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Abstract

This paper compares two mean reaction rate closures for turbulent reacting flow:
the Stochastic Fields (SF) method and the Direct Quadrature Method of Moments us-
ing the Interaction by Exchange with the Mean micromixing model (DQMoM-IEM).
The methods have many common features and have received significant attention in
recent literature, yet have not been systematically compared. We present both meth-
ods in the same mathematical framework and compare their numerical performance.
In addition, we introduce antithetic sampling as a variance reduction technique to
increase the efficiency of the SF algorithm. We extend the methodology to take ad-
vantage of this development and show details of the implementation of each method
in an existing computational fluid dynamics code. We present a systematic inves-
tigation and consider both axisymmetric and 3D formulations of a problem known
from the literature. DQMoM-IEM showed excellent agreement with experimental
and transported probability density function data. SF gave reasonable agreement,
but retained a minor grid-dependence not seen with DQMoM-IEM and did not fully
resolve the sub-grid segregation of the species. The antithetic sampling was demon-
strated to significantly increase the efficiency of the axisymmetric SF cases.
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1 Introduction

Turbulent reacting flows are a key field of research for many engineering applications.
For example, the production of titanium dioxide from titanium tetrachloride and oxy-
gen. Current turbulent flow methods separate the velocity and scalar quantities (such as
species concentration) into resolved and unresolved components. For example, Reynolds-
Averaged Navier Stokes (RANS) methods solve transport equations for average compo-
nents, but need to close terms arising from unresolved fluctuating components. In reacting
flows, the chemical source terms that occur in the material and energy balance equations
are left unclosed and must be modelled.

Many approaches to modelling turbulent reacting flow have been studied [9, 29, 34].
Transported probability density function (PDF) methods [22] are applicable to all flows
and offer the key advantage that the chemical source term does not need to be closed.
However, Monte Carlo solution techniques are typically required [35]. These may be
computationally expensive and not necessarily suited to the computational fluid dynamics
(CFD) software that would often be the method of choice for turbulent flow simulations.

Two methods considered in recent literature and amenable to implementation within ex-
isting CFD codes are the Direct Quadrature Method of Moments using the Interaction by
Exchange with the Mean micromixing model (DQMoM-IEM) and the Stochastic Fields
(SF) method. Despite the attention, no studies have directly compared the methods.

The application of DQMoM-IEM to turbulent reacting flows was suggested by Fox [9].
A weighted particle system and the interaction by exchange with the mean (IEM) [43]
micromixing model are used to approximate a joint composition PDF transport equation.
An arbitrary moment set is used to derive transport equations for the weights and weighted
positions of the particle system that guarantee to reproduce the correct transport of the
moments within this set. The method has been applied to reactive precipitation in non-
ideal plug flow reactors [44], nano-particle precipitation in confined impinging jet reactors
[14, 15, 30, 36] and stabilised turbulent methane-hydrogen flames [39].

The SF method [37, 42] approximates a joint composition PDF transport equation using
a set of Eulerian ‘stochastic fields’. The fields are defined over the entire spatial domain
and evolve according to a stochastic partial differential equation (SPDE) such that they
remain statistically equivalent to a one-point joint composition PDF. The method has
been applied to a number of turbulent reacting flows including the dispersion of reactive
pollutants [12, 13], piloted methane flames [32], and the auto-ignition of hydrogen and
n-heptane flames [23–25].

The purpose of this paper is to compare the numerical behaviour of DQMoM-IEM
and SF and to introduce antithetic sampling to improve the SF method. Section 2 in-
troduces the key aspects of each method. Section 3 summarises the implementation of
DQMoM-IEM and SF and explains the use of antithetic sampling to increase the effi-
ciency of the SF simulations. Section 4 investigates the performance of DQMoM-IEM
and SF against the method of moments and a turbulent reaction test case known from the
literature [28, 40, 41]. Both axisymmetric and 3D cases are considered. The benefits of
antithetic sampling are discussed and areas for further research suggested.
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2 Theoretical background

This section introduces key aspects of the DQMoM-IEM and SF methods and discusses
some common features. The derivations of the methods are documented in the literature
and solve approximations to a closed joint composition PDF transport equation such as

∂fφ
∂t

+ 〈Ui〉
∂fφ
∂xi
− ∂

∂xi

(
ΓT
∂fφ
∂xi

)
=

− ∂

∂ψα

([
Cφ
2τφ

(
〈φα〉 − ψα

)
+ Sα

(
ψ
)]
fφ

)
.

(1)

2.1 DQMoM-IEM

DQMoM-IEM was first derived by Fox [9, Appendix B]. Its numerical implementation
as a turbulent reaction closure has been investigated in detail by Akroyd et al. [2].

This paper considers the case when the closed joint composition PDF transport equation (1)
is approximated using a weighted particle system

fφ(ψ;x, t) = fφ(ψ1, ψ2, . . . , ψK ;x, t)

≈
N∑
n=1

w(n)(x, t)
K∏
α=1

δ
ψ
(n)
α ;x,t

, (2)

where

δ
ψ
(n)
α ;x,t

≡ δ
[
ψα − ψ(n)

α (x, t)
]

. (3)

The particle system introducesN weightsw(n) andNK positionsψ(n)
α , where n = 1, . . . , N

particles and α = 1, . . . , K scalars.

