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Abstract

Analyzing the combustion characteristics, engine performance, and emissions
pathways of the internal combustion (IC) engine requires management of complex
and an increasing quantity of data. With this in mind, effective management to de-
liver increased knowledge from these data over shorter timescales is a priority for
development engineers. This paper describes how this can be achieved by combin-
ing conventional engine research methods with the latest developments in process
informatics and statistical analysis. Process informatics enables engineers to com-
bine data, instrumental and application models to carry out automated model devel-
opment including optimization and validation against large data repositories of ex-
perimental data. This is complemented with the inclusion of experimental error and
model parameter uncertainty, to yield confidence regimes on the final model result,
hence the impact of specific shortcomings of the model and/or experimental dataset
can be identified in a systematic manner. A methodology for model implementation
is described including an extensible data model for storing engine experimental data
in a consistent format. Finally, a working example for an application model is pre-
sented through the development of a semi-empirical soot model for diesel engines.
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1 Introduction

There are two major ways in which models can yield added value to any development
process, 1) through education of the underlying physics in the “real world” by yielding
data representative of “real world” experiments, and 2) by having some level of predic-
tive capability. The methodology outlined in this research paper seeks to use the latest
approaches in Process Informatics as a means to deliver increased predictive capability
and model robustness through effective model development and design of experiments.
Through this, it is anticipated that the ongoing burden of carrying out extensive experi-
mental and validation activities can be alleviated thereby leading to reduced overall de-
velopment costs and timescales.

“Process Informatics seeks to solve these problems through the integration of hardware,
middleware, software, databases, and human resources, all integrated through a network”
[1]. An example of a practical working system is the Process Informatics Model (PrIMe)
[2] which is used for the determination of chemical kinetic rates for combustion based
on an open-source database written using eXtensible Mark-up Language (XML). The
objective is to reduce the uncertainty on chemical kinetic rate constants through system-
atic comparison with fundamental experimental data and a set of computer-based tools to
process data consistently from available data sources such as the literature and ongoing
research. Researchers aim to systematically identify regions in which the models are un-
successful, then suggest to the community the most useful future experiments and thus
result in more rapid development timescales [3].

The latter remarks are of particular relevance to the I.C. engine community as a whole,
and to a similar extent within individual R&D groups, where similar or similar-enough
research activities are regularly carried out unnecessarily at significant cost. Either be-
cause a) the researchers were not aware of the previous research, or b) they were not
aware that the model solution was robust enough in these circumstances to have proven
adequate. Whilst the development of a properly integrated database may well resolve a)
at least in part, the latter can only be achieved when model robustness can be determined
systematically, one approach would be to include uncertainties within the model result
as demonstrated for chemical kinetics [4] and for granulation processes [5, 6]. With the
luxury of uncertainty bounds obtained via systematic comparison with the entire relevant
dataset, confidence in the robustness of the model can be assumed. Furthermore, these
results can then be employed to indicate the most useful set of experimental data points
to measure for further and more rapid model improvements.

As we make the transition from a data-poor to a data-rich working environment, only
through careful consideration of the aspects outlined above, then new ideas for future
technology development can be identified, encouraged and realised.

In this research paper, the implementation of a Process Informatics approach for future IC
engine development is outlined. Details of the engineML database structure, development
of a desktop and web based Graphical User Interface (GUI) and model integration are
described. Finally, a simple working example is discussed for developing a model to
determine exhaust soot particulates in diesel fueled engines.



2 Model Development

Conventionally, the concept of a model is usually considered as a set mathematic equa-
tions which describe a physical system or process, however these descriptions are usually
incomplete at some level and require the adoption of “optimisable” parameters. Given
that these parameters are coupled to the experimental data adopted in their determination,
here a model is redefined to include the mathematic equations as well as the experimental
dataset used for parametric optimisation.

Based on our new definition, a model can be separated into three sub-components, in-
strumental models, data models and application models. A description of these sub-
components are outlined in the following sections.

2.1 Instrumental Models

Outlined in Figure 1 is a schematic of a model. Here the “real world” is represented
by an engine, in order to extract out useful data for use in analysis or modeling some
observations of the “real world” must be made. Observations are usually carried out
using electronic experimental devices which are used to produce point data such as brake
power, fuel consumption, exhaust emission etc., as well as time dependent data such as
in-cylinder pressure measurements etc. This conversion is through storing the data and
converting them to something useful via an instrumental model, this conversion carries
some uncertainty as it is often based on a set of parameters determined from correlations,
hence the error associated must be stored and its influence considered whenever adopted.

