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Abstract

This paper deals with the estimation of model parameters and their uncertainties
encountered in granulation modelling. A multivariate, detailed population balance
model of a high shear granulation process is locally approximated by first and sec-
ond order response surfaces, allowing a fast computation of the model response. The
response surfaces are used in three different objective functions—moment matching,
expected least squares and expected weighted least squares—in order to estimate
ranges for the rate constants for particle coalescence, particle compaction, particle
breakage, and reaction, which appear as free parameters in the granulation model.
Firstly, second order response surfaces for the population balance model are con-
structed and used as approximation of the model in the objective functions for the
numerical solution of the inverse problem. Secondly, the choice of objective func-
tion is investigated. It is found that the uncertainties of the model predictions differ
for the three objective functions only slightly. The estimates for the intervals of the
model parameters either overlap or are very close. However, the moment matching
objective function is recommended because the number of estimated parameters and
experimental data sets can be chosen independently.
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1 Introduction

Granulation is an important and widely used process in many industries. In order to im-
prove the process, e. g. produce a product which is cheaper and/or closer to the required
specification, the process needs to be better understood, for instance, through additional
experiments and/or modelling of the process. Detailed modelling of the granulation pro-
cesses, such as by population balances, captures the complex structure of the granules and
the various transformations in a granulator such as nucleation, coalescence and breakage,
to name but a few, thereby aiming to bridge between the micro and macro scales. The
rates with which these processes occur are normally not known and have to be estimated
using experimental results.

This so called “inverse problem” is encountered in virtually all modelling applications.
Ramkrishna and Mahoney [18] emphasis the importance of the inverse problem in pop-
ulation balance modelling. Population balance models are not only used in granula-
tion [1, 2, 5, 6, 8, 17], but also in other fields such as precipitation and crystallisation
[9, 12, 20], combustion [7, 15, 16, 23], polymerisation [13, 26] and modelling of bio-
logical systems [11]. In terms of parameter estimation, rates, such as the growth rate in
a precipitation [3] or the aggregation rate in a granulation process [19], are very often
the centre of interest. This parameter identification can be performed in different ways.
For instance, Vikhansky and Kraft [24] developed a stochastic algorithm that can be used
to calculate the sensitivities of the parameters of a population balance for coagulation
only processes. Based on this method, they solve the inverse problem for a liquid-liquid
extractor [25].

Following a technique developed by Sheen et al. [21] for parameter estimation in com-
bustion problems, Braumann and Kraft [4] study the inverse problem occurring in granu-
lation described by a multidimensional population balance model, in which the particles
are characterised by five independent variables, incorporating the transformations coales-
cence, compaction, breakage, penetration and reaction. In this approach linear response
surfaces [4] are employed to avoid the time consuming evaluation of the five dimensional
population balance model when minimising the objective function given by the inverse
problem. The choice of this objective function is not unique and has not been studied in
this context.

The purpose of the current paper is twofold. Firstly, the methodology proposed by
Braumann and Kraft [4] is extended to second order response surfaces. Secondly, new
objective functions will be introduced and compared with each other by using experimen-
tal data from Simmons et al. [22]. As a result of the optimisation procedure intervals
of the rate constants for particle coalescence, particle compaction, particle breakage, and
reaction will be determined.

2 Multivariate population balance model for granulation

In this work we model the wet granulation of small beads in a high shear mixer. A powder
is agitated in a mixer and starts forming granules after being exposed to binder which can
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Figure 1: Particle model, transformations and rates in the multivariate granulation
model.

be added either as liquid or as solid flakes. The powder transforms into nearly spherical
particles which are held together by binder between the beads and exhibit also binder
on the outer surface. Chemical reactions within the granules lead to the formation of an
additional component. In addition, attrition of the granules caused by the mixing process
can be observed.