Transport equations that share the form of standard scalar transport equations are derived
for the weights w(n) and weighted positions s(n)

α of the particle system

∂w
(n)

∂t
+ 〈Ui〉

∂w
(n)

∂xi
− ∂

∂xi

(
ΓT
∂w

(n)

∂xi

)
= a(n) , (4)

∂s
(n)
α

∂t
+ 〈Ui〉

∂s
(n)
α

∂xi
− ∂

∂xi

(
ΓT
∂s

(n)
α

∂xi

)
= b(n)

α , (5)

where

s(n)
α ≡ w(n)ψ(n)

α . (6)
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The source terms a(n) are set to zero and the weights evolve as conserved scalars subject
to equation (4). A set of M=NK unmixed empirical moments

〈φmλαα 〉N =
N∑
n=1

w(n)ψ(n)
α

mλα for λ = 1, . . . ,M , (7)

are used to derive a linear system of NK equations for the source terms b(n)
α . In the case

that the unmixed empirical moments are specified

mλα = λ for λ = 1, . . . , N and α = 1, . . . , K , (8)

the linear system can be solved to give a set ofN equations for each scalar α=1, . . . , K [2]

b(n)
α = b(n)

mxα + b(n)
rxα + b

(n)
dxα , (9)

where

b(n)
mxα = w(n) Cφ

2τφ

(
〈φα〉N − ψ

(n)
α

)
, (10)

b(n)
rxα = w(n)Sα

(
ψ(n)

)
, (11)

b
(n)
dxα = w(n)c(n)

αα

N∑
i=1
i 6=n

1

ψ
(n)
α − ψ(i)

α

+
N∏
i=1
i 6=n

1

ψ
(n)
α − ψ(i)

α

N∑
j=1
j 6=n

w(j)c(j)
αα

N∏
k=1
k 6=j,n

(
ψ(j)
α − ψ(k)

α

)
,

(12)

and

c
(n)
αβ ≡ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi
. (13)

The b(n)
mxα and b(n)

rxα terms describe micromixing and chemical reaction, b(n)
dxα describes the

effect of turbulent diffusion in the presence of spatial gradients of scalar α. We refer to
them as the DQMoM-IEM micromixing, reaction and diffusion terms.

2.2 SF

The SF method was derived independently by Valiño [42] and Sabel’nikov and Soulard
[37]. The derivations differ in that Valiño derives an Itô SPDE under the restriction that
the fields are twice differentiable in space, whereas Sabel’nikov and Soulard present a
more general derivation of a Stratonovich SPDE and show equivalence to Valiño’s result.
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This paper considers the case of a multivariate Itô SPDE, first given by Hauke and Valiño
[21]. The derivation follows the approach outlined by Valiño [42] and is summarised
in the appendix for the benefit of readers who would appreciate more detail. The joint
composition PDF transport equation (1) is approximated using an ensemble of N fields

fφ(ψ;x, t) = fφ(ψ1, ψ2, . . . , ψK ;x, t)

≈ 1

N

N∑
n=1

K∏
α=1

δ
ψ
(n)
α ;x,t

, (14)

where δ
ψ
(n)
α ;x,t

is defined as per equation (3). Hauke and Valiño [21] state the equivalent

SPDE describing the transport of each field ψ(n)
α (x, t)

dψ(n)
α =− 〈Ui〉

∂ψ
(n)
α

∂xi
dt+

∂

∂xi

(
ΓT
∂ψ

(n)
α

∂xi

)
dt

+
Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dt+ Sα

(
ψ(n)

)
dt

+
(

2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i ,

(15)

whereW is a Wiener process, see Gardiner [10]. The final three terms describe micromix-
ing, chemical reaction and the effect of turbulent diffusion in the presence of spatial gra-
dients of scalar α. We refer to them as the SF micromixing, reaction and diffusion terms.

2.3 Common features

DQMoM-IEM and SF have many common features. Both invoke the same approxima-
tion to discretise the closed joint composition PDF transport equation (1) in composition
space. The weighted particle system in equation (2) is a field approximation analogous
to that introduced by the SF method in equation (14). In the case that DQMoM-IEM is
constrained w(n)

= 1/N , equation (5) may be rewritten in terms of ψ(n)
α in an analogous

form to the SF equation (15), where the equations differ only in their treatment of the
DQMoM-IEM and SF diffusion terms.

In DQMoM-IEM, the moments of the modelled PDF are governed by the particle weights
and positions. The method is deterministic and typically only a few particles are required.
In particular, it is the correct specification of the boundary conditions on the weights that
allows the underlying PDF to be modelled with only a few particles [2]. In the case of
SF, the method specifies equi-weighted fields, and the moments of the modelled PDF are
governed entirely by the stochastic action of equation (15). In contrast to DQMoM-IEM,
the implementation is simplified at the cost of requiring a larger number of fields both to
resolve the modelled PDF and to control statistical error.
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3 Numerical details

This section presents the numerical details of the DQMoM-IEM and SF implementations.
Sections 3.1 and 3.2 describe the coupling of each method to the Star-CD CFD code [5].
Section 3.3 introduces the application of antithetic sampling to improve the statistical
efficiency of the SF implementation.

3.1 DQMoM-IEM coupling to CFD

DQMoM-IEM is coupled to Star-CD using an operator splitting technique and solved as
a transient problem, where w(n) and s(n)

α are implemented as passive scalars. The method
is described in detail by Akroyd et al. [2] and is summarised below.

Equation (4) is solved using Star-CD. Equation (5) is solved using a Strang [38] splitting

∂s
(n)
α

∂t
= −〈Ui〉

∂s
(n)
α

∂xi
+

∂

∂xi

(
ΓT
∂s

(n)
α

∂xi

)
, (16)

∂s
(n)
α

∂t
= b(n)

α , (17)

where equation (16) is solved using Star-CD with time step ∆t, and equation (17) is solved
with time step 1

2
∆t before the first and after the last iteration, and time step ∆t otherwise.

