
Cambridge Centre for
Computational Chemical

Engineering

University of Cambridge
Department of Chemical Engineering

Preprint ISSN 1473 – 4273

Stochastic simulation of coalescence and breakage

processes: a practical study

Mike Goodson, Markus Kraft1

submitted: 16th January 2003

1 Department of
Chemical Engineering
University of Cambridge
Pembroke Street
Cambridge CB2 3RA
UK
E-Mail: markus kraft@cheng.cam.ac.uk

Preprint No. 9

c4e

Key words and phrases. population balance equation, coalescence, breakage, stochastic simu-
lation, direct simulation algorithm, mass flow algorithm.

Edited by
Cambridge Centre for Computational Chemical Engineering
Department of Chemical Engineering
University of Cambridge
Cambridge CB2 3RA
United Kingdom.

Fax: + 44 (0)1223 334796
E-Mail: c4e@cheng.cam.ac.uk
World Wide Web: http://www.cheng.cam.ac.uk/c4e/

Abstract

In this paper, a practical study is made of two stochastic solution meth-
ods for the population balance equation, simulating coalescence and binary
breakage. The first algorithm studied is the existing Direct Simulation Algo-
rithm (DSA), proposed in (Eibeck and Wagner, Stoch. Anal. App., 18(6):921-
948,2000). The second is an extension of the Mass Flow Algorithm (MFA),
which was proposed in (Eibeck and Wagner, Ann. Appl. Probab., 11(4):1137-
1165,2001) for coagulation only. MFA is extended to include breakage and
a binary search method of distribution generation is introduced, leading to
improved efficiency. Numerical investigation of the performance of the two
algorithms is carried out by applying them both to a test case, for which an
analytical solution is calculated. For both algorithms, convergence of the pre-
dicted moments to the analytical solution goes as the inverse of the number
of stochastic particles, N , except for the zeroth moment predicted by MFA.
This exhibits large fluctuations, due to the presence of very small particles,
and converges approximately as N−1/3. The new algorithm, MFA, exhibits
significant variance reduction—and therefore improved simulation efficiency—
for the prediction of higher moments, but for our test case the zeroth moment
(the total number of particles) is predicted with better efficiency by DSA. In
many breakage models for liquid-liquid systems however, the introduction of
a minimum particle size reduces the advantage held by DSA for predicting the
zeroth moment. Depending on the minimum particle size, MFA can perform
comparably with DSA for predicting the zeroth moment.

1

Contents

1 Modelling Coalescence and Breakage 3

2 Breakage Process 6

3 Direct Simulation Algorithm 7

4 Mass Flow Algorithm 9

5 Test Case 12

6 Data Storage 13

6.1 Bins . 13

6.2 Binary Search . 14

7 Numerical Results 16

7.1 Convergence Properties . 18

7.2 DSA or MFA? . 20

8 Minimum Particle Size 20

8.1 Case 1 . 22

8.2 Case 2 . 23

9 Conclusions and Discussion 23

A Solution of Test Case 26

References 28

2

1 Modelling Coalescence and Breakage

Mathematical modelling of liquid-liquid extraction can be categorised into three ba-
sic types. Empirical fitting is used, based on experimental results, to predict mean
drop size or hold-up based on liquid properties, column geometry and operating con-
ditions (e.g. [20] for a rotating disc contactor). These models are generally simple
and efficient, but cannot be extrapolated beyond the stipulated range of application.
In Stagewise modelling (e.g. [1]), an extraction column is described as a series
of perfectly mixed stages; effectively, each stage is treated as a CSTR. These stages
may be real stages, e.g. as in a sieve-plate column, or cascades to approximate a dif-
ferentially varying system (e.g. a packed extraction column). Differential models
involve formulation of differential conservation equations for the two liquid phases.
Within this category, there are two further distinct mathematical treatments of the
liquid phases. The dispersed phase can be treated as pseudo-homogeneous [37],
thus in effect there are two continuous phases in the model. When coalescence
and breakage1 cannot be neglected, and the dispersed phase continually undergoes
changes, the pseudo-homogeneous treatment breaks down, and a population bal-
ance model [34] must be applied. Here a differential balance is formulated for the
number of drops in the dispersed phase, taking into account birth and death rates
due to such phenomena as coalescence, breakage and convective transport.

Further description of the models mentioned above, as well as information on many
types of liquid-liquid extraction equipment, can be found in the extensive review by
Mohanty [28].

While each of the above methods of modelling liquid-liquid extraction has its ad-
vantages and disadvantages, we concentrate on the population balance approach.
Population balance modelling has a long history, being used as far back as 1916 to
describe the pure coagulation case [43]. A statistical mechanical description was
constructed by Hulbert and Katz [18], while the application to particulate processes
was specified by Randolph and Larson [35]. The first application of the population
balance to liquid-liquid extraction was in 1966, by Valentas et al. [41] for breakage
and by Valentas and Amundson [40] for both breakage and coalescence. A very thor-
ough study of the field of population balances and their applications to particulate
systems has been made by Ramkrishna [34].

The population balance equation (pbe) gives, when solved, a complete statisti-
cal description of the system, i.e. a number density function for the dispersed phase
bubbles in terms of size, concentration or other internal co-ordinates. The pbe is
frequently an integro-differential equation that cannot be solved analytically, and
hence a numerical approach must be taken. Analytical approximations can some-
times be derived for steady state solutions at the ends of the distribution [4] but a

1In the literature, many terms are used to describe the processes of coalescence (coagulation,
aggregation, agglomeration) and breakage (breakup, fragmentation). In this paper we, in line
with the liquid-liquid literature, use coalescence and breakage. Occasionally (such as in the case
of Smoluchowski’s coagulation equation) it is more pertinent to use another term. These are,
however, intended to be synonymous, and no distinction should be made between them.

3

complete solution can only be found for the simplest (and generally non-physical)
cases (e.g. [31]). The method of moments (e.g. [9, 10] for coagulation only) is an
efficient method of solution, but gives no information about the shape of the distri-
bution. In more complicated situations, there can also be problems with closure of
the set of equations to be solved [5]. Efforts have been made to reconstruct the dis-
tribution from the moment solution [5], but there are difficulties, given that there is
no obvious orthogonal set of functions from which a distribution can be constructed.
Alternatively, an assumed shape can be imposed on the distribution to fit with a
limited number of the moments. This can include monodisperse, log-normal [14] or
Rosin-Rammler [2].

Sectional methods are a well established solution technique in population balance
modelling. Discretisation of the size distribution can be linear [16] or geometric
[11, 17, 25]; a coarser grid is possible with the latter method. To recover functionals
of the size distribution, a pivotal particle size must be chosen for each interval.

