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Abstract

In this work we present the new PAH-PP soot model and use a data collaboration
approach to determine some of its parameters. The model describes the formation,
growth and oxidation of soot in laminar premixed flames. Soot particles are modelled
as aggregates containing primary particles, which are built from polycyclic aromatic
hydrocarbons (PAH) molecules, the main building blocks of a primary. The connec-
tivity of the primary particles is stored and used to determine the rounding of the soot
particles due to surface growth and condensation processes. Two neighbouring pri-
mary particles are replaced by one if the coalescence level between the two primary
particles reaches a threshold. The model contains, like most of the other models, free
parameters that are unknown a priori. The experimental premixed flame data from
Zhao et al. [B. Zhao, Z. Yang, Z. Li, M. V. Johnston, and H. Wang. Proc. Combust.
Inst., 30(2):1441-1448, 2005] have been used to estimate the smoothing factor of
soot particles, the growth factor of PAHs within particles and the soot density using
a low discrepancy series method with a subsequent response surface optimisation.
The optimised particle size distributions show good agreement with the experimen-
tal ones. The importance of a standardised data mining system in order to optimise
models is underlined.
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1 Introduction

There is evidence in the literature that polycyclic aromatic hydrocarbons (PAHs) are the
precursors of soot molecules [12, 29, 33]. The formation of PAHs and their gasphase
chemistry in flames has been investigated in [11, 24, 26, 34]. Electron microscopy studies
by Ishiguro et al. [17] and X-ray diffraction experiments by Chen and Dobbins [9] indi-
cate that soot particles are formed by sticking PAHs. Totton et al. [30, 31] support the
sticking of PAHs inside a soot particle using a theoretical model involving intermolecular
potentials generated from quantum mechanical calculations. Soot particles grow due to
surface reactions, condensation of further PAHs, and coagulations with other soot parti-
cles [1, 2, 7, 8].

In this work we present a new detailed soot particle model describing soot particles by
primary particles that are in turn composed of individual PAHs. This new model is called
PAH-PP and is the successor of the ARCS-PP model [8] in which only information of
functional sites were contained in the model whereas the PAH-PP model stores the full
molecular information. A detailed description of the model will be provided elsewhere.
Although the model has an unprecedented level of physical and chemical detail it con-
tains a number of empirical model components which need to be determined from the
comparison to experimental data. In this work we fit a smoothing factor s, that describes
the smoothing of the surface due to surface growth and condensation, a growth factor g
that describes the growth of PAHs within a soot particle and the density of a soot primary
particle ρ. These parameters span a multi dimensional parameter space and the question
is how to chose parameters bounds, i.e. the interval in which the parameter can lie, that
leads to a model prediction that matches the available experiments as close as possible.

One possibility to search for an optimal set of parameters is to generate points in the pa-
rameter space uniformly and to evaluate the model at each of these points. This is done
most effectively by so called low discrepancy sequences which approximate a uniform
distribution in a deterministic fashion but unlike a cartesian grid the speed of convergence
is independent off the dimension of the space [3]. Therefore parameter estimations us-
ing low discrepancy series require less evaluations of the model then using traditional
Monte Carlo methods. Kocis et al. [19] present different possibilities to generate low dis-
crepancy series and investigate their performance. Kucherenko and Sytsko [20] used low
discrepancy series in global optimisation problems.

Another possibility to optimise the parameters is to approximate the model by a response
surface. Sheen et al. [27] have proposed a technique to estimate the parameters and their
errors for a detailed combustion chemistry model using a spectral uncertainty method.
This method takes also the propagation of uncertainties into account and estimates con-
fidence intervals for the determined parameters. Braumann et al. [4, 5] have used this
method to estimate the parameters in a multivariate population balance model and studied
the influence of different objective functions.

Model optimisations and parameter estimations rely on the availability of a large number
of experimental data together with their uncertainties. This underlines the importance of
a standardized data repository. The PrIMe database [13] stores the data in a standardized
XML format and permits to develop new models and optimise them against a large num-
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Figure 1: Processes included in the PAH-PP model.

ber of experiments. In this paper we shall put experimental data from the literature into
PrIMe format and estimate intervals for parameters in the PAH-PP model by an automated
procedure which makes use of the PrIMe data models.

