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Abstract

We present an extended methodology for parametric inference in complex popu-
lation balance models. The aim is twofold. Firstly, it is assumed that the parameter
distribution of the model is a multimodal Gaussian rather than a unimodal Gaussian.
After projection of experimental data through a response surface approximation, es-
timates for the parameters and their uncertainties along with the associated weights
of each mode are established. Secondly, the methodology is used to ask the follow-
ing question—if n professors each have a ‘best’ estimate of a particular parameter,
which of these estimates is more likely to be correct? A toy example is used to show
the applicability of the methodology, aiding in the discrimination between a bimodal
and trimodal parameter distribution. The identification of the ‘best’ model parame-
ter among two conflicting estimates is demonstrated in an example from granulation
modelling.
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1 Introduction

In this article, we present an extended methodology for solving parametric inverse prob-
lems for complex population balance models. Furthermore, this methodology helps to
resolve conflicting parameter estimates. Population balance models are in widespread
use in chemical engineering, for instance for crystallisation processes [15, 34], biological
systems [1, 20], liquid-liquid extraction [3, 30, 35], combustion [10, 17, 27, 28], nanopar-
ticle synthesis [14, 18, 19, 24, 33], and granulation [9, 22]. The relevance of the latter
is reflected in the variety of equipment in which granulation processes are performed,
for example, fluidised beds [12, 29], drum granulators [2] and high shear mixers [5, 11].
Before these models can be used to make predictions about the process behaviour, one
is often faced with the inverse problem, i. e., unknown parameters of the models need
to be established [23]. When solving this problem, the sensitivities of the process with
respect to the unknown parameters are required, whilst special algorithms are available
for the sensitivity analysis of coagulation processes [16, 31, 32]. A major difficulty in
solving the inverse problem is that often the computational model in question, for pre-
dicting outcomes as a function of the unknown parameters, requires much computational
effort to evaluate. Faced with this problem, we seek a response surface approximation
to the computational model response, and so this surrogate model now replaces the true
model response. This approach has for instance been used in the modelling of combustion
processes [13]. Given the surrogate model, we then have to solve the problem of consid-
ering how any uncertainties in experimental data should inform us on how certain we are
about our parameter estimates. This article extends the approach taken in [4, 25], where
it was assumed that the parameter distribution is a unimodal Gaussian, when in fact it is
an arbitrary distribution in general. We settle with approximating this with a multimodal
Gaussian distribution with associated weights. This gives reasonable approximations to
the arbitrary distribution, as well as easily interpretable results—the multi-modality allows
for different reasonable parameter values to be considered. The multimodal generalisation
is mathematically more challenging than the unimodal case.

This feature of the presented methodology is used to look at following question: “If n pro-
fessors each have a ‘best’ estimate of a particular model parameter, which of these is more
likely to be correct?”. The quality and applicability of the methodology is demonstrated
for two examples. Besides a toy example, a real life example from wet granulation mod-
elling is presented. The process is modelled with a multidimensional population balance
approach, where the coalescence transformation is a function of the collision frequency
constant. Under the assumption that this constant has been estimated by two researchers,
both using a different method, the current methodology is used to identify which of these
values is more likely to be correct.

2 Problem description

In this section, we describe the situation a researcher is in, where he/she is armed with
some experimental data as well as a mathematical model of the physical phenomenon in
question. The observed experimental data are denoted by the vector
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ηexp
0 = (ηexp

0,1 , . . . , η
exp
0,N)> ∈ RN where datum ηexp

0,i was procured under experimental con-
dition indexed by i ∈ 1, . . . , N . We assume the researcher also has available the corre-
sponding experimental uncertainties σexp = (σexp

1 , . . . , σexp
N )> ∈ RN

+ . This is interpreted
in the following way—the ‘true’ experimental datum ηexp

i has an uncertainty distribution
of a univariate Gaussian distribution with mean ηexp

i,0 and standard deviation σexp
i , indepen-

dently over i, i. e.,

ηexp
i ∼ N

(
ηexp
0,i , (σ

exp
i )2

)
, (1a)

or in multivariate language,

ηexp ∼ NN (ηexp
0 ,Σexp) (1b)

where Σexp is the N × N diagonal matrix with diagonal entries (σexp
1 )2, . . . , (σexp

N )2, and
NN denotes the N -variate Gaussian distribution.