In this study, a population balance model for granulation, which has been described in
detail in [6], shall be used. The model, which describes the dynamics in a batch mixer, is
outlined in terms of the type space of the population members, the transformations which
describe how the population changes, and the rates with which this happens. These key
elements of the model are shown in Figure 1. The population consists of granules, which
in turn have five internal coordinates: solid original, solid reacted, liquid external, liquid
internal and pores. The particles in the granulator are subject to various transformations.
These are particle coalescence, compaction, breakage, liquid penetration and reaction
within a particle. Each of these transformations takes place with a rate that depends on
the states of the particles, material properties, process conditions and rate constants. For
instance, the rate for particle coalescence is proportional to the collision rate constant K̂0.
More precisely, this rate constant is part of the coalescence kernel K, being composed of,
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K = nimpeller K̂0 K̃ , (1)

where nimpeller is the rotational speed of the impeller and K̃ the collision efficiency. The
latter is determined using the Stokes criterion [10]. Furthermore, particles undergo com-
paction, whereby the porosity of the particles is reduced. The rate of the compaction step
is determined by the compaction rate constant kporred, whereby the model for this trans-
formation follows the findings of [14]. Hence, the reduction of the porosity of a single
particle Δ" equates as,

Δ" = kporred f(", nimpeller, "min) , (2)
with " being the porosity of the particle and "min the minimum porosity. Breakage as the
antagonistic transformation to particle coalescence is also considered in the model frame-
work. The rate with which the process happens is determined by the breakage frequency
g. As such, the breakage of a granule is caused by impacts on the particles. The energy
for this is thought to be introduced by the rotary movement of the impeller (a chopper is
not considered in the current model). Hence, the breakage frequency is proportional to
the introduced kinetic energy, and is modelled by,

g = k̂att U
2
imp ("Ψ(sr) + �) v , (3)

where k̂att is the rate constant for breakage, Uimp the impact velocity of the particles, Ψ
a function of the amount of reacted solid sr accounting for strengthening of the particle
due to reaction, � the volume fraction of the external liquid and v the particle volume.
Within a granule, two kind of liquids are distinguished—external on the outer surface and
internal inside the pores. Due to capillary effects liquid will migrate into empty pores,
which is called penetration. The rate with which the liquid migrates within a particle is
proportional to the penetration rate constant k̂pen, leading to,

rpen = k̂pen �
−1/2 le (p− li) , (4)

with � as the viscosity of the liquids, le and li as the amount of external and internal liquid,
and p as the pore volume. The combination of different materials in a single granule
can result in reactions within the granules, such as hydration or neutralisation reactions,
resulting in the formation of reacted solid sr. The rate for the reaction transformation
is proportional to the reaction rate constant kreac. With the reaction on the outer surface
being depended on the amount of external liquid le, the rate law is given by,

rreac = kreac ae
le

le + sr
, (5)

where ae is the external surface area of the particle. An identical law is applied for the
reaction inside the pores, where the amount of internal liquid li drives the reaction.

3 Model approximation by second order response sur-
faces

The multivariate population balance model for granulation that is used in the current study
is quite complex. This means, the model contains some 20 parameters, some of them are
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Figure 2: An experimental design with two coded variables x1 and x2 and a linear re-
sponse surface. The circles represent the evaluations of the full model at the
corner points.

often unknown such as the rate constants. These unknown model parameters can be found
by solving the inverse problem, i. e., comparing model predictions with experimental re-
sults. In order to perform this task, the model has to be evaluated several times. Since the
numerical solving of the complex granulation model is computationally expensive, the
full model shall locally be approximated by second order response surfaces. As result, the
model evaluations for solving the inverse problem can be obtained very quickly.