Recent work includes efforts to use discretisation as a tool for recovering specific
functionals of the distribution, rather than merely to approximate the system [21]
and to use a varying pivotal particle size for each discrete interval in order to better
account for non-uniformities in number density [22]. Several sectional approaches
have been examined and reviewed by Vanni [42].

An alternative strategy is to employ finite-element methods, in which the solution
is approximated as linear combinations of basis functions over a finite number of
subdomains. Finite element methods include the method of weighted residuals, the
method of orthogonal collocation and Galerkin’s method. Nicmanis and Hounslow
[30] applied a finite-element method to various cases of the steady state popula-
tion balance equation, finding more accurate solution than using the discretisation
method and using less computational power.

Liu and Cameron [27], in a similar vein, used a wavelet-based method. They found
particular success in cases where steep fronts in the distribution are present, whereas
discretisation in other solution methods would have to address this problem directly.

A more detailed review of numerical techniques for solution of the population balance
equation was performed by Ramkrishna [33].

Stochastic (or Monte Carlo) methods are an attractive way of tackling the popula-
tion balance equation due to the discrete nature of the mechanisms being modelled:
breakage and coalescence [32]. They can also provide a feasible solution method for
multi-dimensional (dependent on more than just size) population balance problems,
where standard numerical techniques can become prohibitively computationally ex-
pensive. It is beyond the scope of this investigation to compare stochastic solution
methods with every available numerical technique; instead we restrict ourselves to a
thorough numerical investigation of two stochastic algorithms with the aim of mak-
ing the step from existing theoretical formulations towards a practicable method of
simulating coalescence-breakage systems.

Broadly speaking, stochastic simulation involves generating fictitious realisations of

4

the behaviour of a set of particles. This particle ensemble is an approximation of
the real life system being examined. As the process relies on random number gen-
eration to choose the nature and timing of the coalescence and breakage events,
many trajectories are generated, and an average (which converges to the solution
of the population balance equation [6]) is calculated. For the one-dimensional case
(size dependency only), direct stochastic simulation (e.g. [12]) can be outperformed
by conventional numerical techniques. Hence, there are several ways of improving
the efficiency of simulation. To avoid the problems of decreasing particle number
(and therefore variance increase) or increasing particle number (and thereby re-
duced efficiency), a particle combining technique can be employed, in which parallel
arrays of particles are periodically combined to give an array with the desired num-
ber of particles [36]. A natural extension of this technique is the constant number
simulation method of Matsoukas and co-workers [38, 23, 24]. One of the major inef-
ficiencies of simulation comes from the coalescence process. A direct consideration
of n(n− 1) possible particle pairs (out of n particles) can be avoided by introducing
the fictitious jump technique of Eibeck and Wagner [7, 6]. Here a majorant ker-
nel is used that enables independent generation of the two coalescing particles. To
ensure that the simulation remains exact, null events (fictitious jumps) are added
to the simulation space. Eibeck and Wagner [8] have introduced further variance
reduction—and hence improved efficiency—by considering mass (rather than num-
ber) concentration. Their mass flow technique enables accurate simulation with far
fewer stochastic particles in the simulation array.

The purpose of this paper is to examine the feasibility of using a stochastic algo-
rithm, either Direct Simulation Algorithm (DSA) or Mass Flow Algorithm (MFA),
to simulate solutions to the population balance equation, where coalescence and
binary breakage both occur. DSA is examined as described in [6], and MFA (for-
mulated for coagulation only in [8]) is extended to include binary breakage. The
unchanging number of stochastic particles used by MFA lends itself to using a binary
search method of probability distribution generation with an associated reduction
in simulation CPU time. The two algorithms are applied to a simple test case, for
which an analytical solution can be calculated. The two methods are compared for
speed of simulation, systematic and statistical errors with the aim of determining
which method can predict a solution with a given error in a shorter time. With real
liquid-liquid coalescence-breakage models in mind, the effect of imposing a minimum
particle size on the system is also investigated.

The paper is organised as follows. In Section 2, we extend the well-known Smolu-
chowski coagulation equation to include breakage. Discrepancies between represen-
tations of this process in the literature are discussed. Section 3 describes the Direct
Simulation Algorithm as applied to the coalescence-breakage case; Section 4 does
the same for the Mass Flow Algorithm, extending it to include breakage. The ana-
lytical solutions for a suitable test case are derived in Section 5. The implications
of different methods of data storage are examined in Section 6, and numerical com-
parisons between the two stochastic algorithms are presented in Section 7. The
effects of imposing a minimum particle size are studied in Section 8. Finally, in

5

Section 9 we present our conclusions.

2 Breakage Process

Mathematical consideration of the coagulation process is well-established [43], and
the particle size evolution in the continuous case is given as:

∂c(x, t)

∂t
=

1

2

∫ x

0

K(x − y, y)c(x − y, t)c(y, t)dy −
∫ ∞

0

K(x, y)c(x, t)c(y, t)dy. (2.1)

Here, the number concentration, c(x, t), of particles of size x can increase by co-
agulation of two particles smaller than x and decrease by coagulation of a particle
of size x with any other particle. The rate kernel, K(x, y) gives the rate at which
particles of sizes x and y coagulate.

The mathematical treatment of binary breakage is less well-established, with contra-
dictory formulations proposed in the literature. There are two ways to consider the
breakage characteristics of a population of particles. One is to describe the breakage
by a breakage frequency, g(x), and a probability density function for the sizes of
the daughter particles, β(x, y). g(x) is the frequency at which a particle of size x
undergoes breakage and β(x, y)dy gives the probability that the size of a particle
formed from breakage of a particle of size x is in the range [y, y +dy]. The evolution
of the particle size density function (PSDF) is:

∂c(x, t)

∂t
= −c(x, t)g(x) + 2

∫ ∞

x

c(y, t)g(y)β(y, x)dy. (2.2)

This representation is commonly used in the literature (e.g. [3]) when it is required
to match experimental observations with theoretical predictions of breakage rates.
The breakage rate, g(x), is measurable, although it can be harder to do so for the
daughter particle size distribution function. An assumed distribution is sometimes
used instead of a theoretical model, e.g. uniform [29], Beta [15] or normal [3].