The mathematical model to estimate the ‘true’ datum ηexp
i is denoted by ηi(x), where x =

(x1, . . . , xK)> ∈ RK is some unknown vectorial parameter whose value the researcher
wishes to infer using the experimental data and the model. In future sections, we test our
methodology in a real life example taken from the field of granulation modelling—we
take ηexp

i to be the average mass of agglomerates, where i ∈ 1, . . . , N and in this case, the
set of experimental conditions is some combination of impeller speed and composition of
the binder added to the granules.

We make a (not unreasonable) assumption that the researcher has an a priori assumption
that the most likely values for xk lie in [ak, bk] for each k = 1, . . . , K for some ak, bk. The
xk are rescaled accordingly so that ak = −1 and bk = 1, i. e., for the rest of this paper,
xk ∈ [−1, 1] for all k.

2.1 Model response approximation

Suppose that it is computationally expensive to evaluate ηi(x) for a given x. The approach
taken to relieve this computational burden is one used in [4] in order to approximate ηi(x)
locally by a second order response surface (dropping the i indices for convenience):

η(x) ≈ β0 +
K∑
k=1

βk xk +
K∑
k=1

K∑
l≥k

βkl xk xl , (2)

with β0, βk and βkl being the coefficients of the response surfaces (the i indices have been
dropped from these too). For the rest of this paper, we simply replace the true model
response by this surrogate version. To further simplify the exposition, we will rewrite
eq. (2) as follows:

η(x) = β0 + β>x+ x>Bx (3)

with β = (β1, β2, . . . , βK)> ,

where B is a K ×K matrix with elements Bkk = βkk and Bkl = Blk = 1
2
βkl for k < l.

Note that B is symmetric by construction.
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2.2 Parametric inference

A difficulty with parametric inference is that the true experimental data ηexp is uncertain
(eq. (1b)). Any parameter estimate based purely on the observed value ηexp

0 is potentially
highly sensitive to this value. In fact, the uncertainty in ηexp induces uncertainties in the
parameter values x. Thus the approach taken in [4] is followed, where the uncertainty
distribution eq. (1b) is ‘mapped’ through the model response (or the surrogate model
eq. (3)) to find the uncertainty distribution of x i. e., x is taken to be a K-variate random
variable. In general, the distribution of x can have arbitrary form—however, for the sake
of simplicity of computation and interpretability, we restrict the form of this distribution
to be multimodal Gaussian. Note that in [4], x was taken to be unimodal Gaussian, and
thus this article extends their work.

We now give the definition of a multimodal Gaussian distribution—a scalar random vari-
able y has a scalar multimodal Gaussian distribution if conditional on another (discrete)
random variable m called the random mode, y has a scalar unimodal Gaussian distribu-
tion. We express this in mathematical notation as:

y|{m = d} ∼ N (y0(d), c(d)2) where d ∈ {1, . . . ,M} and (4a)
P(m = d) = w(d) . (4b)

The first line of eq. (4) says that conditional on the event that the random mode m is d,
y has a Gaussian distribution with mean y0(d) and standard deviation c(d). The second
line gives the distribution of the random mode m, i. e., the probability of being in mode d
is w(d). We call w(d) the weight of mode d. Note that since d takes values in 1, . . . ,M ,
we have M modes, and associated with each mode d, we have the values y0(d), c(d) and
w(d).

We are now in the position to give the form of the x distribution. Each component xk is
assumed to have a multimodal Gaussian distribution, independently over the components
k. Mathematically, this is:

xk|{mk = dk} ∼ N (x0,k(dk), ck(dk)2) where dk ∈ {1, . . . ,Mk} and (5a)
P(mk = dk) = wk(dk) . (5b)

Note that for each component xk, we have a random mode mk which takes values in
1, . . . ,Mk where the mk are independently distributed over k. For each value dk of mk,
we have the values x0,k(dk), ck(dk) and wk(dk). For ease of exposition, we rephrase
eq. (5) in terms of vectors and matrices:

x |m ∼ NK(x0(m), V (m)) (6)

with m = (m1,m2, . . . ,mK)>

V (m) = diag
[
c21(m), c22(m), . . . , c2K(m)

]
,

whereNK(x0(m), V (m)) denotes the joint multivariate Gaussian distribution (of dimen-
sion K) with mean x0(m) and covariance matrix V (m). See that V (m) is a diagonal
matrix since each of the xk are assumed to be independent Gaussian random variables
given m. Note the ease of interpretability of the distributional assumption on x—we can
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say that for each xk, there are multiple modes, and the weight of each mode giving the
probability that the mean of that mode is the correct value of xk. Of course, it is non-trivial
how to pick the ‘best’ parameter estimate for xk, but sometimes giving the full answer is
better than forcing a single-point answer—if it really were clear that xk is almost certainly
one particular value, our computation would show that only one mode of xk has weight
of nearly unity. On the other hand, if xk has two modes of nearly equal weight, then
the proper answer is that the means of both modes are equally probable of being the true
value of xk. In this situation, it is clear that more experiments are required, thus providing
a mechanism for decision making in terms of performing experiments.