The response surfaces are dependent on the model parameters, so is the full granulation
model. These variables of the responses surfaces shall be denotes by

x = (x1, . . . , xK) . (6)

Often this set of parameters is a subset of the full parameter set of a complex model. In
order to construct the response surfaces, x are usually used in the dimensionless form, and
hence they are called coded variables. The uncoded counterpart of such coded variable is
the respective non-dimensionless parameter in the full granulation model. A second order
response surface as a function of x takes following form,

�(x) = �0 +
K∑
k=1

�k xk +
K∑
k=1

K∑
l≥k

�kl xk xl . (7)

For the establishment of the coefficients �0, �k and �kl, a so-called experimental design
needs to be set up. This means, the full granulation model needs to be evaluated at dif-
ferent combinations of the parameters x. As an example, the construction of the response
surface as a function of two variables (K = 2), x1 and x2, is visualised in Figure 2. At
first, the limits for the coded variables have to be chosen. It is common to choose an
experimental design such that the coded variables become

xk ∈ [−1, 1] . (8)
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Table 1: Unknown parameters in the non-dimensionless and the coded form.

transformation rate constant coded variable
coalescence K̂0 x1
compaction kporred x2

breakage k̂att x3
reaction kreac x4

In general, the coded variables span a K-dimensional hypercube with 2K corner points.
For the corner points of the chosen design with K = 2, i. e., for the different parameter
combinations of x1 and x2, the full model is evaluated. This set of model responses fsim,full

can then be used in a fitting procedure in order to obtain the parameters of the response
surface �(x),

�(x) = fsim,full(x) + "(x) , (9)

where " is the approximation error. In the case of a linear response surface with two
variables, as depicted in Figure 2, three parameters determine the approximation of the
full model. While the parameter �0 gives the value of the response surface at (0,0), the two
coefficients �1 and �2 provide the slopes of the surface. In fact, they are the sensitivities
of the approximated model with respect to the parameters x1 and x2.

In the current study, the response surfaces shall be used as approximation of the multidi-
mensional population balance model. Four parameters of this model shall be determined
by comparison of the model predictions with experimental results, i. e., solve the inverse
problem. The unknown parameters are the rate constants for particle coalescence, particle
compaction, particle breakage and reaction, which are converted into coded variables in
order to set up the response surfaces. Table 1 lists the connection between the coded vari-
ables and the unknown parameters. In a previous study [6], the model has been applied to
the granulation of nonpareils with aqueous polyethylene glycol (PEG) 4000 solutions in a
bench scale mixer. In order to construct the response surfaces, a lower and upper boundary
for each of the four unknown parameters were chosen and linked to the coded variables.
Subsequently, evaluations of the full model for a process time of 80 s, with an impeller
speed of 900 rpm and a binder with a water/PEG4000 ratio of 50:50, are carried out for
the corner points of the experimental design, i. e., for different parameter combinations,
so that a linear response surface for this case can be set up. Projections of this surface
are shown in Figure 3, with two of the four coded variables being fixed at zero. In order
to construct second order response surfaces, additional points other than the corner points
need to be evaluated, so that the curvature of the response surface can be determined. In
the current study these four points are

x1 = (0.5, 0, 0, 0) , x2 = (0, 0.5, 0, 0)

x3 = (0, 0, 0.5, 0) , x4 = (0, 0, 0, 0.5) .
(10)

This means, for the same design and process conditions another response surface is ob-
tained, this time of second order (Figure 4). Compared to the linear response surface the
second order response surface possesses some curvature.
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(a) x1 = 0, x2 = 0 (fixed)
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(b) x1 = 0, x3 = 0 (fixed)
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(c) x1 = 0, x4 = 0 (fixed)
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(d) x2 = 0, x3 = 0 (fixed)
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(e) x2 = 0, x4 = 0 (fixed)
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(f) x3 = 0, x4 = 0 (fixed)

Figure 3: Linear response surfaces with two fixed variables for 900 rpm and a wa-
ter/PEG4000 ratio of 50:50 after 80 s.
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(a) x1 = 0, x2 = 0 (fixed)
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(b) x1 = 0, x3 = 0 (fixed)
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(c) x1 = 0, x4 = 0 (fixed)
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(d) x2 = 0, x3 = 0 (fixed)
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(e) x2 = 0, x4 = 0 (fixed)
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(f) x3 = 0, x4 = 0 (fixed)

Figure 4: Second order response surfaces with two fixed variables for 900 rpm and a
water/PEG4000 ratio of 50:50 after 80 s.
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4 Parameter estimation and error propagation