2 The PAH-PP Model

The model presented in this work is solved by means of a stochastic algorithm. The al-
gorithm incorporates the evolution of the individual PAHs using a kinetic Monte Carlo
algorithm [24, 26], starting from pyrene, present in the gasphase of a sooting flame in-
volving a detailed description of the gasphase flame chemistry. The model considers the
growth of the PAH by addition of acetylene via the hydrogen-abstraction carbon-addition
(HACA) mechanism [14]. The pyrene production rate along the flame is precalculated
using PREMIX [18] including the method of moments to approximate the coupling of the
particulate phase and the gasphase. The dimerisation of two PAHs is assumed to incept
a soot particle having one primary particle, which contains the two colliding PAHs. The
collision of two PAHs does not always create a soot particle, therefore the rate for the
dimerisation of PAHs is corrected using a recently determined sticking probability [25].
The growth rate of PAHs within soot particles and therefore not fully accessible to the
gasphase is multiplied by a growth factor g, which can vary between 0 and 1. g is one of
the free parameters in the model that needs to be determined.

Soot particles can coagulate and forme larger particles. It is assumed that one primary
particle pa of particle Pi and one primary particle pb of particle Pj are in point contact
after the coagulation of particle Pi and Pj . However due to surface growth and condensa-
tion processes the soot particles get more spherical. This is incorporated in the model by
replacing two neighbouring primary particles by one primary particle. In order to deter-
mine this particle rounding, the connectivity of the primary particles within a soot particle
is stored as well as the common surface of two neighbouring primary particles. The initial
common surface S(a, b) of two neighbouring primary particles pa and pb directly after a
coagulation event is the sum of the surface of the two individual primary particles. The
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common surface S(a, b) of two neighbouring primary particles pa and pb changes due to
surface growth and condensation processes according to:

∆S(a, b) = ∆V (a, b)
s

Rc

(1)

where Rc is the radius of gyration and ∆V (a, b) the volume change of the primary parti-
cles pa and pb due to surface growth or condensation. A smoothing factor of s=2 implies
that the common surface S(a, b) increases the same area as if the two primary particles
would be spherical [22]. A decrease of s leads to a faster rounding of the primary parti-
cles. s is the second fit parameter in this work. In order to describe the rounding between
two neighbouring primary particles pa and pb a coalescence level is defined as

C(a, b) =

Ssph(a,b)

S(a,b)
− 2−1/3

1− 2−1/3
(2)

where Ssph(a, b) is the spherical surface of the two primary particles. Two primary parti-
cles are replaced by one primary particle with the same volume if C(a, b) ≥ 1.

The volume of a particle is calculated as the sum of the volume of the individual primary
particles. The surface of the particles incorporates the average coalescence level of the
individual primary particles and is approximated by

Apart =

∑n
i=1Ai

(Cavg(1− n−1/3) + n−1/3)
(3)

where n is the number of primary particles, Ai the surface of the i-th primary particle and
Cavg the average coalescence level of the particle. The inception, coagulation and con-
densation rate is calculated using the transition regime coagulation kernel Ktr, multiplied
with the recently determined collision efficiency CE for PAHs [25]. The transition regime
coagulation kernel Ktr is the harmonic mean of the slip-flow Ksf and free molecular
kernel Kfm [23]:

Ktr(A,B) =
Ksf (A,B)Kfm(A,B)

Ksf (A,B) +Kfm(A,B)
(4)

where A and B represent particles or PAHs. A and B are particles for a coagulation
process, A and B are PAHs for an inception process and A is a particle and B a PAH for
a condensation process. The collision diameter of a PAH dPAHc is

dPAHc = dA

√
2nc
3

(5)

with dA = 1.395
√

3Å for a single aromatic ring and nc the number of carbon atoms in the
PAH [15]. A fractal dimension Df of 1.8 is used to calculate the collision diameter dpartc

of a particle [32]:

dpartc =

(
6V

A

)(
A3

36πV 2

) 1
Df

. (6)

The different process included in the model are summarized in Figure 1.
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Table 1: Free parameters in the model
Name Variable Range

Soot density ρ 1≤ ρ ≤ 2
Smoothing factor s 0 ≤ s ≤ 2

Growth factor g 0≤ g ≤ 1

3 Optimisation

We have selected three free parameters in the PAH-PP model: the soot density ρ, the
growth factor of the PAHs in a particle g and the smoothing factor s (Table 1). The soot
density has been selected as a free parameter because Totton et al. [30, 31] determined
recently 1.12 g/cm3 as soot density for nascent particles, which is much lower then the
usually used soot density of 1.8 g/cm3 [10, 21].