The second way of looking at the breakage rate is to take the frequency of production
of the daughter particles, so that the function f(x, y) is the rate at which a particle
of size x and a particle of size y are formed from the breakage of a particle of size
x + y. This representation can sometimes be more convenient when a solution to
the population balance equation is being sought. It should be noted here that there
is some disagreement in the literature as to the exact form of the pbe when f(x, y)
is used. Some authors (e.g. [45]) write the evolution of the PSDF as:

∂c(x, t)

∂t
= −c(x, t)

∫ x

0

f(y, x − y)dy + 2

∫ ∞

x

c(y, t)f(x, y − x)dy, (2.3)

while others (e.g. [6]) write:

∂c(x, t)

∂t
= −1

2
c(x, t)

∫ x

0

f(y, x − y)dy +

∫ ∞

x

c(y, t)f(x, y − x)dy. (2.4)

6

The discrepancy between these two equations results from confusion over the exact
relationship between f(x, y), g(x) and β(x, y), and whether double counting is taken
into account. The two different equations arise from using either:

f(y, x − y) = g(x)β(x, y), (2.5)

or
f(y, x − y) = 2g(x)β(x, y), (2.6)

to describe the formation rate of the daughter particles.

It is perhaps easiest to formulate the correct relationship using a discrete example;
that of depolymerization, as described in [45]. Consider a polymer chain of k units.
The chain has k − 1 bonds that could each be broken on a binary breakage step.
Assuming a uniformly distributed daughter chain length distribution, we can write
β(k, j) = 1

k−1
. If, for simplicity, we set the breakage rate of this chain as g(k) =

(k − 1) s−1 then we can work out the production rate of the daughter chains,
f(k − j, j): on average, in one second, we would expect one breakage to occur at
each of the k−1 available breakage sites. Thus, in one second, we produce two chains
of length one, two chains of length two and so on. We can write f(k, j) = 2 s−1 for
j = 1, 2, . . . , k − 1, which is clearly twice the product of g(k) and β(k, j).

In general, we can write the relationship between f(x, y), g(x) and β(x, y) in the
continuous case as:

f(y, x − y) = 2g(x)β(x, y)∫ x

0

f(y, x − y)dy = 2

∫ x

0

g(x)β(x, y)dy

= 2g(x)

∫ x

0

β(x, y)dy = 2g(x). (2.7)

Here we have made use of the fact that β(x, y) is a density distribution normalised
on the interval [0, x].

Combining the two processes, coalescence and breakage, gives us the population
balance equation that we wish to solve:

∂c(x, t)

∂t
=

1

2

∫ x

0

K(x − y, y)c(x − y, t)c(y, t)dy −
∫ ∞

0

K(x, y)c(x, t)c(y, t)dy

− c(x, t)g(x) + 2

∫ ∞

x

c(y, t)g(y)β(y, x)dy. (2.8)

3 Direct Simulation Algorithm

The general method for direct simulation of solutions to the coalescence-breakage
equation has been give by Eibeck and Wagner [6]. Their paper concentrates on prov-
ing existence of a solution, and proposes a simulation algorithm for the coalescence-
breakage case. This method can be described as direct simulation because a real

7

particle ensemble is approximated by a stochastic particle system, where one stochas-
tic particle, of size x, approximates a certain number concentration of real particles
of that size.

For a stochastic system of n particles with sizes labelled:

xi, i = 1, 2, . . . , n, (3.1)

the state of the system at any point can be represented by a measure-valued function,
p(x):

p(x) =
1

N

n∑
i=1

δ(x − xi), (3.2)

where N is a normalisation parameter that can be considered to represent a sample
volume. N is referred to as the particle number. Simulation proceeds by performing
coalescence or breakage jumps separated by waiting times, with functionals approx-
imated by: ∫ ∞

0

φ(x)c(x)dx ∼
∫ ∞

0

φ(x)
1

N

n∑
i=1

δ(x − xi)dx

∼ 1

N

n∑
i=1

φ(xi). (3.3)

We do not go into the details of the derivation of this method here, but refer to [6]
and quote the algorithm.

1. Generate the initial state UN(0) = p ∈ SN .

2. Wait an exponentially distributed time step τ with parameter

ρ(p) = ρK(p) + ρg(p) =
1

2N

∑
1≤i�=j≤n

K(xi, xj) +
n∑

i=1

g(xi),

i.e. the waiting time, τ is chosen according to:

Prob{τ(p) ≥ s} = exp(−ρ(p) · s), s ≥ 0.

3. With probability:
ρK(p)

ρK(p) + ρg(p)
,

choose coalescence and hence go to step 4. Otherwise, choose breakage and go
to step 5.

4. Perform a coalescence jump, i.e.

8

(a) Choose a pair i, j according to the index distribution

K(xi, xj)

2NρK(p)
, 1 ≤ i �= j ≤ n.

(b) Remove the particles xi and xj and add a particle of size xi + xj.

(c) Go to step 2.

5. Perform a breakage jump, i.e.

(a) Choose an index i according to the distribution

g(xi)

ρg(p)
, 1 ≤ i ≤ n.

(b) Choose a breakage part y according to the distribution

β(xi, y),

and remove the particle xi and add particles of sizes y and xi − y.

(c) Go to step 2.

Note that for the purposes of this work we have simplified the Eibeck and Wagner
DSA algorithm. The test case that we introduce in section 5 is simple enough that
no majorant kernels [6, 7] need be introduced. Extension of the algorithm above
to include majorant kernels and fictitious jumps is, however, straightforward. For
mathematical rigour, we should also include a number truncation parameter, cN .
As the breakage process results in an increase in number of particles, an upper limit
must be set on this number to ensure that the system remains within the solution
space defined in the existence proof. For this paper however, we have chosen a test
case with a particle number that tends to a finite steady state value, so we can, by
effectively setting this truncation parameter arbitrarily large, ignore its effects.

4 Mass Flow Algorithm

Eibeck and Wagner [8] introduced the so-called Mass Flow Algorithm for stochas-
tic solution of the Smoluchowski coagulation equation. In contrast to direct simu-
lation, where one stochastic particle can be considered to represent one real particle
in a theoretical sample space, the mass flow case uses one stochastic particle to
represent mass concentration rather than number concentration.