4.1 Theory

In order to complete the model we need to estimate the four unknown rate constants in-
troduced above. This task is often done by fitting the model to a set of experimental data.
The fitting procedure is carried out as an optimisation which requires many model evalua-
tions and hence can lead to prohibitive computational demand. Because of this, the model
is approximated by the response surfaces. Furthermore, experimental observations have
uncertainties or errors associated with them. This means, data can be used to determine
the range the unknown parameters lie in. Hence, an unknown parameter, x, will have
some mean, x0, and a standard deviation, c. If it is further assumed that the parameter is
Gaussian distributed, x can be expressed by

x = x0 + c � , (11)

where � is standard normally distributed. The uncertainty in the parameters x carries over
into the model, in the current case the response surfaces. Hence eq. (7) turns into,

� (x0, c, �) = �0 +
K∑
k=1

�k x0,k +
K∑
k=1

K∑
l≥k

�kl x0,k x0,l︸ ︷︷ ︸
� (x0)

+
K∑
k=1

�k ck �k +
K∑
k=1

K∑
l≥k

�kl ck cl �k �l

+
K∑
k=1

K∑
l≥k

�kl (x0,k cl �l + x0,l ck �k) .

(12)

It is apparent that � can take a range of values for given x0 due to the randomness intro-
duced by �. However, the mean and the variance of eq. (12) as characteristic measures
can be computed. The mean equates as,

�(x0, c) = E (�(x0, c, �)) = �(x0) +
K∑
k=1

�kk c
2
k , (13)
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whereas the variance �2(x0, c) can be written as,

�2(x0, c) = Var (� (x0, c, �))

=
K∑
k=1

�2
k c

2
k +

K∑
k=1

K∑
l>k

�2
kl c

2
k c

2
l + 2

K∑
k=1

(�kk c
2
k)2

+
K∑
k=1

K∑
l>k

�2
kl

[
(x0,k cl)

2 + (x0,l ck)2
]

+
K∑
k=1

K∑
s=1
s ∕=k

K∑
l>k
l>s

�kl �sl x0,k c
2
l x0,s +

K∑
s=1

K∑
k>s

K∑
l>k

�kl �sk x0,l c
2
k x0,s

+
K∑
k=1

K∑
l>k

K∑
t>l

�kl �lt x0,k c
2
l x0,t +

K∑
k=1

K∑
l>k

K∑
t>k
t∕=l

�kl �kt x0,l c
2
k x0,t

+
K∑
k=1

(2 �kk x0,k ck)2 + 2
K∑
k=1

K∑
l>k

�kl
(
�l x0,k c

2
l + �k x0,l c

2
k

)
+ 4

K∑
k=1

�k �kk x0,k c
2
k + 4

K∑
k=1

K∑
l>k

x0,k x0,l �kl
(
c2k �kk + c2l �ll

)
,

(14)

Further details about the derivation of the variance of �(x0, c, �) can be found in ap-
pendix A.

The ultimate aim of this study is the estimation of the unknown parameters and their
uncertainties using experimental results. These results usually consist of a mean value
�exp
0 and the experimental uncertainty �exp, so that the experimental result are reported as,

�exp = �exp
0 ± �exp . (15)

The values of the unknown model parameters shall be chosen in such a way as to maximise
the agreement between the experimental results and the corresponding model predictions.
Hence one possible objective function, Φ, can be defined as

Φ(x0, c) =
N∑
i=1

([
�exp0,i − �i(x0, c)

]2
+ [�exp

i − �i(x0, c)]
2
)
, (16)

where N is the number of experimental sets under consideration. We shall call eq. (16)
the moment matching objective function. The best matching set of parameters (x∗, c∗)
is obtained by employing a suitable method, i. e., an appropriate optimisation routine, so
that

(x∗
0, c

∗) = argmin
x0, c

{Φ(x0, c)} . (17)