The parameter vector x is defined as:

x = (ρ, s, g). (7)

The optimisation consists of two consecutive steps: A low discrepancy series method
followed by a quadratic response surface optimisation.

In the first step data points in the 3-dimensional parameter space are generated using a
Halton [16] low discrepancy series. The model has been evaluated at these points and the
objective function

Φ1(x) =
N∑
i=1

(〈dexpi 〉 − 〈dsimi 〉(x))2 (8)

determined, whereN is the number of experimental data points. 〈dexpi 〉 is the experimental
and 〈dsimi 〉 is the simulated median of the particle size distribution. The set of parameters
x∗ that minimises the objective function Φ1:

x∗ = argmin
x
{Φ1(x)} (9)

has been determined.

A quadratic response surface optimisation has been performed around the point x∗ to
optimise the result further and to estimate the uncertainties in the parameters and in the
model response. This methodology has been proposed by Sheen et al. [27] and used by
Braumann et al. [6] to optmise a granulation model.

It is convenient to normalise the free parameters x to x̃, where x̃k ∈ [−1, 1], k = 1, 2, 3.
The median of the particle size distribution 〈dsimi 〉(x) has been approximated by a second
order response surface

〈dsimi 〉(x) ≈ η(x̃) = β0 +
3∑

k=1

βk x̃k +
3∑

k=1

3∑
l≥k

βkl x̃k x̃l . (10)
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around the point x∗. The coefficients β0, βk and βkl have been fitted by evaluating the
model at 27 datapoints at x̃ = (ρ̃, r̃, g̃) where ρ̃,r̃,g̃ ∈ {−1, 0, 1}. It is assumed that the
free parameters x̃ are Gaussian distributed and have a mean x̃0 and a standard deviation
c:

x̃ = x̃0 + c ξ , (11)

where ξ is normally distributed. The Gaussian distribution of the free parameters influ-
ences also the model response. The mean µ can be calculated as [6]:

µ(x̃0, c) = η(x̃0) +
K∑
k=1

βkk c
2
k , (12)

Also the variance σ2(x̃0, c) of the model response can be written in terms of β0, βk and
βkl. The formula for the variance is beyond the scope of this paper and can be found in [6].
The objective function is based on the principle of moment matching to reduce bias and
limit the parametric uncertainties to the experimental error:

Φ2(x̃0, c) =
N∑
i=1

(
[〈dexpi 〉 − µi(x̃0, c)]2 + [σexp

i − σi(x̃0, c)]2
)
. (13)

Minimising the objective function using a Matlab routine leads to the optimal set of pa-
rameters:

(x̃∗0, c
∗) = argmin

x̃0, c

{Φ2(x̃0, c)} . (14)

4 Automated model optimisation

Figure 2: Extract of a PrIMe XML file for a flame.

The evaluation of the objective function needs fully defined experimental data, ideally
with uncertainties. PrIMe XML format stores flame data from premixed laminar sooting
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flames in a machine and human readable form. For the purpose of this paper three flames
from Zhao et al. [35] have been submitted to the PrIMe data repository in the PrIME
format and subsequently used for optimisation. An extract of a PrIMe XML file is shown
in Figure 2. This enables a fully automated model optimisation. The PrIMe XML files
containing the properties of the flames and the experimental results are used to generate
the necessary input files for the software used and to evaluate the objective function.
These scripts facilitate the inclusion of a larger number of experimental data than used
for this paper. Computational cost of the model evaluation made it necessary to limit our
investigation to only three sets of experiments.