More specifically, if P (t, dx) is a measure valued solution of the population balance
equation, then in the mass flow algorithm, we seek the solution:

Q(t, dx) = xP (t, dx), (4.1)

9

where Q(t, dx) is called the mass flow. Now, in approximating a functional of the
concentration,

∫ ∞
0

φ(x)c(x)dx, we use:∫ ∞

0

φ(x)c(x)dx ∼
∫ ∞

0

φ(x)

x

1

N

n∑
i=1

δ(x − xi)dx

∼ 1

N

n∑
i=1

φ(xi)

xi

. (4.2)

We now wish to extend the mass flow algorithm to include the breakage process.
Following [44], we can write for the breakage case the weak integral version of the
breakage equation:

d

dt

∫ ∞

0

φ(x)Q(t, dx) =

∫ ∞

0

∫ ∞

0

[φ(y) − φ(x)]
2y

x
g(x)β(x, y)dyQ(t, dx). (4.3)

This leads to writing the Breakage Infinitesimal Generator:

AN
g Φ(p) =

n∑
i=1

∫ ∞

0

[Φ(Jg(p, i, y)) − Φ(p)]
2y

xi

g(xi)β(xi, y)dy, (4.4)

where the breakage operator is given by:

Jg(p, i, y) = p +
1

N
(δ(x − y) − δ(x − xi)). (4.5)

We note here that the symmetrical nature of β(x, y) means that:∫ x

0

φ(y)β(x, y)dy =

∫ x

0

φ(x − y)β(x, x − y)dy, (4.6)

and that:
β(x, y) = 0 for x < y. (4.7)

Thus, in constructing a simulation algorithm, we make use of the fact that:∫ ∞

0

yβ(x, y)dy =

∫ x

0

yβ(x, y)dy =

∫ x

0

(x − y)β(x, y)dy

=
1

2

∫ x

0

xβ(x, y)dy

=
x

2
. (4.8)

We now expect to use as the distribution for selecting a breakage part, y, (as opposed
to using β(x, y) in the algorithm described above):

yβ(x, y)∫
yβ(x, y)dy

=
yβ(x, y)

x
2

=
2yβ(x, y)

x
. (4.9)

This suggests the following simulation algorithm:

10

1. Generate the initial state UN(0) = p ∈ SN .

2. Wait an exponentially distributed time step τ with parameter

ρ(p) = ρK(p) + ρg(p) =
1

N

n∑
i,j=1

K(xi, xj)

xj

+
n∑

i=1

∫ xi

0

2y

xi

g(xi)β(xi, y)dy

=
1

N

n∑
i,j=1

K(xi, xj)

xj

+
n∑

i=1

g(xi),

i.e. the waiting time, τ is chosen according to:

Prob{τ(p) ≥ s} = exp(−ρ(p) · s), s ≥ 0.

3. With probability:
ρK(p)

ρK(p) + ρg(p)
,

choose coalescence and hence go to step 4. Otherwise, choose breakage and go
to step 5.

4. Perform a coalescence jump, i.e.

(a) Choose a pair i, j according to the index distribution

K(xi, xj)

NρK(p)xj

, 1 ≤ i, j ≤ n.

(b) Remove the particle xi and replace it with a particle of size xi + xj.

(c) Go to step 2.

5. Perform a breakage jump, i.e.

(a) Choose an index, i, according to the distribution

g(xi)∑n
i=1 g(xi)

.

(b) Choose a breakage part y according to the distribution

2yβ(xi, y)

xi

,

and replace the particle of size xi with one of size y.

(c) Go to step 2

11

Note that, in a similar fashion to the algorithm presented in section 3, we have
simplified this algorithm. Eibeck and Wagner, in their original presentation of the
mass flow algorithm, include a maximum size truncation parameter, bN . Similar
to the particle number truncation parameter, cN , this parameter exists to prevent
any individual particle growing too large and thus growing larger than the solution
space defined in the existence proof. In coagulation only problems, where the par-
ticles grow larger without limit, this parameter can be useful in predicting gelation
properties, but in our simple coalescence-breakage problem, we can arbitrarily set
bN large enough that it does not affect our simulation.

5 Test Case

Consider the case where coalescence and breakage occur according to:

K(x, y) = 1 (5.1)

f(x, y) =
2

x + y
, (5.2)

i.e. g(x) = 1 (5.3)

β(x, y) =
1

x
. (5.4)

The population balance then takes the form:

∂c(x, t)

∂t
= −c(x, t) + 2

∫ ∞

x

c(y, t)
1

y
dy

− c(x, t)

∫ ∞

0

c(y, t)dy +
1

2

∫ x

0

c(x − y, t)c(y, t)dy. (5.5)

We use the initial condition:

c(x, 0) =

{
1 : x = 1

0 : otherwise,
(5.6)

and use the method of moments (see Appendix A) to find:

m0(t) =
2

1 + e−t

m1(t) = 1

m2(t) = 3 − 2e−t/3

m3(t) = 18 − 36e−t/3 + 19e−t/2

m4(t) = 165 − 69e−3t/5 + 760e−t/2 − 675e−t/3 − 180e−2t/3

m5(t) =
4095

2
− 21853

2
e−2t/3 − 5175e−3t/5 + 26220e−t/2

−14445e−t/3 − 180te−2t/3 + 2280e−5t/6. (5.7)

12

This is a convenient analytical solution to use for testing the stochastic algorithm.
Note that we can treat all quantities as dimensionless in this case.

6 Data Storage

The method used to store the stochastic particle sizes and associated functionals
has a profound influence on the efficiency of generation of required probability dis-
tributions. Often there is a trade-off between economy of storage and efficiency of
generation, but we generally value low CPU times over low storage requirements.

6.1 Bins

Arranging the stochastic particles by size into bins is a method favoured by Eibeck
and Wagner [7, 8] for the case of coagulation only. In this method, the bin size
bounds,

0 =: b0 < b1 < . . . , (6.1)

are given by
bk = βk−1, β > 1, k = 1, 2, (6.2)

Then the bin index is chosen by linear search, and the particle index within a bin is
chosen by acceptance-rejection, with a minimum efficiency of:

1

β|ε| , (6.3)

when the required distribution to be generated is:

xε
i∑n

i=1 xε
i

. (6.4)

The result is that, for n particles, the time taken for the index generation step
is proportional to log(n). However, after each stochastic jump, the bins must be
updated. The process in which an empty space is removed from an array to reflect
a particle being removed from that bin takes time of order n. In this case, for large
particle numbers, the overall process can take time of order n2 [13].

A further problem encountered when the bin method is used is a consideration of the
range of bin sizes. Sensible selection of β is essential to optimise CPU time, but this
often results in larger storage requirements. Furthermore, for the coagulation-only
case, there is a well-defined minimum particle size (the smallest particle in the initial
distribution). This minimum particle size might not exist in a breakage problem,
in which case a lowest bin must be set, which then contains all particles smaller
than some cut-off size. The selection of β and the minimum bin-size in order to
minimise the CPU time of the simulation is an extra and undesirable problem and
so we look for a system of storage/index generation that is more appropriate for the
coalescence-breakage process.

13

6.2 Binary Search

A binary search method of generating distributions is particularly suitable for use
within the mass flow algorithm. The number of stochastic particles remains constant
(unless a particle grows larger than bN , but this is rare, especially if bN is chosen large
enough), so if a binary tree is constructed, it remains the same height throughout
the simulation.