2.2 Data Models

A data model is a description of how data is stored, data models are usually inconsistent
depending on the apparatus, the engineer‘s personal preference etc. Furthermore, the data
can be poorly labeled and thus redundant without its corresponding experimentalist. This
limits its useful lifetime and increases the perceived uncertainty and accessibility of the
data. Ultimately, the potential to exploit the knowledge held within the data to facilitate
other relevant development activities is reduced. Finally, due to ongoing advancement of
data storage technologies, these data are sensitive to loss via computer hard drive failure,
use of storage formats which are no longer supported e.g. zip drive, accidental neglect
(and deletion), or even the thought that older experimental measurements are irrelevant.
Given the financial costs associated will the acquisition of each data point and the knowl-
edge of the “real world” held within them, any losses of these kinds are inexcusable.

2.3 Application Models

An application model is the set of mathematical equations which describe the physical
processes which occur in the “real world”. This aspect of the model is often the main



“real world”

Figure 1: Overview of the sub-components of a model.

focus of the development process for example by extending the underlying physics from
1D to a 3D computation.

2.4 Model Validation and Optimisation

To senior engineers, the most significant aspect of model development is the validation
and optimisation phase as success or failure dictates the distribution of future model de-
velopment resources. Hence, measures of model success must be considered more sys-
tematically by determining both the robustness and accuracy of the model when compared
to a wide range of experimental data. It is important to recognise that models have sets of
parameters that require optimisation against experimental data, it is therefore necessary
to embrace this fact and try to control the influence that the experimental data has on the
model predictions itself. Here we distinguish five potential sources of inaccuracy of a
model:

1. Errors associated with the numerical solution method of a mathematical model;

2. Errors that are based on the missing chemical or physical insight into the process
that is to be modeled;

3. Errors based on the inaccuracies of the data used in a model;
4. Errors that arise because there are conflicting data for a number of parameters;

5. Errors that are associated with an inadequate experimental dataset.



If one wants to make models more robust one needs to address all of the above issues.
In the past scientists and engineers have concentrated on the first two aspects. The third
aspect is mainly looked at by statisticians but has not had a large impact on the way
automotive engineers use their models. The fourth aspect is used by the machine learning
community to a) help identify erroneous experimental/model data, and b) carry out further
analysis to identify the source and thus improve the second aspect.

The final aspect is relevant to every model during the optimisation and validation, the
scope of the experimental dataset. Examinations of model accuracy are a common re-
search activity in the engine community, however these are often limited to a handful of
experimental data points acquired during testing of an engine designed to meet the latest
set of emission targets. The result is a limited dataset coupled with an application model
which contains a large number of parameters such as CFD due to “overfitting”, the final
validation demonstrates an adequate model result compared to experiments. However,
when these same model parameters are applied to other experimental data, large model
errors are often reported. Indeed, any model should be optimised against whole datasets
of engine data, engine types, etc. and model robustness properly assessed.

Conventionally, a metric of the accuracy of a model is often comparing the model result
with the corresponding experimental data. Model accuracy is often loosely defined by
assessing the deviation between these data and considering any experimental uncertainty.
A metric to describe the robustness of the model should also be defined by addressing the
uncertainties associated with the optimisation of model parameters against experimental
data, as such an uncertainty is associated with each parameter depending upon how well
known it is or the confidence and thus ultimately on the final model result. This will yield
both a measure of the model accuracy as well as a measure of the robustness.

To apply these concepts to an automated model development process three major devel-
opments are required, 1) a consistent data model for storing and sharing experimental
and model data, 2) a graphical interface to visualise the data/model inputs, 3) for appli-
cation models to be extended to include parametric uncertainties, and 4) for the adopted
optimisation routine to include experimental and parametric uncertainty.

The sections which follow detail the methods employed in applying these concepts to the
engine development process.