The numerical treatment of equation (17) requires special care to avoid discontinuities
and enforce boundedness. It is solved using one of either the analytic or general solver
methods described by Akroyd et al. [2]. The particular implementations in this paper
invoke a further splitting given for the analytic solver

S b
(n)
α

∆t

(
s(n)
α

)
≈
[
S
b
(n)
mxα

1
2

∆t
◦ S b

(n)
dxα

1
2

∆t
◦ S b

(n)
rxα

∆t ◦ S
b
(n)
dxα

1
2

∆t
◦ S b

(n)
mxα

1
2

∆t

](
s(n)
α

)
, (18)

and the general solver

S b
(n)
α

∆t

(
s(n)
α

)
≈
[
S
b
(n)
mxα+b

(n)
dxα

1
2

∆t
◦ S b

(n)
rxα

∆t ◦ S
b
(n)
mxα+b

(n)
dxα

1
2

∆t

](
s(n)
α

)
, (19)

where S∆t denotes the solution operator

S b
(n)
α

∆t

(
s(n)
α

)
: s(n)

α (t) 7→ s(n)
α (t+ ∆t) .

The numerical integration of the reaction and the general solver micromixing-diffusion
terms is performed using RADAU5 [17].
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3.2 SF coupling to CFD

SF is coupled to Star-CD using the same method as DQMoM-IEM. The fields ψ(n)
α (x, t)

are implemented as passive scalars. Equation (15) is solved using a Strang [38] splitting

dψ(n)
α = −〈Ui〉

∂ψ
(n)
α

∂xi
dt+

∂

∂xi

(
ΓT
∂ψ

(n)
α

∂xi

)
dt , (20)

dψ(n)
α =

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dt+ Sα

(
ψ(n)

)
dt+

(
2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i , (21)

where equation (20) is solved using Star-CD and equation (21) is further split

ψ(n)
α

†1
= ψ(n)

α (t) +

∫ 1
2

∆t

0

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dτ , ψ(n)

α =ψ(n)
α (t) at τ=0 , (22)

ψ(n)
α

†2
= ψ(n)

α

†1
+

∫ ∆t

0

(
2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i , ψ(n)
α =ψ(n)

α

†1 at τ=0 , (23)

ψ(n)
α

†3
= ψ(n)

α

†2
+

∫ ∆t

0

Sα

(
ψ(n)

)
dτ , ψ(n)

α =ψ(n)
α

†2 at τ=0 , (24)

ψ(n)
α (t+ ∆t) = ψ(n)

α

†3
+

∫ 1
2

∆t

0

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dτ , ψ(n)

α =ψ(n)
α

†3 at τ=0 . (25)

Equation (24) is solved using RADAU5 to integrate the reaction term as per DQMoM-IEM.
Equations (22) and (25) are solved analytically [3, 27]. Equation (23) is solved over the
whole time step ∆t, as opposed to splitting it either side of the reaction operator, in order
to maintain the required independence between the integrand and dW (n)

i [10]. It is solved
following Garmory [11], using the Euler-Maruyama approximation of an Itô process [26]
to solve the SF diffusion term

ψ(n)
α

†2
= ψ(n)

α

†1
+
(

2ΓT

)1/2 ∂ψ
(n)
α

†1

∂xi
∆W

(n)
i , (26)

where

∆W
(n)
i = ξ

(n)
i (∆t)1/2 , (27)

ξ
(n)
i ∼ N (0, 1) . (28)

The variates ξ(n)
i are independent for each spatial dimension and field, but common for

all scalars α relating to dimension i and field n. They are generated using the method of
Ahrens and Dieter [1], with uniform variates supplied by the Mersenne Twister MT19937
algorithm [31] with a fixed seed. This implementation may lead to loss of boundedness
[11]. We therefore bound the fields after the Wiener step as per DQMoM-IEM [2].
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3.3 Antithetic sampling

Antithetic sampling is a variance reduction technique. It was introduced by Hammersley
and Morton [20] to increase the efficiency of Monte Carlo simulations, where the effi-
ciency is defined in terms of the effort required to achieve a given reduction in statistical
error. The premise of the method is that the variance between repetitions of a Monte Carlo
simulation is reduced by introducing pair-wise negative correlation between replicates.

The mathematical basis for antithetic sampling is defined in work led by Hammersley
[18–20] and Wilson [45, 46], and summarised by Fishman [7]. The method has mostly
been applied within quantitative economics [16] and finance [4, 33]. Its application within
computer simulations has been investigated by Cheng [6] and Fishman and Huang [8].

We apply antithetic sampling to the SF method, treating each field as a replicate. The idea
is to increase the efficiency, such that a given result can be achieved with fewer fields and
without necessarily requiring repetition of the entire simulation. We sample the variates
for odd-numbered fields, but prescribe them for even-numbered fields

ξ
(n)
i ∼ N (0, 1) if n ∈ 2N+1 , ξ

(n)
i = −ξ(n−1)

i if n ∈ 2N . (29)

This is the reflection sampling method described by Fishman and Huang [8] and the ‘stan-
dard’ method used as the basis for the investigation by Cheng [6]. Cheng suggests several
possible refinements, but we restrict our attention to the method defined by equation (29)
for the purposes of this initial investigation.