Figure 1 shows an example of the construction of a binary tree. For simplicity, it
is of height 3, so the particle number is 23 = 8. We are interested in generating an
index, i, according to the distribution:

φ(xi)∑n
i=1 φ(xi)

. (6.5)

The function φ(x) is often simply the value x raised to some power, but it need not
be restricted to such cases.

Note that in figure 1 the particles (on the lowest row of the tree) are labelled i =
0, 1, . . . , 7, i.e. from 0 to n − 1, so from now on in this section, the numbering of
particle indices will reflect this.

To choose a particle index, i = 0, 1, . . . , 7, we generate a uniform random deviate
on [0,1] and multiply it by

∑7
i=0 φ(xi). We now check if this quantity is greater

than the value of node1 on the tree. If it is, we move down the tree to the right
(1). If not, we move down to the tree to the left (0). If we move left, we repeat
the process. If we move right, then we need to update our comparison quantity, by
subtracting the value of node1. Then we repeat the process down to the bottom.
Note that by recording the value of 0 or 1 each time we move down a level, we end
up with a binary representation of the particle index we are interested in (hence
the renumbering of the particles). Note also that this binary representation shows
which nodes on the tree need to be updated after a stochastic jump. Whenever a 0
is recorded as we move down the tree, the node that has just been passed will need
updating.

The index generation and system update steps both now take CPU time of order
log(n), so the overall CPU time required increases as n log(n) regardless of particle
number.

A comparison of CPU time for the two methods is shown in Figure 2. It can be seen
that, despite similar runtimes for low particle numbers, the CPU time for the bins
method increases slightly faster, and the two methods diverge at around n = 104.
Even for particle numbers up to 106, the CPU time for the binary search method
increases just faster than linearly with particle number.

14

Figure 1: A binary tree, of height 3.

0.01

0.1

1

10

100

1000

100 1000 104 105 106

t sr
(s

)

Particle Number

t
sr

(bins)

t
sr

(binary)

Figure 2: Single run CPU time comparison for the bins and binary methods.

15

7 Numerical Results

Figure 3 and Figure 4 show sample results of stochastic simulation of the coalescence-
breakage equation for the test case described above. The results are averaged over
a number of repeated runs, L, and confidence bounds are derived (e.g. [13]) within
which we can be 99.9% sure that the correct solution lies.

It is immediately evident that DSA and MFA have varying success when it comes
to predicting different moments of the particle size distribution. For the zeroth
moment, despite a much larger particle number (217 as opposed to 211), MFA has
very wide confidence intervals that do not always encompass the analytical solution.
DSA on the other hand, even for this moderate particle number, gives a good pre-
diction of the zeroth moment. For the fifth moment, the situation is reversed. Now
(with the same particle number, 211) MFA gives a much better prediction of the
fifth moment, while the confidence bands for DSA are large and fluctuate widely.

This behaviour can be explained by considering the way the functionals of the par-
ticle size distribution are approximated (recall Equations 3.3 and 4.2):

∫ ∞

0

φ(x)c(x)dx ∼ 1

N

n∑
i=1

φ(xi)︸ ︷︷ ︸
for DSA

or
1

N

n∑
i=1

φ(xi)

xi︸ ︷︷ ︸
for MFA

. (7.1)

When approximating the zeroth moment using MFA, it is actually the sum of the
−1th powers of the stochastic particle sizes that is calculated and therefore the
smallest particles have most influence over the result. The appearance, due to
breakage, or disappearance, due to coalescence, of a very small particle will result in
a large step change in the zeroth moment. To some extent, MFA is self compensating
in this regard. The coalescence step is based on a rate

K(xi,xj)

xj
; the 1

xj
factor means

that small particles are more likely to be chosen for coalescence than they are in DSA.
Also, in choosing a new particle size in a breakage step, the yβ(xi, y) distribution
(as opposed to β(xi, y)) means that a small particle is less likely to be produced
than it is in DSA. But even with these compensatory mechanisms, the varying
presence of very small particles causes large fluctuations in the prediction of the
zeroth moment. This is a problem that was not encountered by Eibeck and Wagner
when they studied the mass flow algorithm for the coagulation-only case. Without
breakage, there is no opportunity for the production of very small particles, so no
large fluctuations in zeroth moment are observed.

The higher moments are where the successful variance reduction of the mass flow
algorithm begins to show. For the same particle number—and similar CPU times—,
MFA exhibits much narrower confidence bands than for DSA. Thus, based on these
initial observations, it would seem that DSA holds the advantage for the zeroth
moment and MFA is more efficient at predicting higher (>1) moments.

16

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10

Z
er

ot
h

M
om

en
t

time

MFA, N=217

DSA, N=211

Analytical Solution

Figure 3: Comparison of the zeroth moment predicted by Direct Simulation (DSA)
and Mass Flow (MFA).

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

5t
h

m
om

en
t

time

MFA, N=211

DSA, N=211

Analytical Solution

Figure 4: Comparison of the fifth moment predicted by Direct Simulation (DSA)
and Mass Flow (MFA).

17

7.1 Convergence Properties

It is useful to consider the convergence properties of the two algorithms, i.e. how
does the systematic error of the predicted functionals depend on the particle number,
N? This will then give an idea of the CPU time required for each method to produce
a fixed error and will indicate which is faster. For these studies, we approximate the
systematic error by the average error over the simulation time, and the systematic
error by the maximum width of the confidence interval within that time.

For the MFA case, Figure 5 shows the convergence properties of the 2nd to 5th
moments. As expected, the systematic error decreases as the inverse of the particle
number. In order to produce this figure, it is necessary to perform simulations where
the statistical error (denoted by the error bars) is small enough that the trend in
systematic error can be detected. This, for the MFA case, involves a very small
number of particles and a very large number of trajectories generated.

0.0001

0.001

0.01

0.1

1

10

100

1000

10 100

sy
st

em
at

ic
er

ro
r

particle number, N

m2

m3

m4

m5

Figure 5: Convergence to the analytical solution of the 2nd to 5th moments pre-
dicted by the mass flow algorithm. The solid lines show slopes of -1. In this study,
N × L is kept constant at 104857600.

A somewhat different result occurs when we examine the convergence properties of
the zeroth moment predicted by the mass flow algorithm (Figure 6). Using the same
product of number of particles and number of runs (104857600), the error bars are
now so small as not to show up on the plot for low particle numbers. Furthermore,
the convergence is much slower; the systematic error is decreasing approximately as
N−1/3.

An illustration of what this convergence behaviour actually means is shown in Fig-
ure 7 for particle numbers of 25 → 28. Here, the large number of repeated runs
removes the fluctuations in the predicted zeroth moment, thus showing the large
systematic error in the results.