2.3 Objective function

Earlier, the concept of ‘mapping’ the uncertainty distribution of ηexp onto the uncertainty
distribution of x was discussed—but since the distribution of x has been restricted to
that of a multimodal Gaussian, this ‘mapping’ reduces down to the problem of suitably
choosing the parameters of this multimodal distribution, namely the means {x0(m)}m,
the variances {V (m)}m and the weights {w(m)}m.

The ‘mapping’ can be described differently. The randomness of the x induces randomness
in the surrogate model response η(x). Thus, the values of {x0(m)}m, {V (m)}m and
{w(m)}m are chosen to minimise the difference between the distributions of η(x) and
the uncertainty distribution of ηexp. In exactly the same way as in [4], this notion of
difference between the distributions is described by some objective function Φ. The value
of T := ({x0(m)}m, {V (m)}m, {w(m)}m) which minimises Φ gives us the parametric
distribution which best matches the experimental uncertainty distribution.

For this paper, we choose the following objective function (thereby departing from those
used in previous works such as [4]):

Φ(T ) =
N∑
i=1

[
2Ki(T ) + [σexp

i − σi(T )]2
]

+ 0.05
K∑
k=1

Mk∑
dk=1

1{3Mk wk(dk)<1}
1 , (7)

where

Ki(T ) :=

M1∑
d1=1

M2∑
d2=1

. . .

MK∑
dK=1

{(
ηexp0,i −E[ηi(x|m = d)]

)2 K∏
k=1

wk(dk)

}
σi(T ) :=

√
Var (ηi(x)) .

(8)

The interpretation of this objective function is as follows—Ki(T ) represents the weighted
squared difference between the experimental data point η0,i and the model function ηi
evaluated at all the possible mode combinations, whilst [σexp

i − σi(T )]2 is the squared
difference between the standard deviations of the data uncertainty distribution and the
random model response. The last term in eq. (7) penalises for weights being too small,

1
1{condition} =

{
1 , if condition is true
0 , otherwise
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and thus discouraging possible redundant modes. Note that this is a constrained optimi-
sation problem—not only do the xk have to satisfy the bounds xk ∈ [−1, 1] for all k, but
the weights must sum to unity, i. e.,

∑Mk

dk=1 wk(dk) = 1 for all k, since the weights are
probabilities. It may also be convenient to constrain the values of ck(mk) to be in some
region between 0 and some upper bound since we have assumed that the likely values of
xk lie in [−1, 1].

In this paper, the objective function specified in eq. (7) was minimised by using the MAT-
LAB function fmincon starting with many randomly generated initial conditions for T .
The minimising T out of each of these is taken as our best value of T .

2.4 Conflicting parameter values

The second part of the problem description is to solve the problem of deciding the ‘best’
parameter estimate between a set of conflicting estimates (and their uncertainties) as sug-
gested by various experts. In an earlier part of this paper, the issue of interpretability of
the multimodality in the distribution of xwas discussed, i. e., the usage of the weights as a
measurement of probabilities of different modal means being the correct value of x. This
gives rise to a natural mechanism for deciding the probabilities of conflicting estimates of
xk. The method is as follows: first we choose Mk (i. e., the number of modes) to be equal
to the number of conflicting estimates. Then we fix the modal means x0,k(1), . . . , x0,k(Mk)
to be the parameter estimates themselves (and ck(1), . . . , ck(Mk) to be the given parameter
uncertainties if they are available) in the aforementioned optimisation where previously
they were free to vary. After this optimisation has been carried out, the resulting weights
wk(1), . . . , wk(Mk) provide the relevant probabilities. As mentioned previously, it is not
trivial in general how to decide which mode provides the best estimate for xk, and one
may have to be satisfied with a purely probabilistic statement about xk, indicating that
more experiments need to be carried out.