2.5 A Data Model: EngineML

The eXtensible Markup Language (XML) is used as the fundamental code of the engine
Markup Language (engineML). It is felt important that any such database structure should
be built for the long term, hence XML is considered the most favourable because it has
a tree-like structure, is both human and machine readable with many programming lan-
guages carrying the I/O libraries. The structure is fully extensible allowing for future
engine developments in experimental or model systems to be easily added. It is also has
an open standard and is platform independent making it a timeless format and thus ideal
for Process Informatics approaches [2]. In addition, an XML schema can be adopted
to ensure consistency between files created from multiple users and multiple programs
which is important in large collaborative research activities such as engine development.



Experiment

( General ) [ case |

[ Basic ] [ Int;ke ] [ Fulel ] [ \njelctur ] [ Cyl\:mier ] [ Exhlaust ]
Date of study [Amb\entPreseaureJ— Fuel Mame e Mo. nozzles Mo, cylinders — Mo. exhaust valves
e N B R e camaer | [ E4netihe
comon. = [ et M e e H = BT
D — [W L\q;é%g?gss — Con-rod length e

Intake event

Study type — [ reporting height | Heat of vaporisaion =— Wristpin offset =

Reference — ROMN o Eneg}ﬁrﬁgp

Motivation — MON — CR —
MNumber of cases CN —

ENGINg deScrption s

Operating mode e

Number of strokes s

Figure 2: General properties of engineML database structure.

An example of the engineML structure is presented in Figures 2 and 3, data is sepa-
rated into General data (independent of operating point) and Case data (dependant on
the operating point), each are then divided into Basic, Intake, Injection, Fuel, Cylinder
and Exhaust for simple referencing. The extensibility of the structure means that if the
database does not contain a component that the user requires, it can be added without
compromising the structure of the infrastructure (the additional data is compatible with
the GUI too).

In order to ensure the information in the repository is adopted with full confidence by
engineers, whom in many cases are not necessarily involved in the original data collec-
tion/processing, each entry into the repository must have a well defined name, value and
unit. In addition, for data to be useful in the long term it is critical to properly define
the apparatus and measurement devices as this ensures a comprehensive record of the ex-
periment is held with the experimental measurements. Furthermore this information is of
great importance for model developments which include error and uncertainty propaga-
tion as described in the example in this paper.

In the engineML structure, the following information can be defined if required;

e Name of data (e.g. spark timing)
e Short name of data (e.g. spk)

e Description of the data to define it precisely (Timing of the ignition spark signal)
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e Value of data(e.g. +/-20)

e Uncertainty of data (e.g. 1, linked to the apparatus)

e Equipment used to take data (e.g. signal measurement device)
e Measurement location (Engine management system)

e Units (e.g. degrees)

e Relative unit (e.g. bTDC or aTDC)

e Data type (e.g. a crank angle)

e Data structure (e.g. point or time dependent)

2.6 Database Entry, Manipulation and Visualisation

For ease of transfer between data acquisition systems, modeling and visualisation tools,
engine related data are often stored (or easily converted into) in MS Excel or text files. In
order to convert large quantities of engine related data acquired prior to this development
a conversion program, named “text2engineML” was developed. This tool can be applied,
to rapidly convert engine data from spreadsheet and text file format into engineML.

To facilitate the storage, manipulation and visualisation of the engine data stored in the
engineML format, a Graphical User Interface (GUI) has been developed in Java. A screen-
shot of the GUI is shown in Figure 4. Using this tool it is possible to open, input and save
data stored in engineML. For consistency, the data are presented out in a similar structure
to the engineML sheets and can be navigated using tabs which display the General and
multiple Case data sheets.

It is possible to visualise the point data in tables and examine the time (or crank angle)
resolved data in both table and graphical form. In addition, a tree structure can be used
for the selection of the required operating points the user may wish to use in the model.

2.7 Implementation, Optimisation and Development

A schematic showing a summary of the steps involved in the model implementation is
presented in Figure 5. In order to fully exploit the potential of the engineML data model,
application models were developed such that they could extract data relevant to their ini-
tialisation directly from the repository, for example engine speed, injection timing etc.
The latest set of parameters were available via an engine parameter repository stored in
a shared location. This file contained the parameters, some of which were common to
a number of other application models. Once the input file was generated, the applica-
tion model was executed and its results stored in the repository using the engineML data
model, due to the adoption of a consistent storage format this meant that they could be
routinely and automatically compared against experimental data.
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Figure 5: Schematic of the model implementation phase.