4.2 Results

The outlined methodology is applied to a granulation process in a batch operated mixer.
Simmons et al. [22] performed such a process in a bench scale mixer using nonpareils as
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solid material and aqueous polyethylene glycol (PEG) 4000 solutions as binder. Three dif-
ferent compositions of binder were used, i. e., with 10, 25 and 50 % PEG4000 in the solu-
tion. The mixer was operated at three different speeds, namely at 600, 900 and 1200 rpm,
with samples being taken at four different times when the binder with 50 % PEG4000 was
used. The samples were screened with respect to the mass of agglomerates, i. e., particles
that exceeded a certain size. Using the multivariate population balance model introduced
above, it is possible to study the temporal evolution of a particle ensemble in a granulator.
However, in order to do so, several parameters must be known/estimated. Hence, the cur-
rent methodology shall be used in order to determine four unknown rate constants, namely
for particle collision, K̂0, compaction, kporred, breakage, k̂att, and reaction, kreac, employ-
ing the experimental results from Simmons et al. [22]. More specifically, the mass of ag-
glomerates obtained from the experiments with a binder composition of PEG4000/water
of 50:50 are used, because samples at four different times were taken for these cases.

In a first step, the experimental data from the setup with the medium impeller speed of
900 rpm and a binder composition of PEG4000/water of 50:50 shall be used. Further on,
these data will be referred to as sets 1–4. In order to estimate the unknown parameters,
the response surfaces for the process conditions (and times) of the respective experiments
need to be constructed. As described earlier, the complex granulation model is therefore
evaluated at specific points of the design, allowing the construction of linear and second
order response surfaces. These local approximations of the full granulation model are then
used in the following optimisation step, i. e., the estimation of the unknown parameters, in
order to predict the mass of agglomerates. Upon choosing the initial guesses for x0 and c,
the model predictions, namely the mean and the variance, for the unoptimised cases can
be computed. As initial value we choose

x0
(0) = 0 , c(0) = 1 , (18)

leading to the unoptimised results shown in Figure 5(a), when the linear response sur-
faces are used for the computation of the model responses. After bringing in the four
experimental sets with an impeller speed of 900 rpm and performing the parameter esti-
mation, the model predictions match with the experimental results very well. This means,
there is a set of model parameters that allows the model to take very similar values as the
experimental ones. Furthermore, the uncertainties of the model predictions are reduced
significantly. As such, the proposed methodology shows very similar results for the mass
of agglomerates when second order response surfaces are chosen to provide the model
responses (Figure 5(b)), i. e., the a priori uncertainties in the model predictions are rather
large at the beginning, but can be reduced subsequently.

Despite these very similar model predictions when using linear and second order response
surfaces, i. e., different model approximations, it is worthwhile looking at the values of
the unknown parameters. These parameters of the complex population balance model are
obtained after retransformation of the solution (x∗

0, c
∗) and listed in Table 2. The param-

eter values obtained from using linear and second order response surfaces do not differ
massively from each other. The mean deviation being between 6 and 14 %. With respect
to the uncertainties of the single parameters it is interesting to note that they increase as
well as decrease when second order response surfaces are used instead of linear response
surfaces. However, whilst the relative increase in uncertainty for the coalescence rate
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(b) 2nd order response surface as model

Figure 5: Mass of agglomerates in the unoptimised and optimised model, and experiment
at impeller speed of 900 rpm using sets 1–4 in moment matching objective func-
tion.

Table 2: Rate constants of granulation model with their uncertainties using sets 1–4 and
moment matching objective function.

response surface K̂0 ⋅ 1010 [m3] kporred [s m−1] k̂att ⋅ 10−7 [s m−5] kreac ⋅ 109 [m s−1]

1st order 1.18± 0.00 0.20± 0.04 4.8± 1.0 3.6± 0.0
2nd order 1.04± 0.07 0.2136± 0.0005 4.2± 0.4 3.28± 0.01
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Figure 6: Mass of agglomerates in the unoptimised and optimised model, and experiment
for setups with different impeller speed using second order response surfaces
of sets 1–8 and the moment matching objective function.

constant K̂0 and the reaction constant kreac is moderate when we switch to second order
response surfaces, the relative uncertainties for the compaction rate constant kporred and
the breakage rate constant K̂att are reduced in both cases from 20 % to less than 10 %
or even lower. This suggests that the second order response surfaces are better suited
as approximation to the response of the complex granulation model, resulting in smaller
relative uncertainties for the unknown parameters.