2.5 Explicit calculations

In this section, the aim is to give a more explicit version of eq. (7), primarily the com-
putation of Ki(T ) and σi(T ) as given in eq. (8). For ease of exposition, we drop all the
indices i. It is strongly recommended to read the appendices if the reader wishes to verify
these calculations.

Since there are two sources of randomness in the response surface η(x) (i. e., from m
and x|m), computation of its mean and variance is made far easier by first considering
the conditional distributions given m, and thus eliminating one source of randomness.
Therefore, let us consider the following two quantities (some expectation and variance
identities are given in Appendix A):

• E(η|m)

• Var (η|m) .

7



To compute the first quantity,E(η|m), we note that η is a function ofx and the conditional
distribution of x|m is described by eq. (6). So:

E(η|m) = E(β0 + β>x+ x>Bx|m)

= β0 + β>x0(m) + tr [BV (m)] + x0(m)>Bx0(m)
(9)

where the expression forE
[
x>Bx|m

]
follows immediately from Theorem 5 in Appendix

B since E [x|m] = x0(m) and Var (x|m) = V (m). The other quantity Var (η|m) can
be shown to be:

Var (η|m) = Var
(
β0 + β>x+ x>Bx|m

)
= β>V (m)β + 2 tr [B V (m)B V (m)]

+ 4x0(m)>B V (m)Bx0(m) + 4x>0 B V β ,

(10)

using Theorem 7 in Appendix B. See that eqs. (9) and (10) show that E [η|m] and
Var (η|m) are functions of m. Now, the objective function demands that the total mean
µ and total variance σ2 are evaluated as below:

µ(T ) = E(η)

= E [E(η|m)] (by iterated expectation)
(11)

σ(T )2 = Var (η)

= Var (E(η|m)) +E [Var (η|m)] (by eq. (22)) .
(12)

Note that both µ(T ) and σ(T ) have now been expressed as expectation and variance of
functions ofm. Computing these explicitly is cumbersome and unnecessary—it is easier
to compute these via a brute force method. More explicitly, suppose we wish to compute
the expectation and variance of a function f(m), of onlym, then we perform this by:

E [f(m)] =

M1∑
d1=1

. . .

MK∑
dK=1

P [m1 = d1, . . . ,mK = dK ] f(d1, . . . , dK)

=

M1∑
d1=1

. . .

MK∑
dK=1

[
K∏
k=1

wk(dk)

]
f(d1, . . . , dK)

(13a)

and

Var (f(m)) = E
[
f(m)2

]
− (E [f(m)])2 (13b)

by definition of expectations and variances, and using the fact that the components of m
are mutually independent to infer that the joint distribution form is

P [m1 = d1, . . . ,mK = dK ] =
K∏
k=1

P [mk = dk] =
K∏
k=1

wk(dk) . (14)
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Table 1: Bimodal test - with 95 % confidence intervals for x

Mode m x0(m) c(m) w(m) CI for x(m)
1 -0.241212 0.040472 0.537532 [−0.3071437,−0.1752803]
2 0.243928 0.018154 0.462468 [0.1779963, 0.3098597]

3 Results and discussion

This section is split into two parts—the first one showing a toy example where we demon-
strate the method’s ability to find the ‘true’ parameter value, as well as considering the
problem of conflicting information. The second part applies the methodology to a com-
plex example taken from the field of population balance modelling—more explicitly, the
modelling of granulation processes.

3.1 Toy example

In this toy example, a ‘physical’ phenomenon is invented where the ‘true’ system can be
described by a scalar quadratic function of some invented parameter x ∈ R whose true
value is x = xtrue. Thus any quadratic surrogate model as described earlier is equivalent to
the true model response η(x) ∈ R. The data ηexp ∈ R are randomly generated from this
true system by adding some gaussian noise about η(xtrue) with predetermined standard
deviations σexp ∈ R. In this particular example, we take the model response to be η(x) =
2x2 + 3, xtrue = 0.25, and σexp = 0.03125, and the 18 generated data points to have mean
ηexp
0 = 3.11965.