Next a routine was set up for carrying out parametric optimisation, the repository was
accessed and used for automated validation.

2.8 Model parameter optimisation including experimental error and
uncertainty propagation

In order to formally assess the robustness of a model, the uncertainty of model parameters

much be identified. Furthermore, in the process of model optimisation the influence of

experimental error must also be considered [3—6]. In order to include these aspects into

a model, experimental observation, n°*? is characterized by two parameters, the measured
value, T]SXP and its uncertainty, c®*? [7]. Hence, the experimental observation is written as,

0P = g? 0% (1)

The model response, 7 will be required for the optimisation. This model response is a
function of the model parameters,

$:(l'1,...,$k), (2)

so that

n=n(z). 3)



Due to experimental uncertainty, 0®*? more than one set of x* will lead to agreement
between experimental observation, 7P and model response, 7. In order to resolve this,
some uncertainty is allowed within the description of each model parameter, x

r = z0+ €, 4)

with x4 as the base value, an uncertainty factor, ¢ and the random variable, {. As a
result, x becomes a random variable. The random variable, £ shall be a standard normally
distributed. Hence the model response, 77 can now be written as,

ﬁ(m) = 77(3:07 ¢, 5) . (5)

Due to the dependency on the random variable, £. the model response also becomes a
random variable. However, the model prediction should be represented by just one value
and its associated uncertainty. Taking the expectation of the model response and the
variance respectively, results in the model prediction, 7

(w0, ¢) = E[n(zo, ¢, )] - (©)

and the corresponding model uncertainty, o

o(x, ) = \/var(n(zo, ¢, €)). (7

It is not always straightforward to derive 77 and o for many application models as they
are described by differential equations or are simply too complex to derive analytically.
Hence here we have adopted a model response surface for local ranges of the unknown pa-
rameters, x. Hence to identify these ranges, the first task is to approximate the parameter,
x( by carrying out a conventional optimisation by solving the objective function, ®

Oy (wo) = Y [15® — (o))" (8)

=1

with? = 1,..., NV being the number of experimental observations using an initial estimate
of these parameters (either using a sequencing algorithm or by some prior knowledge of
the parameters) and then carrying out an minimisation to obtain the best set of parameters,
xg-

xg = argmin(Pq (z9)) . 9)

This minimisation was carried out adopting a Levenberg-Marquardt non-linear least squares
minimisation algorithm. A linear response surface optimisation is then performed around
the point, = to optimize the result further and to estimate the uncertainties in the parame-
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ters and in the model response. A simple linear model response, 7(z) can be approximated
by,

K
n(@) =B+ > Bri, (10)
k=1

with Gy and fi(k = 1,..., K) being the parameters of the response surface. In this
study, these were determined numerically by evaluating the model response using a finite
differences method. This was carried out by fitting the linear model parameters (3, and
Br(k = 1,..., K) to the model response at x and those obtained for 1% deviations in
each parameter.

After substituting Equation (4) into Equation (10) the model response becomes

K
(w0, ¢,€) = Bo+ Y _ Brlwo + )i (11)
k=1

The mean value, 77 and the uncertainty, o are obtained after taking the expectation and the
variance respectively

n(zo) = En(zo,c, )]

= Bo+ Y BiTok. (12)
k=1

and the model uncertainty

olc) = \/Var (n(zo, ¢, §))

(13)

This means that the most likely model solution is within

n(x) =7(xo) £ o(c). (14)

The task is then to find the optimal values of both x(; and c using an objective function.
This time the aim of the objective function is 1) obtain a prediction as close to the exper-
imental observation as possible, and 2) find the uncertainty of the prediction itself. The
objective function, ®, takes the following form

0ee) = 3 (87 = o+ 0 - o)) (15)



and is minimized with respect to both x( and c starting with the initial set of parameters,
x; and corresponding adopted uncertainties, c.

(x0, ¢)* = argmin(Py(z0, ¢)) . (16)

zo,C

The minimisation was carried out adopting a Levenberg-Marquardt non-linear least squares
minimisation algorithm with bounded constraints [8].

3 Example for Application to Engine Model Development

3.1 Data repository
A repository was developed using the engineML data model in collaboration with Cater-
pillar Inc., a summary of these data are presented in Table 1. Experimental engine data

from six engines and a total of over 400 operating points were included in the repository.