The rest of this paper compares the performance of DQMoM-IEM and SF, and considers
the impact of antithetic sampling. We denote SF cases with sampling as per equation (28)
as standard cases, and those with sampling as per equation (29) as antithetic cases. We
note that in this implementation and for a given number of iterations, a standard case with
N fields would use the same sequence of variates as the first half of a standard case or a
full antithetic case with 2N fields.
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4 Comparison of DQMoM-IEM and SF

This section investigates the performance of the DQMoM-IEM and SF methods described
in Section 3 against a test case known from the literature.

Section 4.1 describes the test case. Section 4.2 assesses the performance of DQMoM-IEM
and SF against the method of moments. This enables the effect of the numerical imple-
mentation of the diffusion terms described in Sections 2 and 3 to be examined in isolation.
Section 4.3 compares the application of both methods to a reacting system.

4.1 Model problem

The investigations in this paper were performed using a constant density test case, selected
because it has been well studied numerically [40] and experimentally [28]. The system
considered is the isothermal liquid-phase reaction

A + B
k1−→ R, B + R

k2−→ S , (30)

k1 = 5.0× 106 m3/kmol s, k2 = 1.8× 103 m3/kmol s. The yield of R

Y =
CR

CR + 2CS

, (31)

is sensitive to the rate of mixing due to the difference in the magnitude of the rate con-
stants. The case offers a simple approximation to stiff chemistry.

The reactor configuration is illustrated in Figure 1. It is the single-jet system previously
considered during the development of the DQMoM-IEM solvers [2] used in this paper.
This investigation considers the high concentration case where a turbulent jet of species
B with Reynolds number Re=3530 is injected into a laminar annular coflow of species A.

0.
00

66
 m

0.
00

4 
m

CFD Grid

0.0009 m

1.83 m
Reactant A

Reactant A

Reactant B

0.5 m

INLET
BOUNDARY

SYMPLANE BOUNDARY
(FRONT AND BACK)

5°

WALL
BOUNDARY

INLET
BOUNDARY

PRESSURE
BOUNDARY

CFD Grid

Reactant A

Reactant A

Reactant B

THIRD ANGLE PROJECTION
DIMENSIONS IN METERS

WALL BOUNDARY

(ANGLE NOT DRAWN TO SCALE)

0.
00

20
0.

00
04

0.
00

09
0.

00
09

D
H

 je
t =

 0
.0

04
0

D
H

  a
nn

ul
us

= 
0.

00
09

0.
00

20
0.

00
04

0.
00

09
0.

00
09

Figure 1: Configuration of the single-jet tubular reactor.

The system was solved using Star-CD [5] as per Akroyd et al. [2]. The inlet boundary
conditions on the flow are those used previously [2, Table 1]. The composition space is
defined in terms of the mass fractions

φ> =
[
YA, YB, YR, YS, Ysolvent

]
, (32)

The initial and inlet boundary conditions on the mass fractions and the DQMoM-IEM
particle weights are given in Table 1.
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Table 1: DQMoM-IEM and SF initial and inlet boundary conditions.

Initial condition Inlet boundary

Jet Annulus

w
(n) 1/N 0 a 1/

⌊
N
2

⌋
for n 6

⌊
N
2

⌋
1/N 1/

⌈
N
2

⌉
0 a for n >

⌊
N
2

⌋
ψ

(n)
A 0 0 4.27×10−4 b

ψ
(n)
B 0 5.25×10−4 b 0

ψ
(n)
R,S 0 0 0

ψ
(n)
solvent 1 1− ψ(n)

B 1− ψ(n)
A

Note that the table specifies ψ(n)
α for clarity, but that DQMoM-IEM transports w(n) and s(n)α = w

(n)
ψ
(n)
α .

a It is convenient to avoid zero-weighted particles. In this instance, a perturbation of 10−6 was applied and the weights normalised.
b A perturbation was applied to avoid equal ψ(n)

α for DQMoM-IEM cases where w(n) 6= 0. The perturbations preserved the mean

mass fraction and ensured that the DQMoM-IEM solver did not filter the diffusion source term [see 2] at the inlet boundaries.

The behaviour of the DQMoM-IEM and SF methods are investigated using three grids.
The first is the base grid from Akroyd et al. [2]. This uses a wedge-shaped domain of
68 × 23 (axial × radial) fully structured hexahedral cells. The second is a coarse grid,
which is a simplified version of the base grid and uses a 34× 14 (axial × radial) domain.
The third is a coarse 3D grid, which models the full reactor geometry using a cylindrical
domain of 34 × 14 × 18 (axial × radial × azimuthal) fully structured hexahedral cells
defined in a cartesian coordinate system. All cases were solved with time step 10−4 s on
the base grid and 10−3 s on the coarse grids.

The SF method has so far inhibited the use of symmetric boundary conditions, since it
is not clear how they should be applied to the stochastic fields [11, 37]. However, the
test case flow field is axisymmetric and the DQMoM-IEM solutions are dominated by
radial gradients. We use this to justify imposing an azimuthal zero-gradient condition to
enforce an axisymmetric solution on the base and coarse grids. The difference between
the grids causes small differences between the solutions near the inlets. However, the data
are considered to be sufficiently grid-independent based on the grid causing a variation of
less than 0.3% in the yield of the DQMoM-IEM cases solved in Section 4.3 (see Table 3).
The effect of the grid on the SF cases is considered in more detail in the following sections.