Given that our researcher is armed only with the data ηexp
0 , uncertainty σexp and the (pre-

sumed) true model response η(x), estimation of the parameter distribution proceeds as
described in earlier sections. Note that since the model response is symmetric about
zero and is quadratic, then given the data, it should be always impossible to distinguish
between the parameter values x = ±0.25. Thus, in the first instance, an analysis is per-
formed by assuming that the parameter distribution is bimodal—the results are shown in
Table 1. It is clear that we achieve what is expected, that the modal means are approxi-
mately x = ±0.25, the standard deviations are similar, and the weights are almost equal,
implying the indistinguishability between the two modes. One may legitimately ask what
the purpose of this analysis is, after all, ultimately we seek the true value of the param-
eter xtrue = 0.25. However, the analysis shows what is knowable given the data, their
uncertainties, and the model. When confronted with this situation, it is clear that we need
to increase the number of dimensions of the model response as well as obtaining more
(and different) data in order to reduce the size of regions of the parameter space which
have high probability. As a further check, we perform exactly the same operations, but
assuming that the parameter distribution is trimodal rather than bimodal. This is to check
that we still produce a bimodal distribution (as we expect), even despite our trimodal as-
sumption. If the distribution is truly bimodal, we expect to have some redundant modes,
even despite the penalty term in eq. (7). Table 2 shows the results—they are mostly as
we expect in that the third mode is located near x = 0.25 with about 16 % weight, whilst
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Table 2: Trimodal test - with 95 % confidence intervals for x

Mode m x0(m) c(m) w(m) CI for x(m)
1 -0.241543 0.038769 0.683315 [−0.3074747,−0.1756113]
2 -0.244411 0.000000 0.159319 [−0.244411,−0.244411]
3 0.244639 0.000000 0.157366 [0.244639, 0.244639]

the other two modes are almost identical with means near x = −0.25 and their combined
weight being 84 %. The weights are a slight issue, however the fact that two of the modes
can be combined is an indication that we have assumed too many modes in the first place.
This toy example demonstates the method’s ability to produce results that we expect.

3.2 Example from Granulation Modelling

Our second, real life example is taken from granulation modelling. With this we will
demonstrate the problem of pre-existing conflicting information of our parameters x.

3.2.1 The granulation model

For this example we use a granulation model that has been developed in a previous
study [6]. This model is based on a multivariate population balance describing the par-
ticles/granules by five independent variables, which are the volumes of original solid,
reacted solid, external liquid, internal liquid and pores. During the batch granulation
process, the particles are subject to various transformations, namely coalescence, com-
paction, breakage, penetration and reaction.

Owing to the complexity, the model makes use of some 20 parameters, some of them
unknown, so that the inverse problem has to be solved. In an earlier study, [6], the rate
constants for the subprocesses coalescence, K̂0, compaction, kporred, breakage, k̂att, and
reaction, kreac, were estimated, so that we get

x = (x1, x2, x3, x4)
> = (K̂0, kporred, k̂att, kreac)

> . (15)

For convenience we transform the non-dimensionless model parameters into coded, di-
mensionless variables x. The response surfaces are then constructed so that they are
expressed as functions of x. The surrogate model is attractive as an approximation to the
complex granulation model as it leads to smaller computational effort when estimating
the unknown parameters distributions.

The model is applied to a batch granulation process of equally sized beads, being mixed
with a binder. Such an experimental study has been performed by [26], in which they
granulated nonpareils in a bench scale mixer with aqueous polyethylene glycol (PEG)
4000 solutions. These experiments were conducted at different impeller speeds (600,
900, 1200 rpm) leading to different amounts of agglomerates, depending on the impeller
speed and binder composition. Second order response surfaces are constructed for all
scenarios and applied in the analysis, in a similar way to [7].

10



Table 3: Granulation Modelling - unimodal

Mode
m1

Parameter x0,k ck
x1 0.584493 0.210468
x2 -0.724499 0.000000
x3 -1.000000 0.616593
x4 1.000000 1.000000

Table 4: Granulation Modelling - bimodal

Mode
m1 m2

Parameter x0,k ck wk x0,k ck wk

x1 0.584492 0.210490 0.728818 0.584508 0.210425 0.271182
x2 -0.724506 0.000005 0.412621 -0.724504 0.000019 0.587379
x3 -1.000000 0.616588 0.692392 -1.000000 0.616605 0.307608
x4 1.000000 1.000000 1.000000 -0.234073 0.877109 0.000000

3.2.2 Parametric analysis

In the first instance we see what is obtained by assuming the parameter distribution is
unimodal in each component—see Table 3. For comparison, we assume that the param-
eter distribution is bimodal in every component instead—see Table 4. In much the same
way as with the toy example, notice that the modes of the first three parameters are basi-
cally identical in terms of x0,k and ck values to each other, as well as to the corresponding
modes in the unimodal case shown in Table 3. In the fourth variable, we see that the mode
with its weight being unity is identical to the corresponding mode in Table 3—the other
mode is redundant despite the penalty term in eq. (7). This confirms that the parametric
distribution is unimodal for each parameter x1, . . . , x4.