Table 1: Experimental engine data repository summary

Number of operating points Description of data
Engine A 79 Design of experiments project
Engine B 384 Majqr de.sigr.l of experiment§ project

covering significant parametric sweeps

Engine C 17 Individual engine development
Engine D
Engine E 23 Individual engine developments
Engine F

3.2 Soot model development

In order to demonstrate the effectiveness of the proposed methodology in establishing
more robust model developments an example of an application model for soot was em-
ployed. Soot modeling was adopted as the ideal example problem for three major reasons,
1) as the experimental measurement uncertainty is high relative to the magnitude of the
observation at 0.05g/kW-hr per standard deviation, 2) it is widely modeled by the auto-
motive community using empirical methods and, 3) since it is an empirical expression
any computation effort associated with its solution during the optimisation is small. An
application model for soot based on fundamental principles would be expected to in-
clude the physics to describe in-cylinder thermodynamic and combustion coupled with
the chemistry of soot formation and nanoparticle interaction and growth. Due to this level
of complexity, the soot emission modeling (and many other equivalent application models
for emissions, autoignition and flame propagation) still adopted widely by the engine de-
velopment community are based on simple empirical relationships developed in the 1970s
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and 1980s. In this study, as an example a “representative expression” similar to the ap-
plication model described by Plee et al. [9], has been adopted. The expression for the
adopted “‘representative expression” is outlined below;

soot[g] = AS," ¢ exp (2) , (17)
T

where S, is the mean piston speed, ¢ is the global equivalence ratio, T}y is the adia-
batic flame temperature based on the composition of the air-fuel mixture and trapped/re-
circulated exhaust gas. A, B, C and D are parameters. Here the adopted parameters hold
little real underlying physical meaning (such as chemical kinetic rate parameters). As
such, any constraints for feasible ranges are not applicable other than orders of magni-
tude. However the methodology can be employed such that parameters are constrained to
such ranges, which is ideal for less empirical adoptions e.g. chemical kinetics [3]. The
initial parameters, A, B, C' and D and their single standard deviation uncertainties were
set to 500 4= 1000, 1.8 £ 10, 2 £ 10 and —1000 + 2000 and the procedure outlined above
was carried out.

3.2.1 Small experimental datasets

Initially, to examine the influence of adopting a small number of datasets for model para-
metric optimisation, the data from Engine C was employed for the experimental data.
Presented in Figure 6(a) are the key experimental data of RPM, ¢ (equivalence ratio), SOI
(Start Of Ignition) and engine power, for the 17 operating points. Presented in Figure
6(b), is the soot formation rate for the corresponding operating points with the experi-
mental uncertainty.

The optimisation of the “representative expression” was carried out using the experimen-
tal and model parametric uncertainty minimisation approach outlined above and in more
detail elsewhere [3-5]. The optimisation was carried out systematically, initially with 8
operating points (the minimum was eight as there are four model parameters and four
parametric uncertainties) and then by increasing the number of operating points in the
optimisation to seventeen. The result of the optimisation is presented in Figure 7.

For each parameter, as the number of operating points in the optimisation were increased,
the parametric uncertainty associated with that parameter was reduced. This indicated that
in this case, the model and the experimental data were consistent and the model proved a
sufficient interpretation of the response of the engine.

The estimated parameter values and their uncertainties can be used for the calculation of
the model predictions and their uncertainties (Figure 6(b)). Using conventional model
optimisation methods, the mean model response can be compared directly with the exper-
imental results and here, in all cases the response is to well within the experimental un-
certainty. By adopting the proposed methodology additional information is now available
in terms of the model parametric uncertainty. In this case, by adopting the objective func-
tion (Eqution(15)) during the optimisation, the model uncertainty has been reduced to the
same order of magnitude as the experimental uncertainty. Due to the exponential term the

15
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uncertainty proved greater for those cases with greatest soot formation rates. Operating
point eleven proved to be an interesting data point, here the optimisation procedure was
forced to readjust to a new set of parameters (cf. Figure 7). A hypothesis for this might
be that this point was either a) an outlier, or b) included some additional physical compo-
nent which had not been observed in the previous included data points. The experimental
key variables presented in Figure 6(b) demonstrate that point 11 has the earliest start of
injection, an aspect not included directly in the model. Furthermore, in the parameter
estimation with all 17 data sets, parameter C' carried the greatest uncertainty, suggesting
that perhaps if further developments were to be carried out to the application model, that
inclusion of the physics associated with fuel stratification and mixture preparation would
most likely prove most effective.