So far, only the estimation of the unknown model parameters for the same process condi-
tions, i. e., binder composition and impeller speed, but for different process times has been
considered. However, the full granulation model is structured in such a way that changes
in impeller speed and binder composition are dealt within the process model rather than
in the rate constants. This means, for different impeller speeds and binder compositions,
there should be one single set of parameters that fits all conditions. In order to study the
effect of different process conditions in the experiments (and in the model), second order
response surfaces for setups with an impeller speed of 1200 rpm and a binder composition
for PEG4000/water of 50:50 (as before) were constructed in the aforementioned manner.
Altogether eight different experimental sets with impeller speeds of 900 (sets 1–4) and
1200 rpm (sets 5–8) are used then in order to estimate the four unknown parameters and
their uncertainties. The mass of agglomerates for these cases is shown in Figure 6. As
before the model predictions along with their uncertainties for the unoptimised cases can
be plotted. The uncertainties for every single set reduces significantly in the optimised
state, although not necessarily to the experimental uncertainty of that particular set. The
big difference to previous considerations is that the model predictions by and large do not
coincide with the experimental value. For the 900 rpm setup (Figure 6(a)) the model pre-
dictions of the optimised cases lie within the experimental uncertainty range of these sets,
so that the model can be judged as being appropriate for this setup. For the 1200 rpm setup
the situation seems to be not so clear. Figure 6(b) suggests that the model predictions are
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Table 3: Rate constants of granulation model with their uncertainties using second order
response surfaces and moment matching objective function.

sets used K̂0 ⋅ 1010 [m3] kporred [s m−1] k̂att ⋅ 10−7 [s m−5] kreac ⋅ 109 [m s−1]

1–4 1.04± 0.07 0.2136± 0.0005 4.2± 0.4 3.28± 0.01
1–8 1.0± 0.0 0.36± 0.04 7.7± 0.4 3.5± 0.0

just within the experimental confidence bands for the 10, 20 and 80 s case. This means,
these cases should be revisited by the scientist in two ways. On the one hand it seems
that the model deserves slight improvement in order to better capture the conditions of
the considered setup, but on the other hand it is also advisable to check the experimental
result, maybe even confirming the result by a repetition of the experiment where possible.

The parameter values being obtained from using four or eight sets in the routine respec-
tively, can differ significantly (Table 3). Whilst the collision rate constant K̂0 hardly
changes when the 1200 rpm cases (sets 5–8) are brought into the methodology, the com-
paction rate constant kporred and the breakage rate constant katt increase significantly. The
less than 10 % increase in the reaction rate constant is rather moderate. The uncertainties
of the parameter estimates do not change significantly when eight instead of four sets are
used for their estimation.

5 Different objective functions

The parameter estimations so far were based on using the moment matching objective
function. In this, the aim is to match the model predictions with the experimental results
for each experiment/scenario. However, since the experimental results as well as the
model predictions carry uncertainties, a new random variable expressed as the squared
difference of the experimental results and the model prediction can be defined,

[�exp(�)− �(x0, c, �)]
2 , (19)

where � is standard normally distributed. The expression in eq. (19) is just a function of
the single model parameter x = x0+c �, but obviously a model response with a number of
parameters, x, should be considered. Furthermore, the expression in eq. (19) is a random
variable, so that the expectation of it should be taken. Hence, an objective function Φ can
be written as,

Φ(x0, c, �) = E

{
N∑
i=1

[�exp
i (�)− �i(x0, c, �)]

2

}
, (20)

with N being the number of experiments. Whilst the model response �i is a function of
the set of random variables �, with the size of � being K, the experimental results are
just functions of the single random variable �i. This means, the number of experiments
N used in the objective function (eq. (20)) cannot be bigger than the number of uncertain
variables x, i. e., N = K. After a few steps the following expression for the objective
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function is obtained,

Φ(x0, c) =
N∑
i=1

[
�exp
0,i − �i(x0, c)

]2
+

N∑
i=1

(�exp
i )

2
+ �2

i (x0, c)

−
N∑
i=1

2�exp
i

(
�i,i ci +

i∑
k=1

�ki,i x0,k ci +
K∑
l≥i

�il,i x0,l ci

)
.

