),
it is clear that the parameter estimates x̃∗i are sensitive to the experimental uncertainties,
in particular for x̃∗1 and x̃∗3. The uncertainties in the parameter estimates vary with the
experimental uncertainty too, becoming bigger as the experimental uncertainty increases
(as one would expect). With respect to the results from the Bayesian approach, we notice
that the estimates for all but the experimental uncertainty of ςexprel = 0.02 are not too
dissimilar (Table 3b). An increase in parameter uncertainty with increasing experimental
uncertainty can actually only be made out for the coalescence rate constant x̃1 and the
reaction rate constant x̃5. However, the marginal densities in Figures 9-11 clearly show
an increase in the uncertainties for all parameters. A comparison between the values for
the projection method and the Bayesian approach reveals distinct differences. This clearly
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Figure 12: Estimates of joint marginal posterior densities p(x̃k1 , x̃k2 |ηexp)—unknown
(σexp

j )2 values, set with αj = βj = 0.001: Pairs of parameters
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shows that there is a lack of identifiability for the current system. However, the differences
between the estimates are not surprising. Take for instance the bimodal distribution in the
compaction rate constant x̃2 predicted by the Bayesian approach. Due to the fact that the
projection method assumes a unimodal parameter distribution, it favours one peak of the
bimodal distribution. In contrast, the mean for that parameter when sampled from the
bimodal distribution is distinctively different from the projection method result.

6 Conclusions

A systematic approach of parameter estimation for a multidimensional population bal-
ance model for granulation using a projection method and a Bayesian approach has been
studied. Following granulation experiments with sodium carbonate and different aque-
ous polyethylene glycol mixture in a laboratory mixer, the process was simulated with
a population balance model in which the particles are described by five internal coordi-
nates. These particles are subject to the transformations coalescence, compaction, break-
age, penetration and reaction, each of them characterised by a rate constant. These rate
constants were unknown and needed to be estimated.

As a first step, a screening over a large range of parameter combinations was performed in
order to find a parameter combination for which the model matches the experiment results
best. A low discrepancy approach was used in order to distribute the 200 used parameter
combinations across the parameter space. In a second step, surrogate models (2nd order
response surfaces) were constructed around the previously identified “best” parameter
combination, providing a local approximation of the complex granulation model. These
surrogate models were then used together with the experimental results in a projection
method as well as a Bayesian approach to estimate the values of the unknown model
parameters and their uncertainties.

It was found that the model predictions with the parameters obtained through both meth-
ods are similar. Furthermore, the uncertainties in the model predictions increased as
the experimental uncertainties were increased. Studies of the marginal densities of two-
parameter combinations obtained through the Bayesian approach showed a correlation
between the collision and breakage rate constant, giving potential hints for further model
development. Furthermore, a bimodality in the distribution of the compaction rate con-
stant was observed, raising the question about the identifiability of the studied system.
Further studies on this topic seem to be necessary. As part of the system, second order
response surfaces were used as local surrogate models in order to estimate the unknown
parameters. However, although it was beyond the scope of this study, it is clear that a
response surface that is more global in nature is required. Furthermore, it is necessary to
gauge how our uncertainties in our response surface (as an approximation to the model
response) influences our uncertainties in the model parameters.”
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A Transformation between coded and uncoded variables

As the model parameters are usually dimensional and in a different size range other than
[0, 1], the sampling points need to be transformed into the dimensional model parameters.
A linear and logarithmic transformation are presented below.

The normalised variables obtained from a sequence shall be denoted as coded variables, x,
and the dimensional model parameters shall be called uncoded variables, y, (Figure 13).
For each uncoded variable exists a corresponding coded variable,

ylow → xlow , y → x , yup → xup . (33)

Note that this definition is one-dimensional. For quantities with more than one dimension,
we simply apply the transformation rules to each dimension separately.

Linear transformation In case of a linear transformation between the coded and un-
coded variables, following relationship exists,

y − ylow
x− xlow

=
yup − ylow
xup − xlow

, (34)

so that

y =
yup − ylow
xup − xlow

(x− xlow) + ylow , (35)

and after introduction of S =
yup − ylow
xup − xlow

we get

y = S (x− xlow) + ylow . (36)

Let the coded variable x be expressed by

x = x0 + c ξ , (37)
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with ξ being standard normally distributed. Hence

x ∼ N
(
x0, c

2
)

. (38)

Together with equation (36) this leads to

y ∼ N
(
S (x0 − xlow) + ylow , S

2 c2
)

. (39)

This means the model parameter y with its mean y0 and its uncertainty δy can be expressed
by

y = y0 ± δy , (40)
= S (x0 − xlow) + ylow ± S c . (41)

Logarithmic transformation In this case, the following relationship shall be used,

y = ybase f
x . (42)

If the problem presents itself as in figure 13, then it is possible to express ybase and f in
terms of xlow, xup, ylow, and yup, so that one obtains,

ybase =
ylow
fxlow

=
yup
fxup

, (43)

yielding

f =

(
yup
ylow

) 1
xup−xlow

. (44)

The combination of equations (42), (43) and (44) provides y as a function of x,

y = yup

(
ylow
yup

) xup−x

xup−xlow

. (45)

For the calculation of the uncertainties we perform two substitutions in eq. (45),

S =
yup
ylow

, (46)

x̃ =
x− xup
xup − xlow

, (47)

leading to

y = yup S
x̃ , (48)

which can be transformed into

y = yup exp (x̃ lnS) . (49)
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The most likely values for the model parameter y fall within

y =
[
y−(x−); y+(x+)

]
. (50)

Since
x ∼ N (x0, c

2) (51)

we have

x− = x0 − δx− , (52)
x+ = x0 + δx+ . (53)

If δx− and δx+ are the one σ uncertainty in x then,

δx− = δx+ = δx = c . (54)

This means the lower and upper bound for y take following forms,

y− = yup exp

(
x0 − c− xup
xup − xlow

· ln
(
yup
ylow

))
, (55)

y+ = yup exp

(
x0 + c− xup
xup − xlow

· ln
(
yup
ylow

))
. (56)
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