Suppose now that two estimates for the parameter x1, i. e., the collision rate constant, are
available from the literature. Assuming these have been derived by two researchers using
different methods such as particle image velocimetry (PIV) [21] and positron emission
particle tracking (PEPT) [8], it turns out that the estimates for the parameter x1 are differ-
ent, for instance x1 = −0.25, 0.7. With our set of experiments, we want to test which of
the reported constant is more likely.

The same method is used as that produced Table 4, except that the modal means for the
first parameter x1 are fixed to be−0.25 and 0.7 respectively, in the optimisation procedure.
Table 5 shows these results—note that the overwhelming preferred mode for x1 is 0.7 as
expected, since the ‘true’ value of x1 (obtained by us for the unimodal case) is 0.584493.
This means, the collision rate constant x1 = 0.7 should be considered as the right estimate
for the current system. The assumption that x1 = 0.7 is the ‘right’ value for this parameter

11



Table 5: Granulation Modelling - conflicting ‘known’ parameters (in first component)

Mode
m1 m2

Parameter x0,k ck wk x0,k ck wk

x1 0.700000 0.163131 1.000000 -0.250000 0.659889 0.000000
x2 -0.886458 0.000000 0.360873 -0.886457 0.000000 0.639127
x3 -1.000000 0.638586 1.000000 0.960042 0.874635 0.000000
x4 1.000000 1.000000 0.367740 1.000000 1.000000 0.632260

has a direct impact on the estimation of the compaction rate constant x2, since we have
now x2 = −0.89 compared to about −0.72 as given in Table 4. In contrast, the estimates
for the breakage rate constant x3 and the reaction rate constant x4 stay unchanged.

4 Conclusions

An extended methodology for solving parametric inverse problems for complex popula-
tion balance models was presented. This article generalises the work of [4] where the
parametric distribution was assumed to be unimodal, when in fact, this could potentially
be arbitrary. The parametric distribution, thus, is assumed to be multimodal in nature,
with weights for each mode. This provides the user with an indication of which modal
mean gives the best parametric value. The extension from the unimodal to the multimodal
approach required a substantial expansion of the theoretical framework. We use a new ob-
jective function which penalises against modes which have too small a weight, and thus
preventing the production of potentially redundant modes—however, what constitutes the
‘best’ objective function is still very much an open question. Applied to a toy example,
the methodology shows that the parametric distribution for this case must be bimodal with
equal weight on each mode. In a second example, the problem of conflicting information
about a parameter in a multivariate population balance model for a granulation process
was studied. For the coalescence subprocess it was assumed that two different estimates
for the collision rate constant were available from the literature. The methodology dis-
criminated between the conflicting parameter values, so that the ‘right’ estimate for the
collision rate constant was effectively identified. These examples show the potential of
the outlined methodology for future model and process development.
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Nomenclature

B quadratic form matrix [η]
Cov covariance of random variables X and Y [X Y ]
c parameter standard deviation [x]
d mode index -
E expectation of the random variable X [X]
K number of model parameters -
K̂0 rate constant for coalescence m3

k̂att rate constant for breakage s m−5

kporred rate constant for compaction s m−1

kreac rate constant for reaction m s−1

M number of modes -
m random mode -
N number of experimental observations -
P probability -
T vector of variables to optimise over -
V covariance matrix -
Var variance of a random variable X [X2]
w weight of mode -
X random variable [X]
x model parameter (treated as random) [x]
Y random variable [Y ]
Z random variable [Z]

Greek letters

β parameter of response surface [η]
γ a mean quantity [γ]
η model response [η]
ηexp experimental response [ηexp]
µ model prediction [η]
σ standard deviation of model response [η]
σexp experimental uncertainty [η]
Σ covariance matrix [Σ]
Φ objective function [Φ]

Superscripts

exp experiment
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Subscripts

0 mean value
i counting variable
k counting variable
l counting variable
s counting variable
t counting variable
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A Some expectation and variance identities

Theorem 1. Let z ∈ RK be a random variable with mean γ and K × K covariance
matrix Σ, and let β ∈ RK be a non-random vector. Then:

E
[
β> z

]
= β> γ (16a)

and

Var
(
β> z

)
= β>Σβ (16b)

and letting y ∈ RL be a random variable and α ∈ RL be a non-random vector,

Cov
(
β> z,α> y

)
= β>Cov (z,y) α (16c)

where Cov (z,y) is the K × L covariance matrix between y and z.