(21)

This objective function shall be called expected least squares objective function. Eq. (21)
is now applied in the methodology in order to estimate the four unknown parameters. As
experimental results, sets 1–4 (900 rpm) are used. The resulting model predictions and
their associated uncertainties are plotted in Figure 7(b). As for the moment matching ob-
jective function the model predictions are very close to the experimental results, although
it has to be said that a perfect match cannot be quite established for t = 40 s. Moreover the
a priori uncertainties in the model predictions get significantly reduced. In contrast to the
result from the moment matching objective function (Figure 7(a)) the uncertainty in the
model predictions using the expected least squares objective function can become smaller
than the experimental uncertainties. This is perfectly possible due to the structure of the
objective function, being the expectation over the sum of the differences between experi-
mental results and (uncertain) model predictions. In fact, smaller uncertainty bounds are
better when it comes to model judgement, because the model can be trusted more. The
derived values of the model parameters of interest are listed in Table 4. When the ex-
pected least squares instead of the moment matching objective function is used for the
parameter estimation, the parameter estimates do not differ significantly from each other,
with the biggest relative change being just 4 %. However, with respect to the parameter
uncertainties, a more significant change can be observed. This means, while the uncer-
tainty in the breakage rate constant vanishes, the uncertainty in the reaction rate constant
increases substantially.

When using the experimental results in the parameter estimation procedure, one may want
to give different weights to different experimental results. For instance, one might not be
so certain about a particular result, and hence would like to give it less importance in the
procedure. This means, the squared difference between experiment and model should be
weighted. In principle any kind of weight can be chosen, but for obvious reasons one
may want to chose the inverse value of the experimental uncertainty as weight, so that the
objective function takes following form,

Φ (x0, c, �) = E

{
N∑
i=1

[
�exp
i (�)− �i(x0, c, �)

�exp
i

]2}
. (22)

This objective function shall be called expected weighted least squares objective function.
After a few steps eq. (22) turns into,

Φ(x0, c) =
N∑
i=1

[
�exp
0,i − �i(x0, c)

�exp
i

]2
+N +

N∑
i=1

[
�i(x0, c)

�exp
i

]2
−

N∑
i=1

2

�exp
i

(
�i,i ci +

i∑
k=1

�ki,i x0,k ci +
K∑
l≥i

�il,i x0,l ci

)
.

(23)
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(c) Expected weighted least squares

Figure 7: Mass of agglomerates in the unoptimised and optimised model, and experi-
ment using second order response surfaces and different objective functions
(impeller speed of 900 rpm).

The application of this objective function in the methodology leads to the predicted mass
of agglomerates as shown in Figure 7(c). The difference between the results from the
expected least squares and the expected weighted least squares objective function is fairly
small, except for the prediction at t = 10 s, where the model prediction does not match
exactly with the experimental mass, but is still within the uncertainty bounds. As can
be expected from these findings, the estimates for the unknown parameters are not very
different from the estimates found in previous arrangements, except for the reaction rate
constant (Table 4). Using the expected weighted least squares objective function means
that the reaction constant is approximately 20 % smaller than for the other two objective
functions. However, the uncertainties for the reaction constant are rather large, so that the
ranges for all three parameter estimates overlap. If a greater confidence about a parameter
estimate is required, more experimental data should be included into the procedure. This
means, the moment matching objective function should be preferred over the other two
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Table 4: Rate constants of granulation model with their uncertainties derived from sets
1–4 using different objective functions.

case K̂0 ⋅ 1010 [m3] kporred [s m−1] k̂att ⋅ 10−7 [s m−5] kreac ⋅ 109 [m s−1]

moment
matching

1.04± 0.07 0.2136± 0.0005 4.2± 0.4 3.28± 0.01

expected least
squares

1.05± 0.04 0.2052± 0.0 4.1± 0.0 3.2± 0.8

exp. weighted
least squares

1.01± 0.0 0.2± 0.0 4.10± 0.09 2.6± 0.6

objective functions, because the number of estimates parameters can be chosen indepen-
dently from the number of experiments.