3.2.2 Larger experimental datasets

The total number of operating points used in the optimisation were increased to include
the first 36 operating points from Engine A. The result of this optimisation on the pa-
rameters is presented in Figure 8, here Parameters A and B remained relatively constant,
whilst C' and D found new values, however the most significant aspect was the increase
in associated parametric uncertainty for B and D). Whilst these observations could be as-
sociated with the adoption of a linear response surface (rather than using quadratic equiv-
alents), this suggests that this model is an inadequate interpretation of these two engines.
A hypothesis for these observations might be through further development in terms of the
mixing (through mean piston speed being proportional to turbulence [10] and chemistry
(being approximated by the adiabatic flame temperature term) terms.

17
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Figure 8: Obtained parameters and corresponding parametric uncertainty for an in-
creasing quantity of experimental data, the highlighted region represents the
data presented in Figure 7. Error bars represent 1 standard deviation.

Presented in Figure 9 are the final model predictions for the two datasets employed so far.
In most cases, when the model uncertainty was also considered, the model predictions
were to within the observed experimental uncertainty. Operating Points 39 and 40 were
well outside the model and experimental uncertainties, as such further tuning of model
parameters would not yield improved results in these cases. Knowing this, it is then
possible to focus research efforts to determine whether the source was 1) due to erroneous
experimental error, or ii) due to some inadequacy in the underlying physical assumptions.

When this same model was optimised against the whole engine dataset of more than four
hundred operating points as outlined in Table 1, a 91% model accuracy, that is when model
and experimental uncertainty ranges overlapped was obtained, Figure 10. However, the
average model uncertainty, presented in Figure 11, was ten times greater than the exper-
imental uncertainty, that is that these model assumptions can only be fitted to these data
if large uncertainty ranges are associated with the parameters. This re-enforces the notion
that the “representative expression” can be used as an adequate simplified interpretation
of small datasets but is not robust enough to be applied to all engines.

3.3 Further model development

The reSolutions Soot Post Processor Model (rSPP) is an ongoing development of a sys-
tem level soot emissions application model much like the “representative model’ . It was
developed using the approach outlined above by seeking to improve model robustness
against databases of engine data by identifying the parameters with greatest uncertainty
and selectively improving those assumptions in the model which were neglected but actu-
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Figure 9: Measured and modeled soot formation rates for the two data sets (all data of
engine C and first 36 points of engine A).

ally proved critical to the soot formation process. As new experimental data are measured,
these are used to extend the data repository and thus the knowledge retained in the model.

The rSPP model was developed by identifying six operating regimes in which particular
chemical-thermo-physical processes dominate. The experimental data are separated into
these regimes, and within each, an optimisation was carried out to determine key param-
eters. The resulting model accuracy and uncertainties for the whole repository presented
in Table 1 are presented in Figures 10 and 11.

The model performance varied depending on the operating regime, however an overall
model performance of 83% accuracy was determined for the whole engine database.
Most importantly, the resulting model parametric uncertainty proved significantly better
than the ‘representative expression” and around half that of the experimental uncertainty.
Hence if compared on a like-for-like basis, the “representative expression” would only
yield a 28% accuracy percentage. This demonstrates the rSPP model to be a sufficient
interpretation of the underlying physics of soot formation in the six engines and over four
hundred operating points adopted in this study.

4 Discussion

The present state-of-the-art in engine model development requires a more formal ap-
proach, as there are too many complex models and too much data for engineers to identify
the most appropriate and the most effective tool for their application. Furthermore, a cul-
ture of “re-optimize the model against small datasets” rather than improving the physics
of the model and the validation process often undermines the long term objective of de-
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livering useful predictive and robust models.

The methodology outlined in this research demonstrates the adoption of the “representa-
tive expression” is adequate to describe small datasets, however they not robust enough
to deal with the wide range of variables that exist in larger datasets. By creating a data
model such as engineML, experimental data is retained whilst still being easily accessible
to models, modelers and experimentalists in the long term. These data can easily be in-
cluded in any future model parameter optimizations and thus application models such as
the “representative expression” can be examined formally and systematically. By carrying
out systematic model testing, decision makers can easily identify those aspects of engine
models or modeling which require further development and those which do not, they can
then allocate the resources to the most critical path. This will ultimately lead to a new set
of more robust models such as the rSPP.