5 Results

The model has been optimised against the median of the logarithmic part of the particle
size distribution at 5 mm, 8 mm, 10 mm and 12 mm above the burner for the flames
A2, A3 and B3 studied by Zhao et al. [35]. This leads to 12 experimental data points.
In order to compare our simulation results to the experiments it is necessary to spatially
shift the numerical results. This shift is due to effects of probe perturbation during the
sampling process. Inserting a probe into a flame changes the gas velocity and cools the
flame [28, 29, 35]. A shift of 2.5 mm has been applied for all the flames to account for
this effect.

100 low discrepancy series points have been generated and the objective function Φ1

(Equation (8)) has been evaluated. The minimum of the objective function has been found
to be:

x∗ = (ρ = 1.63g/cm3, s = 1.15, g = 0.23). (15)

It has been assumed that the result of the low discrepancy series search has the following
uncertainties: σρ=0.2, σs=0.2 and σg=0.2 and that the experimental error is 0.5 nm for
each median data point. Subsequently the response surface optimisation has been per-
formed in the parameter range: 1.43 < ρ < 1.83, 0.95 < s < 1.35 and 0.03 < g < 0.43
to optimise the parameters further and to calculate the uncertainties in the model parame-
ters and model prediction. The minimisation of the objective function Φ2 (Equation (13))
reveals:

x∗0 = (ρ = 1.47g/cm3, s = 0.98, g = 0.05) (16)

and
c∗ = (0.17, 0.0, 0.03) (17)

The low growth factor g indicates that the PAH in a particle grow much slower then in
the gasphase, because they are not fully accessible by the gasphase. The soot density has
been found to be between the value determined by Totton et al. [30, 31] and the current
literature value.

Figure 3 shows the experimental median, the median before the response surface optimi-
sation (the result of the low discrepancy series optimisation that minimises Φ1) and the
median after the optimisation. The uncertainties of the model response before and after
the optimisation are also presented. The response surface optimisation reduces the un-
certainties in the parameters and improves the model response for all the three flames.
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(a) Flame A2 (b) Flame A3

(c) Flame B3

Figure 3: The experimental median with error bars, the unoptimised median with error
(dark grey) and the optimised median with error (light grey).
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(a) A2, 5 mm (b) A3, 5 mm (c) B3, 5 mm

(d) A2, 8 mm (e) A3, 8 mm (f) B3, 8 mm

(g) A2, 10 mm (h) A3, 10 mm (i) B3, 10 mm

(j) A2, 12 mm (k) A3, 12 mm (l) B3, 12 mm

Figure 4: Simulated and experimental particle size distribution for the flames A2, A3 and
B3 [35] at 5 mm, 8 mm, 10 mm and 12 mm above the burner.

The model response at 5 mm above the burner is very insensitive to changes in the free
parameters because the particles are very small and the properties mainly determined by
the gasphase mechanism.

The full particle size distributions are shown in Figure 4. The simulated particle size dis-
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Figure 5: Surface area of the soot particles.

Figure 6: Histograms of the number of carbon atoms per PAH for one specific primary
particle.

tribution matches the shape of the experiments for the large particles, however the number
of small particles is overpredicted. This is not surprising because the model has been op-
timized specifically to fit the median. Further investigations are necessary to understand
these discrepancies.

Figure 5 shows the surface of the soot particles along the flame. The surface of the soot
particles increases in the early flame region for all the flames due to a large inception rate
and a large number of small soot particles. The coagulation and coalescence of the soot
particles in the later flame region reduces the surface of the soot particles.

A simulated TEM image of one of the soot particles together with a typical PAH is pre-
sented in Figure 6. Also histograms of the number of carbon atoms per PAH for one
specific primary particle is shown.
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6 Conclusion

A very detailed soot model that incorporates the composition of each individual primary
particle as well as the coalescence of primary particles due to surface growth and con-
densation events has been optimised against experimental results using a low discrepancy
series method followed by a quadratic response surface optimisation. It has been found
that PAHs in a soot particle grow much slower then in the gasphase. This could be due
to sterical hinderance which prevents the growth species to access the active sites of the
PAHs inside a particle. The work also indicates that the current value for soot particle
density of 1.8 g/cm3 is too large and smaller values should be adapted.

The PrIMe data model and a number of scripts have been used to automate model devel-
opment. An automated model optimisation permits the inclusion of more experimental
data in the future. This procedure will facilitate model falsification and hopefully shed
some light on the theory of soot particle growth.
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