4.2 Application to scalar mixing

This section compares the performance of the DQMoM-IEM and SF methods for a scalar
mixing case. A reference solution is provided using the method of moments. The appli-
cation of the method of moments to such problems is well established and provides an
exact solution to equation (1) where the chemical source term is null, Sα = 0. This ap-
proach allows the effect of the numerical implementation of the diffusion terms described
in Sections 2 and 3 to be examined in isolation from the effects of reaction.
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(a) Empirical mean, species A. (b) Empirical standard deviation, species A.

Figure 2: Jet reactor empirical mean and standard deviation of species A for the inert case on the
base grid, DQMoM-IEM analytic solver with N = 2 particles.

(a) Empirical mean, species A. (b) Empirical standard deviation, species A.

Figure 3: Jet reactor empirical mean and standard deviation of species A for the inert case at
t = 5 s on the base grid, SF solver with standard sampling and N = 64 fields.

Figure 2 presents the empirical mean and standard deviation of species A calculated using
DQMoM-IEM. The data are visually indistinguishable from the method of moments.

Figure 3 presents corresponding data for a typical SF case. It highlights some important
issues. Figure 3(a) shows a ‘hump’ in the mean. This is caused by the SF diffusion term
where the method applies a set of variates ξ(n)

i that do not have exactly zero mean. This is
most apparent in the radial direction because the effect of the diffusion term is dominated
by the relative magnitude of the radial gradients. Such ‘humps’ are convected by the flow
and can be observed as fluctuations in the values of the species means at the reactor outlet.
This effect should decrease as the number of fields is increased, since the mean of the set
of variates will converge in probability at a rate proportional to N−1/2

lim
N→∞

P

(∣∣∣∣ 1

N

N∑
n=1

ξ
(n)
i

∣∣∣∣ > εi

)
= 0, ∀εi > 0 . (33)

Figure 3(b) shows that the SF solution does not completely resolve the standard deviation
near the reactor inlets. A similar observation is made using DQMoM-IEM with equi-
weighted particles [2]. In this instance, DQMoM-IEM can reproduce Figure 3(b) using
N=2 particles and boundary conditions w(1)

jet ≈0.4, w
(2)
jet ≈0.6 and w(n)

annulus =1−w(n)
jet .
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Figure 4 plots the fluctuation of the mean species B mass fraction at the reactor outlet for
SF cases with N = 4, 8, 16, 32, 64 fields. The fluctuation is calculated

max
reactor outlet
t∈[1,5] s

(
〈φB〉N

)
− min

reactor outlet
t∈[1,5] s

(
〈φB〉N

)
. (34)

The fluctuations are calculated from time t = 1 s as this is the point at which DQMoM-IEM
reaches steady state. Figure 4 confirms that the fluctuations converge at a rate proportional
toN−1/2 for both the standard and antithetic cases. The antithetic cases show significantly
reduced fluctuation on the base and coarse grids due to the antithetic sampling enforcing
a zero mean condition on the set of variates ξ(n)

i in each direction i. However, the fluc-
tuations remain finite because the antithetic case does not enforce equal gradients within
each antithetic pair of fields.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 4: Fluctuation of the SF mean species B mass fraction at the jet reactor outlet for the inert
case in the interval t ∈ [1, 5] s. Solid symbols: standard case; Solid line: standard case
guide line; Hollow symbols: antithetic case; Dashed line: antithetic case guide line.
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(a) Base grid.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 5: Convergence of SF versus the method of moments for the inert case at t = 5 s. Solid
symbols: standard case; Solid line: standard case guide line; Hollow symbols: anti-
thetic case; Dashed line: antithetic case guide line. Circles (◦): convergence of mean,
εmean; Triangles (4): convergence of standard deviation, εsd.

The coarse 3D grid shows little difference between the standard and antithetic cases, with
fluctuations approximately two-thirds the size of those for the standard case on the coarse
grid. This is less than the

√2
3

size that might be expected by considering that the coarse
grid cases use only two-thirds of the variates (the rest are multiplied by the zero azimuthal
gradient). It is suggested that this is a consequence of solving the case in cartesian co-
ordinates. The cartesian contributions to the SF diffusion term act at different angles to
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the radial and azimuthal directions at different points in the radial-azimuthal plane. This
gives a non-axisymmetric solution and reduces the magnitude of the fluctuations in the
standard case, but undoes most of the effect of the antithetic sampling causing an increase
in the antithetic case. This explanation suggests that a 3D case solved in cylindrical po-
lar coordinates, where the radial and azimuthal contributions to the diffusion term would
remain in fixed alignment with the radial and azimuthal directions, should preserve the
symmetry of the solution and reproduce the results from the coarse rather than coarse 3D
grid.

Figure 5 plots the convergence between SF and the method of moments. Table 2 shows
equivalent data for DQMoM-IEM. The convergence was assessed using the metrics

εmean =
1

Ncells

K∑
α=1

∥∥∥∥∥〈φα〉N − 〈φα〉N
∣∣∣∣
MoM

∥∥∥∥∥ , (35)

εsd =
1

Ncells

K∑
α=1

∥∥∥∥∥
√
〈φ2

α〉N−〈φα〉
2
N −

√
〈φ2

α〉N−〈φα〉
2
N

∣∣∣∣
MoM

∥∥∥∥∥ , (36)

where the norm notation ‖·‖ denotes an L2-norm over space. Note that Figure 5 represents
a ‘snapshot’ of the data at t = 5 s, so should be expected to show more noise than Figure 4.