18

0.01

0.1

1

1 10 100 1000 104 105

sy
st

em
at

ic
er

ro
r

in
ze

ro
th

m
om

en
t

particle number, N

Figure 6: Convergence to the analytical solution of the zeroth moment predicted
by the mass flow algorithm. The solid line shows a slope of -1/3. In this study,
N × L is kept constant at 104857600.

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10

ze
ro

th
m

om
en

t

time

analytical solution

N = 28

N = 27

N = 26

N = 25

Figure 7: Convergence to the analytical solution of the zeroth moment predicted
by the mass flow algorithm. In this study, N × L is kept constant at 104857600.
The number of repeated runs is sufficient to smooth out any fluctuations in the
confidence intervals, but the systematic error is still significant.

19

When we examine the same convergence properties for the direct simulation algo-
rithm, we find that all the moments converge at the same rate, proportional to 1

N

(Figure 8). From this study we can now make a comparison of the two algorithms:
which algorithm takes less CPU time to predict a given moment with a given error?

0.0001

0.001

0.01

0.1

1

10

100

1000

10 100 1000

sy
st

em
at

ic
er

ro
r

particle number, N

m0

m3

m4

m5

m2

Figure 8: Convergence to the analytical solution of the 2nd to 5th moments pre-
dicted by the direct simulation algorithm. The solid lines show slopes of -1. In this
study, N × L is kept constant at 104857600.

7.2 DSA or MFA?

Figures 9 – 11 give further evidence to that suggested by the initial inspection of
the simulation results: MFA gives better predictions for higher moments, but DSA
is better for predicting the zeroth moment. The difference in CPU time is up to two
orders of magnitude in favour of MFA for the higher moments, and is considerably
more than that in favour of DSA for the zeroth moment.

8 Minimum Particle Size

Frequently, a real system in which coalescence and breakage occur will have a min-
imum particle size. This can be a well-defined monomer unit as in the case of
polymerisation-depolymerisation (e.g. [45]), or can be introduced due to stability
considerations (e.g. [26]). As well as better approximating a real system, incorpo-
rating this minimum particle size into the simulation algorithm will have a positive
effect on the viability of using the mass flow algorithm to predict the zeroth mo-
ment; having fewer very small particles will reduce the size of the fluctuations in the
zeroth moment. To examine this effect, we impose a minimum stable particle size

20

0.001

0.01

0.1

1

10-5 0.0001 0.001 0.01 0.1 1

t sr
(s

)

systematic error in zeroth moment

DSA

MFA

Figure 9: Single run CPU time required to predict the zeroth moment with a given
systematic error.

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

t sr
(s

)

systematic error in 2nd moment

DSA

MFA

Figure 10: Single run CPU time required to predict the second moment with a
given systematic error.

21

0.001

0.01

0.1

1

1 10 100 1000

t sr
(s

)

systematic error in 5th moment

DSA

MFA

Figure 11: Single run CPU time required to predict the fifth moment with a given
systematic error.

on the test case and simulate the zeroth moment using both DSA and MFA. There
is no longer a simple analytical solution for the moments, so we instead compare
the results predicted by MFA with the converged solution predicted by DSA (which
has been shown to be reliable).

There are two ways of considering how the minimum particle size, xmin, affects the
simulation:

1. No particle smaller than xmin can exist. Thus we can infer that breakage of a
particle smaller than 2xmin cannot occur. This would be the case if there were
a well-defined monomer unit (but note also that if each particle is made up
of an integer number of monomer units the problem would be discrete rather
than continuous).

2. A particle smaller than xmin can exist and can take part in coalescence events,
but will not break into smaller particles. This is the approach used by e.g. Tsouris
and Tavlarides [39]; they refer to this minimum size as a maximum stable drop
diameter, i.e. the largest drop size for which no breakage can occur.

8.1 Case 1

For case 1 we need to alter the probability density function used to pick the sizes of
daughter particles when a breakage event occurs. We no longer allow any particle
smaller than xmin or larger than x − xmin to be formed by breakage of a particle of
size x. Clearly, what was previously a uniform distribution over the size range [0, x]

22

becomes a uniform distribution over the range [xmin, x − xmin], so we have:

β(x, y) =

{
1

x−2xmin
: xmin < y < x − xmin

0 : otherwise.
(8.1)

This leads to, for MFA simulation:

yβ(x, y)∫
yβ(x, y)dy

=

{
2y

x(x−2xmin)
: xmin < y < x − xmin

0 : otherwise.
(8.2)

In both these cases, setting xmin = 0 returns us to the case where no minimum size
is imposed.

Also, as mentioned above, we must only choose particles larger than 2xmin for break-
age, so as not to produce particles smaller than xmin.

8.2 Case 2

For case 2, it is not necessary to alter the daughter particle size distribution. Our
only restriction in this case is not to pick any particle smaller than xmin for breakage.
This is the most common way a minimum particle size is imposed for liquid-liquid
systems, so this is the case we examine. The only alteration that needs to be made
to the simulation algorithm is to add a null event in the case that a particle smaller
than xmin is chosen for breakage.

Figure 12 shows a comparison of the zeroth moment predicted by MFA with the
converged solution predicted by DSA for various minimum sizes. In this study,
MFA is performed with particle number N = 215 and only 50 repetitions. The large
systematic error has now decreased to the point where the converged solution lies
within the confidence bounds, even though the fluctuations are quite large. As the
minimum particle size increases, the fluctuations decrease, and for xmin = 1, MFA
gives a good prediction of the zeroth moment. This is consistent with the results
of Eibeck and Wagner [8] for the coagulation only case, where no particles smaller
than x = 1 occur. The single run simulation CPU time, tsr, is now of the order of
a minute.

9 Conclusions and Discussion

In this paper, two stochastic algorithms have been used to simulate solutions to
the population balance equation in which coalescence and binary breakage are the
processes involved. Direct Simulation Algorithm (DSA) was used as proposed by
Eibeck and Wagner [6]. Mass Flow Algorithm (MFA), which was first used by
the same authors [8] for the coagulation only case, has been extended to include

23

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10

ze
ro

th
m

om
en

t

time

x
min

= 0.001

x
min

= 0.01

x
min

= 0.1

x
min

= 1

Figure 12: Behaviour of the Mass Flow Algorithm with the imposition of a mini-
mum particle size, xmin. The confidence bounds are for the solutions given by MFA.
The solid lines are the converged solutions given by DSA.

the breakage process. We also introduced a binary search method of probability
distribution generation, leading to improved efficiency of simulation.