The next step is to use the response of these models to enable intelligent design of exper-
iments by determining the next “most useful” set of experiments to be carried out. That
is to identify a number of experimental operating points which would yield the most ef-
fective contribution towards the model development process by reducing the parametric
uncertainty - this approach would enable for the experimental process to be streamlined
thus reducing the development timescales and costs.

S5 Summary

A methodology for the development of more robust engine models by including the latest
developments in process informatics and statistical analysis was outlined. To achieve this,
the following technologies were developed,

1. An extensible data model named “engineML” for rapid data access and storage.
2. A tool to convert existing datasets to engineML
3. A GUI tool for visualisation and manipulation of the database.

4. A technique to determine model robustness via carrying model and experimental
uncertainty into the optimisation procedure was outlined.

Using the infrastructure, an example of a “representative expression” was validated and
analyzed against a small, a larger and the complete database. This process demonstrated
that application models of its kind can easily be fitted to small datasets but carry inade-
quate robustness to deliver equivalent results across a larger dataset. New insights into
sources of model uncertainty were discussed.

The methodology was then employed to deliver a robust model for system level soot
modelling applications.

21



Acknowledgements

Technology Strategy Board (TSB) and One NorthEast, UK (Validation of Complex Sys-
tems (VoCS) grant programme).

22



References

[1] V. Venkatasubramanian. Drowning in data: Informatics and modeling chal-
lenges in a data-rich networked world.  AIChE Journal, 55(1):2-8, 2009.
doi:10.1002/aic.11756.

[2] M. Frenklach et al. http://www.primekinetics.org.

[3] M. Frenklach, A. Packard, P. Seiler, and R. Feeley. Collaborative data processing in
developing predictive models of complex reaction systems. International Journal of
Chemical Kinetics, 36(1):57-66, 2004. doi:10.1002/kin.10172.

[4] D. Sheen, X. You, H. Wang, and T. Lovas. Spectral uncertainty quantifi-
cation, propagation and optimization of a detailed kinetic model for ethylene
combustion.  Proceedings of the Combustion Institute, 31:1:535-542, 20009.
doi:10.1016/j.proci.2008.05.042.

[5] A.Braumann and M. Kraft. Incorporating experimental uncertainties into multivari-
ate granulation modelling. Chemical Engineering Science, 65:1088-1100, 2010.
doi:10.1016/j.ces.2009.09.063.

[6] A. Braumann, P. L.W. Man, and M. Kraft. Parameter estimation in a mul-
tidimensional granulation model. = Powder Technology, 197:196-210, 2010.
doi:10.1016/j.powtec.2009.09.014.

[7]1 J.R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physi-
cal Measurements. University Science Books, 2nd edition, 1997.

[8] M. Lourakis. Levenberg-marquardt nonlinear least squares algorithms in C/C++.
2004. www.ics.forth.gr/~lourakis/levmar/.

[9] T. Ahmad and S.L. Plee. Application of flame temperature correlations to emissions
from a direct-injection diesel. SAE Technical Paper Series, (831734), 1983.

[10] J.B. Heywood. Internal Combustion Engine Fundamentals. McGraw Hill, 1988.

23


http://dx.doi.org/10.1002/aic.11756
http://dx.doi.org/10.1002/kin.10172
http://dx.doi.org/10.1016/j.proci.2008.05.042
http://dx.doi.org/10.1016/j.ces.2009.09.063
http://dx.doi.org/10.1016/j.powtec.2009.09.014
www.ics.forth.gr/~lourakis/levmar/

	Introduction
	Model Development
	Instrumental Models
	Data Models
	Application Models
	Model Validation and Optimisation
	A Data Model: EngineML
	Database Entry, Manipulation and Visualisation
	Implementation, Optimisation and Development
	Model parameter optimisation including experimental error and uncertainty propagation

	Example for Application to Engine Model Development
	Data repository
	Soot model development
	Small experimental datasets
	Larger experimental datasets

	Further model development

	Discussion
	Summary