Figure 5 shows that εmean converges at a rate proportional to N−1/2. A clear improvement
is shown for the antithetic versus standard case for the base and coarse grids. Again, the
coarse 3D grid shows a similar effect to that in Figure 4. The convergence is between
that observed for the standard and antithetic cases on the coarse grid, with a small ben-
efit from the antithetic case in this instance. Similar convergence is shown for εsd up to
N = 16 fields, possibly with some benefit and certainly no harm from the antithetic ver-
sus standard cases. At N > 16 fields, εsd is observed to reach a steady value. The coarse
grids reach εsd ≈ 0.8×10−4, whereas the base grid does slightly better at εsd ≈ 0.6×10−4.
This is indicative of at least some grid dependence in the SF solution. Similar observa-
tions have been reported for DQMoM-IEM by Gavi et al. [15]. In all cases, comparison
of Figure 5 with Table 2 shows that DQMoM-IEM achieves better convergence than SF.

Table 2: Convergence of the DQMoM-IEM mean and standard deviation versus the method of
moments for the inert case at t = 2 s.

Grid εmean εsd

N=2 a N=2 b N=3 b N=2 a N=2 b N=3 b

Base 6.9×10−7 c 6.9×10−7 4.4×10−7 4.7×10−6 c 4.7×10−6 4.8×10−6

Coarse 6.5×10−7 − − 2.9×10−6 − −
3D coarse 6.5×10−7 − − 4.5×10−6 − −

a Analytic solver [2], b General solver [2], c See Figure 2.
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4.3 Application to reacting flow

This section compares the application of the DQMoM-IEM and SF methods presented in
Section 3 to previous studies [2, 28, 40] of a real turbulent reaction problem.

Table 3 summarises the yields for all DQMoM-IEM cases considered and shows good
agreement with the previous studies [28, 40]. In particular, the agreement is improved
over previous cases [2] due to the inclusion of the solvent component, see equation (32).

Figures 6 and 7 present the empirical means and standard deviations calculated using
DQMoM-IEM with N = 3 particles. Figures 6 shows rapid reaction between species
A and B. The product R forms rapidly in the reaction zone. The side-product S forms
more slowly, with most forming in the zone of high concentration of B and R near the
jet inlet. Figure 7(c) shows a saddle point in the standard deviation near the inlets to
the reactor. In the case of DQMoM-IEM with N = 2 particles, this manifests itself as
an arc of zero standard deviation running along the path defined by the dashed line on
Figure 7(c) [2]. The use ofN=3 particles offers significant improvement in the resolution
of the standard deviation in this region and is responsible for a small improvement in the
agreement between the predicted and the experimental yields as per Table 3.

Table 3: DQMoM-IEM reaction yields.

Grid DQMoM-IEM yield (%) Literature yield data (%)

N=2 a N=2 b N=3 b Transported PDF c Expt. d

Base 80.4 80.7 81.9 e 81.0 82.1

Coarse 80.1 − − − −
3D coarse 80.3 − − − −

a Analytic solver [2], b General solver [2], c Tsai and Fox [40, Table 3], d Li and Toor [28, Table 1], e See Figures 6 and 7.

Figures 8 and 9 present the empirical means and standard deviations for a typical SF case
with antithetic sampling. There are still some artifacts due to fluctuations, particularly in
the mean of species R and S, see Figure 8(c) and (d). The sub-grid segregation is not fully
resolved in the region between the inlets. This results in a significant concentration of the
product R adjacent to the wall between the inlets on Figure 8(c). It is also evident in the
lower values of the SF standard deviations reported for species A, B and S in Figures 9(a),
(b) and (d), and the over-prediction of the standard deviation of species R in Figure 9(c).

Figure 10 plots the fluctuation of the yield at the reactor outlet for SF cases with
N = 4, 8, 16, 32, 64 fields. The yield Y is calculated using equation (31) where

Cα =
ρ

Wα

〈φα〉N
∣∣∣
reactor outlet

. (37)

The fluctuation is calculated as the difference between the maximum and minimum yields

max
t∈[1,5] s

(
Y
)
− min

t∈[1,5] s

(
Y
)

, (38)
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(a) Empirical mean, species A. (b) Empirical mean, species B.

(c) Empirical mean, species R. (d) Empirical mean, species S.

Figure 6: Jet reactor empirical means for the reacting case on the base grid, DQMoM-IEM gen-
eral solver with N = 3 particles.

(a) Empirical standard deviation, species A. (b) Empirical standard deviation, species B.

(c) Empirical standard deviation, species R. (d) Empirical standard deviation, species S.

Figure 7: Jet reactor empirical standard deviations for the reacting case on the base grid,
DQMoM-IEM general solver with N = 3 particles.
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(a) Empirical mean, species A. (b) Empirical mean, species B.

(c) Empirical mean, species R. (d) Empirical mean, species S.

Figure 8: Jet reactor empirical means for the reacting case at t = 5 s on the base grid, SF solver
with antithetic sampling and N = 64 fields.

(a) Empirical standard deviation, species A. (b) Empirical standard deviation, species B.

(c) Empirical standard deviation, species R. (d) Empirical standard deviation, species S.

Figure 9: Jet reactor empirical standard deviations for the reacting case at t = 5 s on the base
grid, SF solver with antithetic sampling and N = 64 fields.
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and shows analogous behaviour to Figure 4, with convergence at a rate proportional to
N−1/2 and clearly reduced fluctuations for the antithetic case on the base and coarse grids.