Theorem 2. Let X1, . . . , Xn be scalar random variables. Then:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi) +
∑
i 6=j

Cov (Xi, Xj) . (17)

Note that when n = 2, this simplifies to

Var (X1 +X2) = Var (X1) + Var (X2) + 2 Cov (X1, X2) (18)

Theorem 3. Let X and Y be any random variables. Then:

E [E (X|Y )] = E [X] (19)
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Theorem 4. Let X , Y and Z be any random variables. Then:

Cov (X, Y ) = E [Cov (X, Y |Z)] + Cov (E [X|Z] ,E [Y |Z]) . (20)

Proof.

Cov (X, Y ) = E [XY ]−E [X]E [Y ]

= E [E (XY |Z)]−E [E (X|Z)]E [E (Y |Z)] by Theorem 3 ,
= E [Cov (X, Y |Z) +E (X|Z)E (Y |Z)]−E [E (X|Z)]E [E (Y |Z)]

= E [Cov (X, Y |Z)] + Cov (E [X|Z] ,E [Y |Z]) (21)

NB: Note that setting X = Y results in the conditional variance formula:

Var (X) = E [Var (X|Z)] + Var (E [X|Z]) (22)

�

B Expectation and variance of quadratic forms

We derive the identities for the expectation and variance of random quadratic forms.

Theorem 5. Suppose z ∼ NK(γ,Σ) and A is some fully deterministic K × K matrix.
Then

E
[
z>A z

]
= tr [AΣ] + γ>Aγ . (23)

Proof.

E

[∑
k,l

zk Akl zl

]
=
∑
k,l

AklE [zkzl]

=
∑
k,l

Akl [Cov (zk, zl) +E (zk) E (zl)]

=
∑
k,l

Akl Σkl +
∑
k,l

γk Akl γl

= tr [AΣ] + γ>Aγ (24)

where the last equality follows since Σ is symmetric. �

Theorem 6. Suppose z ∼ NK(γ,Σ) and A is some fully deterministic symmetric K×K
matrix. Then

Var
(
z>A z

)
= 2 tr [AΣAΣ] + 4γ>AΣAγ . (25)
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Proof. Define2 y := Σ−
1
2 (z−γ). Now z ∼ NK(γ,Σ) implies that y ∼ NK(0, I) where

I is the K dimensional identity matrix. Thus,

Var
(
z>A z

)
= Var

(
(Σ

1
2y + γ)>A (Σ

1
2y + γ)

)
= Var

(
y>Σ

1
2 AΣ

1
2 y + 2γ>AΣ

1
2 y
)

since γ>Aγ is constant

= Var
(
y>Σ

1
2 AΣ

1
2 y
)

+ 4 Var
(
γ>AΣ

1
2 y
)

+ 4 Cov
(
γ>AΣ

1
2 y,y>Σ

1
2 AΣ

1
2 y
)

= Var
(
y>Σ

1
2 AΣ

1
2 y
)

+ 4γ>AΣAγ + 4γ>AΣ
1
2 Cov

(
y,y>Σ

1
2 AΣ

1
2 y
)
. (26)

where liberal use of eqs. (16b) and (16c) has been made. We now need to evaluate the
third term in the last line of eq. (26)—the covariance Cov

(
y,y>Σ

1
2 AΣ

1
2 y
)

is a K

dimensional column vector. Thus, the ith component of this vector is computed (first
defining F := Σ

1
2 AΣ

1
2 ):

Cov
(
yi,y

>Σ
1
2 AΣ

1
2 y
)

= E

[
yi y

>Σ
1
2 AΣ

1
2 y
]
−E [yi]︸ ︷︷ ︸

=0

E

[
y>Σ

1
2 AΣ

1
2 y
]

= E
[
yi y

> F y
]

= E

[
yi
∑
k,l

yk Fkl yl

]
=
∑
k,l

Fkl E [yi yk ym]︸ ︷︷ ︸
=0 , unless i=k=m

=
∑
k

FkkE
[
y3k
]︸ ︷︷ ︸

=0

= 0 . (27)

Thus the third term of the last line of eq. (26) evaluates to zero. The first term is now
looked at:

Var
(
y>Σ

1
2 AΣ

1
2 y
)

= Var
(
y> F y

)
=
∑
k,l

F 2
kl Var (yk yl) +

∑
(r,s)6=(k,l)

Frs Fkl Cov (yr ys, yk yl) (28)

where the second equality follows from eq. (17). Note that in the second sum group,
the only indices which satisfy (r, s) 6= (k, l) and which give a non-zero covariance

2Note that Σ is a positive semi-definite matrix. Thus Σ
1
2 denotes the unique matrix whose square is

equal to Σ.
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Cov (yr ys, yk yl) is when (r, s) = (l, k) (where k 6= l). Thus we now have:

Var
(
y>Σ

1
2 AΣ

1
2 y
)

=
∑
k,l

F 2
kl Var (yk yl) +

∑
k 6=l

Flk Fkl Cov (yl yk, yk yl)

=
∑
k,l

F 2
kl Var (yk yl) +

∑
k 6=l

F 2
kl Var (yk yl)

=
∑
k

F 2
kk Var

(
y2k
)

+ 2
∑
k 6=l

F 2
kl Var (yk yl) (29)

where the second equality follows since F is symmetric. Note that

Var (yk yl) =

{
2 if i = j
1 if i 6= j

(30)

since y2k ∼ χ2
1 and so we continue the calculation from eq. (29) to find that

Var
(
y>Σ

1
2 AΣ

1
2 y
)

=
∑
k

2F 2
kk + 2

∑
k 6=j

F 2
kl

= 2
∑
k,l

F 2
kl

= 2
∑
k,l

Fkl Flk

= 2 tr
[
F 2
]

= 2 tr
[(

Σ
1
2 AΣ

1
2

) (
Σ

1
2 AΣ

1
2

)]
= 2 tr

[
Σ

1
2 AΣAΣ

1
2

]
= 2 tr [AΣAΣ] . (31)

Thus we plug eq. (31) into eq. (26) to find the result

Var
(
z>A z

)
= 2 tr [AΣAΣ] + 4γ>AΣAγ . (32)

�

Theorem 7. Suppose the response surface is given by S := β0 + β> x+ x>B x, where
x ∼ NK(x0, V ). Then the variance of S is:

Var (S) = β> V β + 2 tr [B V B V ] + 4x>0 B V B x0 + 4x>0 B V β (33)

Proof. First we note that the β0 term in S makes no difference to its variance. Second,
notice that B is symmetric. Now, using Theorem 2, we get:

Var (S) = Var
(
β> x

)
+ Var

(
x>B x

)
+ 2 Cov

(
β> x,x>B x

)
= β> V β + 2 tr [B V B V ] + 4x>0 B V B x0 + 2 Cov

(
β>x,x>Bx

) (34)
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where the second equality uses Theorems 1 and 6. This is already quite close to eq. (33)—
we just need to prove that Cov

(
β> x,x>B x

)
= 2x>0 B V β. Note that

Cov
(
β> x,x>B x

)
= Cov

(
β> x, (x− x0)

>B (x− x0) + 2x>0 B x+ x>0 B x0

)
= Cov

(
β> x, (x− x0)

>B (x− x0) + 2x>0 B x
)

= Cov
(
β> x, (x− x0)

>B (x− x0)
)

+ 2 Cov
(
β> x,x>0 B x

)
= Cov

(
β>(x− x0), (x− x0)

>B(x− x0)
)

+ 2 Cov
(
β>x,x>0 Bx

)
= Cov

(
β> y,y>B y

)
+ 2 Cov

(
β> x,x>0 B x

)
(35)

where y := x− x0 ∼ NK(0, V ). Continuing the working, we get that:

Cov
(
β> x,x>B x

)
= Cov

(
β> y,y>B y

)
+ 2β>Cov (x,x) B x0

= Cov
(
β>y,y>B y

)
+ 2β> V B x0

=
∑
i,j,k

Bij βkE[yi yj yk] + 2β> V B x0 (36)

where the last equality follows in much the same way as in eq. (27), noting thatE[y] = 0.
Note further that the termE[yi yj yk] is non-zero only if i = j = k due to the factorisability
of expectations for independent random variables (V is diagonal). But E[y3i ] = 0 is
implied by yi being normally distributed with mean 0. Thus E[yi yj yk] = 0, and

Cov
(
β> x,x>B x

)
= 2β> V B x0 (37)

as required. �
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