The two algorithms were applied to a test case—for which an analytical solution was
calculated—to determine the relative merits of each. For the coagulation only case,
Eibeck and Wagner found excellent improvement in efficiency and good variance
reduction for MFA as compared to DSA. With breakage included, MFA does not
predict the zeroth moment so well. As it involves summing the −1th powers of the
sizes of the stochastic particles, the presence of very small particles can lead to large
fluctuations in the predicted zeroth moment.

This zeroth moment predicted by MFA exhibits markedly different convergence char-
acteristics to the other moments studied. For every moment predicted by DSA and
for every moment greater than the 1st (the 1st moment is by definition constant
for this mass-preserving process) predicted by MFA, the systematic error decreases
as the inverse of the particle number, N . This behaviour is common to stochastic
simulation of many systems (e.g. [19, 13]). In contrast, the systematic error in
the zeroth moment predicted by MFA decreases as N−1/3. For moderate particle
numbers, this systematic error, along with large fluctuations, precludes the use of
MFA for stochastic simulation of the zeroth moment.

The higher moments (2nd and higher) are predicted well by MFA, and with a signifi-
cant decrease in CPU time required—for a given error—as compared with DSA. For
a given particle number—and therefore comparable simulation times—the system-
atic errors in the MFA-predicted moments are much smaller than those predicted by
DSA. Hence, if the higher moments of the particle size distribution are the required
functionals, MFA is clearly the better option.

24

The effect of the imposition of a minimum particle size, xmin, on the system was also
investigated. In common with several models of liquid-liquid systems (e.g. [39, 26]),
the minimum particle size is taken to be the size below which no further breakage
can take place. The result of this modification to the algorithm is that there are
fewer very small particles contained in the stochastic particle system. Hence, the
problems associated with MFA are reduced and, for large enough xmin, MFA can
perform as well as DSA.

25

A Solution of Test Case

To solve the equation:

∂c(x, t)

∂t
= −c(x, t) + 2

∫ ∞

x

c(y, t)
1

y
dy

− c(x, t)

∫ ∞

0

c(y, t)dy +
1

2

∫ x

0

c(x − y, t)c(y, t)dy, (A.1)

we use the method of moments (e.g. [9]), i.e. we multiply by xk and integrate over
all x:∫ ∞

0

xk ∂c(x, t)

∂t
dx =

d

dt
mk(t) = −

∫ ∞

0

xkc(x, t)dx + 2

∫ ∞

0

xk

∫ ∞

x

c(y, t)
1

y
dy dx

−
∫ ∞

0

xkc(x, t)

∫ ∞

0

c(y, t)dy dx +
1

2

∫ ∞

0

xk

∫ x

0

c(x − y, t)c(y, t)dy dx. (A.2)

Treating each term on the RHS in turn:∫ ∞

0

xkc(x, t)dx = mk(t). (A.3)

∫ ∞

x=0

xk

∫ ∞

y=x

c(y, t)
1

y
dy dx =

∫ ∞

y=0

c(y, t)
1

y

∫ y

x=0

xkdx dy

=

∫ ∞

0

c(y, t)
1

y

yk+1

k + 1
dy

=

∫ ∞

0

c(y, t)
yk

k + 1
dy =

mk(t)

k + 1
. (A.4)

∫ ∞

x=0

xkc(x, t)

∫ ∞

y=0

c(y, t)dy dx = mk(t)m0(t). (A.5)

∫ ∞

x=0

xk

∫ x

y=0

c(x − y, t)c(y, t)dy dx =

∫ ∞

y=0

c(y, t)

∫ ∞

x=y

xkc(x − y, t)dy dx

=

∫ ∞

y=0

c(y, t)

∫ ∞

z=0

(z + y)kc(z, t)dy dz

=

∫ ∞

y=0

c(y, t)

∫ ∞

z=0

k∑
r=0

(
k

r

)
zk−ryrc(z, t)dy dz

=
k∑

r=0

(
k

r

) ∫ ∞

y=0

c(y, t)yrdy

∫ ∞

z=0

c(z, t)zk−rdz

=
k∑

r=0

(
k

r

)
mr(t)mk−r(t). (A.6)

26

We then have differential equations for mk(t):

d m0(t)

dt
= m0(t) − m2

0(t)

2
(A.7)

d m1(t)

dt
= 0 (A.8)

d mk(t)

dt
=

1 − k

1 + k
mk(t) +

1

2

k−1∑
r=1

(
k

r

)
mr(t)mk−r(t) k = 2, 3, (A.9)

For the initial condition:

c(x, 0) =

{
1 : x = 1

0 : otherwise,
(A.10)

i.e. mk(0) = 1, k = 0, 1, 2, . . ., we have a series of first order differential equations
that are separable (A.7), trivial (A.8) or have constant coefficients once the lower
order moments have been found (A.9). These can be solved to give:

m0(t) =
2

1 + e−t

m1(t) = 1

m2(t) = 3 − 2e−t/3

m3(t) = 18 − 36e−t/3 + 19e−t/2

m4(t) = 165 − 69e−3t/5 + 760e−t/2 − 675e−t/3 − 180e−2t/3

m5(t) =
4095

2
− 21853

2
e−2t/3 − 5175e−3t/5 + 26220e−t/2

−14445e−t/3 − 180te−2t/3 + 2280e−5t/6. (A.11)

27

References

[1] I. Alatiqi, G. Aly, F. Mjalli, and C. J. Mumford. Mathematical modeling and
steady-state analysis of a Scheibel extraction column. Can. J. Chem. Eng.,
73:523–533, 1995.

[2] P. Angeli and G. F. Hewitt. Drop size distributions in horizontal oil-water
dispersed flows. Chem. Eng. Sci., 55(16):3133–3143, 2000.

[3] C. A. Coulaloglou and L. L. Tavlarides. Description of interaction processes in
agitated liquid-liquid dispersions. Chem. Eng. Sci., 32:1289–1297, 1977.

[4] R. B. Diemer and J. H. Olson. A moment methodology for coagulation and
breakage problems: Part 1 – Analytical solution of the steady-state population
balance. Chem. Eng. Sci., 57(12):2193–2209, 2002.

[5] R. B. Diemer and J. H. Olson. A moment methodology for coagulation and
breakage problems: Part 2 – Moment models and distribution reconstruction.
Chem. Eng. Sci., 57(12):2211–2228, 2002.

[6] A. Eibeck and W. Wagner. Approximative solution of the coagulation-
fragmentation equation by stochastic particle systems. Stoch. Anal. App.,
18(6):921–948, 2000.

[7] A. Eibeck and W. Wagner. An efficient stochastic algorithm for studying coag-
ulation dynamics and gelation phenomena. SIAM J. Sci. Comput., 22(3):802–
821, 2000.