Figure 11 plots the SF time-averaged yield and the loci of the maximum and minimum
yields at the reactor outlet, as defined by equations (31), (37) and (38). The yields con-
verge to values slightly higher than for DQMoM-IEM and are estimated as 84−86% for
the base grid and 86−88% for the coarse grids. The difference from DQMoM-IEM is
due to the failure to fully resolve the sub-grid segregation near the reactor inlets. It can be
shown that DQMoM-IEM reproduces an 85% yield when using the boundary conditions
previously shown to reproduce the SF behaviour in Section 4.2. The differences between
the SF cases on the base and coarse grids are due to how far each resolves the sub-grid
segregation, as per the minor grid dependence identified in relation to Figure 5. In this
example, DQMoM-IEM achieves a grid-independent solution more easily than SF. What
defines an acceptable level of grid-independence will of course be application specific.

The difference between the standard and antithetic case loci of the maximum and min-
imum yields (marked by the gray areas on Figure 11) illustrate a clear benefit from the
application of antithetic sampling to the base and coarse grids: a better estimate of the
yield can be achieved with fewer particles. The data for the coarse 3D grid are consistent
with, but no better than the standard case on the coarse grid.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 10: Fluctuation of the SF yield at the jet reactor outlet for the reacting case in the interval
t ∈ [1, 5] s. Solid symbols: standard case; Solid line: standard case guide line;
Hollow symbols: antithetic case; Dashed line: antithetic case guide line.
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(b) Coarse grid.
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Figure 11: SF yield at the jet reactor outlet for the reacting case in the interval t ∈ [1, 5] s.
Solid symbols: standard case time-averaged yield; Solid line: standard case loci of
maximum and minimum yields; Hollow symbols: antithetic case time-averaged yield;
Dashed line: antithetic case loci of maximum and minimum yields. Shaded area:
difference between standard and antithetic case loci of maximum and minimum yields.
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5 Conclusions

The performance of DQMoM-IEM and SF has been investigated for an axisymmetric
turbulent reaction test case known from the literature. Cases have been considered on two
grids that enforce an axisymmetric solution and on a 3D grid that resolves the full domain
in a cartesian coordinate system. Equivalent predictions of the yields were demonstrated
between the axisymmetric and 3D cases. DQMoM-IEM showed excellent agreement with
experimental and transported PDF data. The SF method gave similar results, but retained
a minor grid-dependence not seen with DQMoM-IEM. It did not fully resolve the sub-grid
segregation of the species mass fractions, resulting in a systematic over-prediction of the
yield. The prediction improved as the grid was refined, and could possibly be eliminated
given sufficient refinement.

The SF cases showed significant variance in the solution. The expected convergence was
demonstrated in the non-reacting case for fluctuations of the species mass fractions at the
reactor outlet and for convergence of the full domain against the method of moments. In
the reacting case, convergence was demonstrated for fluctuations of the yield. Antithetic
variates were shown to increase statistical efficiency on the axisymmetric grids, enabling
better convergence to be achieved with fewer particles. The situation for the 3D grid
was less clear. The extra dimension bought improved efficiency at greater computational
cost for the standard case, but eliminated much of the benefit from the antithetic case.
It is believed that this is a consequence of solving the case in cartesian coordinates, and
that an equivalent 3D case solved in cylindrical polar coordinates would reproduce the
observations from the axisymmetric grids.

Antithetic variates are suggested as a simple way to increase the efficiency of the SF
method. The example in this paper has demonstrated an axisymmetric formulation that
accesses the benefits of both antithetic sampling and reduced dimensionality. The example
has also highlighted areas where DQMoM-IEM offers some advantages. DQMoM-IEM
was more easily able to achieve a grid-independent solution and gave a deterministic and
accurate prediction of the yield with as few as N = 2 particles. The investigation of
whether antithetic sampling offers benefits to the application of SF to problems in other
geometries remains an important area of future research.
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Nomenclature

Upper-case Roman
Cα Molar concentration of species α
Cφ IEM micromixing model constant
K Number of scalars
M Number of moments
N Number of particles / fields
Re Reynolds number
S∆t Solution operator for an evolution equation
S(φ) Chemical source term vector

U(x, t) Eulerian velocity vector
W Wiener process, see Gardiner [10]
Wα Relative molecular mass of scalar α
Y Yield of the test reaction, see Eq. (31)
Yα Mass fraction of scalar α

Lower-case Roman
a(n) Source term for the weights w(n), see Eq. (4)
b

(n)
α Source term for the weighted positions s(n)

α , see Eq. (5)
c

(n)
αβ Turbulent diffusion-spatial gradient term, see Eq. (13)

fφ(ψ;x, t) Joint composition PDF of φ(x, t)
k1 Rate constant for the test reaction, see Eq. (30)
k2 Rate constant for the test reaction, see Eq. (30)
mα Moment order of scalar α
mλα Moment order of scalar α in the λth empirical moment of the DQMoM-IEM

particle system, see Eq. (7)
s

(n)
α Weighted particle position, see Eq. (6)
t Time

u(x, t) Fluctuating velocity field u = U − 〈U〉
w

(n) Weight of particle n, see Eq. (2)
x Position vector

Upper-case Greek
ΓT Turbulent diffusivity
Γα Thermal diffusivity of scalar α

Lower-case Greek
δ
ψ
(n)
α ;x,t

Dirac delta function, see Eq. (3)
δ′
ψ
(n)
α ;x,t

First derivative of δ
ψ
(n)
α ;x,t

εmean Convergence metric for the empirical mean, see Eq. (35)
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εsd Convergence metric for the empirical standard deviation, see Eq. (36)
νT Turbulent viscosity
ξ