[8] A. Eibeck and W. Wagner. Stochastic particle approximations for Smolu-
chowski’s coagulation equation. Ann. Appl. Probab., 11(4):1137–1165, 2001.

[9] M. Frenklach. Dynamics of discrete distribution for Smoluchowski coagulation
model. J. Coll. Int. Sci., 108(1):237–242, 1985.

[10] M. Frenklach and S. Harris. Aerosol dynamics modeling using the method of
moments. J. Coll. Int. Sci., 118(1):252–262, 1986.

[11] F. Gelbard and J. H. Seinfeld. Numerical solution of the dynamic equation for
particulate systems. J. Comp. Phys., 28:357–, 1978.

[12] D. T. Gillespie. The stochastic coalescence model for cloud droplet growth. J.
Atmospheric Sci., 29:1496–1510, 1972.

[13] M. J. Goodson and M. Kraft. An efficient stochastic algorithm for simulating
nano-particle dynamics. J. Comp. Phys., In Press.

[14] D. A. Grosschmidt, H. Bockhorn, M. J. Goodson, and M. Kraft. Two ap-
proaches to the simulation of silica particle synthesis. Proc. Comb. Inst., 29, In
Press.

28

[15] H. Haverland, A. Vogelpohl, C. Gourdon, and G. Casamatta. Simulation of
fluid dynamics in a pulsed sieve-plate column. Chem. Eng. Technol., 10:151–
157, 1987.

[16] G. M. Hidy and J. R. Brock. The Dynamics of Aerocolloidal Systems. Perga-
mon, Oxford, 1970.

[17] M. J. Hounslow, R. L. Ryall, and V. R. Marshall. A discretized population
balance for nucleation, growth and aggregation. AIChE J., 34(11):1821–1832,
1988.

[18] H. M. Hulbert and S. Katz. Some problems in particle technology. A statistical
mechanical formulation. Chem. Eng. Sci., 19:555–574, 1964.

[19] M. Kraft and W. Wagner. Numerical study of a stochastic particle method for
homogeneous gas phase reactions. Technical Report 570, Weierstrass Institute
for Applied Analysis and Stochastics, 2000.

[20] A. Kumar and S. Hartland. Prediction of drop size in rotating disc extractors.
Can. J. Chem. Eng., 64:915–924, 1986.

[21] S. Kumar and D. Ramkrishna. On the solution of population balance equations
by discretization – I. a fixed pivot technique. Chem. Eng. Sci., 51(8):1311–1332,
1996.

[22] S. Kumar and D. Ramkrishna. On the solution of population balance equations
by discretization – II. a moving pivot technique. Chem. Eng. Sci., 51(8):1333–
1342, 1996.

[23] K. Lee and T. Matsoukas. Simultaneous coagulation and break-up using
constant-N Monte-Carlo. Powder Tech., 110:82–89, 2000.

[24] Y. Lin, K. Lee, and T. Matsoukas. Solution of the population balance equation
using constant-number Monte Carlo. Chem. Eng. Sci., 57:2241–2252, 2002.

[25] J. D. Litster, D. J. Smit, and M. J. Hounslow. Adjustable discretized population
balance for growth and aggregation. AIChE J., 41(3):591–603, 1995.

[26] S. P. Liu and D. M. Li. Drop coalescence in turbulent dispersions. Chem. Eng.
Sci., 54(23):5667–5675, 1999.

[27] Y. Liu and I. T. Cameron. A new wavelet-based method for the solution of the
population balance equation. Chem. Eng. Sci., 56(18):5283–5294, 2001.

[28] S. Mohanty. Modeling of liquid-liquid extraction column: A review. Rev. Chem.
Eng., 16(3):199–248, 2000.

[29] G. Narsimhan, J. P. Gupta, and D. Ramkrishna. A model for transitional
breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem.
Eng. Sci., 34:257–264, 1979.

29

[30] M. Nicmanis and M. J. Hounslow. Finite-element methods for steady-state
population balance equations. AIChE J., 44(10):2258–2272, 1998.

[31] D.P. Patil and J. R. G. Andrews. An analytical solution to continuous popu-
lation balance model describing floc coalescence and breakage – A special case.
Chem. Eng. Sci., 53(3):599–601, 1998.

[32] D. Ramkrishna. Analysis of population balance – IV. The precise connection
between Monte Carlo simulation and population balances. Chem. Eng. Sci.,
36:1203–1209, 1980.

[33] D. Ramkrishna. The status of population balances. Rev. Chem. Eng., 3:49–95,
1985.

[34] D. Ramkrishna. Population Balances. Theory and Applications to Particulate
Systems in Engineering. Academic Press, San Diego, 2000.

[35] A. D. Randolph and M. A. Larson. Theory of Particulate Processes. Academic
Press, London, 1988.

[36] K. K. Sabelfeld, S. V. Rogansinsky, A. A. Kolodko, and A. I. Levykin. Stochas-
tic algorithms for solving Smoluchovsky coagulation equation and applications
to aerosol growth simulation. Monte Carlo Meth. App., 2(1):41–87, 1996.

[37] C. A. Sleicher. Axial mixing and extraction efficiency. AIChE J., 5:145–149,
1959.

[38] M. Smith and T. Matsoukas. Constant-number Monte Carlo simulation of
population balances. Chem. Eng. Sci., 53(9):1777–1786, 1998.

[39] C. Tsouris and L. L. Tavlarides. Breakage and coalescence models for drops in
turbulent dispersions. AIChE J., 40(3):395–406, 1994.

[40] K. J. Valentas and N. R. Amundson. Breakage and coalescence in dispersed
phase systems. Ind. Eng. Chem. Fund., 5(4):533–542, 1966.

[41] K. J. Valentas, O. Bilous, and N. R. Amundson. Analysis of breakage in dis-
persed phase systems. Ind. Eng. Chem. Fund., 5(2):271–279, 1966.

[42] M. Vanni. Approximate population balance equations for aggregation-breakage
processes. J. Coll. Int. Sci., 221:143–160, 2000.

[43] M. von Smoluchowski. Drei Vorträge über Diffusion, Brownsche Molekularbe-
wegung und Koagulation von Kolloidteilchen. Phys. Z., 17:557–571, 585–599,
1916.

[44] W. Wagner. Stochastic, analytic and numerical aspects of coagulation pro-
cesses. Technical Report 697, Weierstraß-Institut für Angewandte Analysis und
Stochastik, Berlin, 2001.

[45] R. M. Ziff and E. D. McGrady. The kinetics of cluster fragmentation and
depolymerisation. J. Phys. A: Math. Gen., 18:3027–3037, 1985.

30