(n)
i SF variate relating to direction i and field n
ρ Density
σT Turbulent Schmidt number
τφ IEM micromixing model mixing time

φ(x, t) Eulerian passive scalar (composition) vector
ψ Sample space variable corresponding to φ

ψ
(n)
α Value of scalar α on particle / field n, see Eqs. (2) and (14)

Superscripts
(n) Denotes the nth particle

Subscripts
dx Denotes the diffusion term

mx Denotes the micromixing term
rx Denotes the reaction term
i Denotes the ith direction
α Denotes the αth scalar
β Denotes the βth scalar
γ Denotes the γth scalar
λ Denotes the λth moment

Symbols
〈 〉 Expectation
〈·|ψ〉 Expectation conditioned on φ = ψ
〈 〉N Empirical expectation over N particles
〈φα〉N Empirical mean of φα over N particles
〈φ2

α〉N Empirical second moment of φα over N particles

Abbreviations
CFD Computational fluid dynamics

DQMoM Direct quadrature method of moments
IEM Interaction by exchange with the mean
PDF Probability density function

RANS Reynolds-averaged Navier-Stokes
SF Stochastic Fields method

SPDE Stochastic partial differential equation
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A SF derivation

This section summarises the derivation of the Itô SPDE given by equation (15). This result
was first given by Hauke and Valiño [21]. The derivation follows the approach outlined
by Valiño [42] and requires that the fields are twice differentiable in space.

The derivation starts with a transport equation for the one-point one-time joint composi-
tion PDF fφ [35]. This equation is exact and contains no approximations

∂fφ
∂t

+
∂

∂xi

([
〈Ui〉+ 〈ui|ψ〉

]
fφ

)
=

− ∂

∂ψα

([ 〈
Γα∇2φα

∣∣ψ〉+ Sα
(
ψ
)]
fφ

)
.

(A.1)

The turbulent convective flux fφ 〈u|ψ〉 and molecular diffusion 〈Γα∇2φα|ψ〉 terms need
to be closed. Sα(ψ) is the chemical source term. It describes the material and energy
balance of species α and is closed.

Equation (A.1) is closed using a gradient diffusion model for the convective flux, and an
IEM model to approximate the molecular diffusion [43]

−fφ 〈u|ψ〉 = ΓT∇fφ , (A.2)〈
Γα∇2φα

∣∣ψ〉 =
Cφ
2τφ

(
〈φα〉 − ψα

)
, (A.3)

where Cφ is an empirical constant and τφ is the scalar mixing time. Equation (A.3) as-
sumes that all scalars mix at the same rate. The turbulent diffusivity ΓT is calculated

ΓT = νT/σT , (A.4)

where the turbulent viscosity νT is prescribed by the turbulence model and the turbulent
Schmidt number σT is typically close to unity. The closed form of equation (A.1) appears
in the main text as equation (1) and is written

∂fφ
∂t

+ 〈Ui〉
∂fφ
∂xi
− ∂

∂xi

(
ΓT
∂fφ
∂xi

)
=

− ∂

∂ψα

([
Cφ
2τφ

(
〈φα〉 − ψα

)
+ Sα

(
ψ
)]
fφ

)
.

(A.5)

The PDF in equation (A.5) evolves by convection and diffusion according to

∂fφ
∂t

= −〈Ui〉
∂fφ
∂xi

+
∂

∂xi

(
ΓT
∂fφ
∂xi

)
. (A.6)
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We substitute the stochastic field approximation given in the main text as equation (14)

fφ(ψ;x, t) = fφ(ψ1, . . . , ψK ;x, t)

≈ 1

N

N∑
n=1

K∏
α=1

δ
ψ
(n)
α ;x,t

, (A.7)

into equation (A.6) to give

∂fφ
∂t

=
1

N

N∑
n=1

[
− 〈Ui〉

∂

∂xi

K∏
α=1

δ
ψ
(n)
α ;x,t

+
∂

∂xi

(
ΓT

∂

∂xi

K∏
α=1

δ
ψ
(n)
α ;x,t

)]
, (A.8)

such that
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=
1
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δ
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δ
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(A.9)

where

∂

∂xi

K∏
α=1

δ
ψ
(n)
α

= −
K∑
α=1

∂ψ
(n)
α

∂xi
δ′
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(
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δ
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(n)
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)
, (A.10)

and using equation (A.10)
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(A.11)
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Equation (A.9) is a Fokker-Planck equation in time-composition space and has an equiv-
alent SPDE [10] describing the contribution to each field

dψ(n)
α = −〈Ui〉

∂ψ
(n)
α

∂xi
dt+

∂

∂xi

(
ΓT
∂ψ

(n)
α

∂xi

)
dt+

(
2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i . (A.12)

Likewise, the micromixing and reaction terms in equation (A.5)

∂fφ
∂t

= − ∂

∂ψα

(
Cφ
2τφ

(
〈φα〉 − ψα

)
fφ

)
− ∂

∂ψα

(
Sα
(
ψ
)
fφ

)
, (A.13)

imply the following contributions to each field

dψ(n)
α =

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dt+ Sα

(
ψ(n)

)
dt . (A.14)

The total contribution to each field is given by the sum of equations (A.12) and (A.14)

dψ(n)
α =− 〈Ui〉

∂ψ
(n)
α

∂xi
dt+

∂

∂xi

(
ΓT
∂ψ

(n)
α

∂xi

)
dt

+
Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
dt+ Sα

(
ψ(n)

)
dt

+
(

2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i .

(A.15)

This is the result given by Hauke and Valiño [21] and is equation (15) in the main text.
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