6 Conclusions

In this paper we discussed the estimation of parameters and their uncertainties for granu-
lation processes, being modelled by multivariate population balances. A response surface
methodology for the local approximation of the complex granulation model for the sub-
sequently applied methodology is introduced. The mean and variance for model approxi-
mation of up to second order are given and used in a moment matching objective function,
extending previous work with linear response surfaces. It was shown that the second or-
der response surfaces are better suited for the model approximation than the first order
response surface, leading to smaller relative uncertainties in the uncertainties of the four
unknown model parameters. Furthermore, two other objective functions for the parameter
estimation are studied. This so called expected least squares and expected weighted least
squares objective functions yield estimates for the unknown model parameters that are not
too different from the estimates using the moment matching objective function. However,
the uncertainties in the model predictions are smaller than the one resulting from the mo-
ment matching function. This means, the predictions from the model are more accurate.
However, in order to choose the number of estimated parameters independently from the
number of experiments considered, the moment matching objective function needs to be
used. It is conceivable that the presented methodology can be extended in further studies
in such a way that a global optimum for the unknown parameters can be found. This
would remove the current constraint that the solution is dependent on the a priori guess
of the model parameters and their uncertainties.

Nomenclature

Cov Covariance of the random variables X and Y [X Y ]
c uncertainty factor [x]
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E expectation of the random variable X [X]
g breakage frequency s−1

K number of model parameters -
K̂0 rate constant for coalescence m3

k̂att rate constant for breakage s m−5

kporred rate constant for compaction s m−1

kreac rate constant for reaction m s−1

le external liquid m3

li internal liquid m3

N number of experimental observations -
nimpeller impeller speed s−1

p pores m3

so original solid m3

sr reacted solid m3

Var variance of the random variable X [X2]
X random variable [X]
x model parameter (treated as random) [x]
Y random variable [Y ]
Z random variable [Z]

Greek letters

� parameter of response surface [�]
" porosity -
� model response [�]
�exp experimental response [�exp]
� model prediction [�]
� random variable -
� uncertainty [�]
Φ objective function [Φ]

Superscripts

* optimum
(0) initial value
exp experiment

Subscripts

0 base value
i counting variable
k counting variable
l counting variable
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s counting variable
t counting variable
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A Variance of expanded second order response surface

The model response as a function of x, c, � is given by

� (x0, c, �) = � (x0) +
K∑
k=1

�k ck �k +
K∑
k=1

K∑
l≥k

�kl ck cl �k �l

+
K∑
k=1

K∑
l≥k

�kl (x0,k cl �l + x0,l ck �k) . (12)

Taking the variance of eq. (12) results in,

Var (�) = Var

(
�(x0) +

K∑
k=1

�k ck �k +
K∑
k=1

K∑
l≥k

�kl ck cl �k �l

+
K∑
k=1

K∑
l≥k

�kl (x0,k cl �l + x0,l ck �k)

)
. (24)

With Var (�(x0)) = 0 and Cov (X, a) = 0, where a is a constant, eq. (24) can be simpli-
fied and rewritten as

Var (�) = Var

⎛⎜⎜⎜⎜⎝
K∑
k=1

�k ck �k︸ ︷︷ ︸
A

+
K∑
k=1

K∑
l>k

�kl ck cl �k �l︸ ︷︷ ︸
B

+
K∑
k=1

�kk c
2
k �

2
k︸ ︷︷ ︸

C

+
K∑
k=1

K∑
l>k

�kl (x0,k cl �l + x0,l ck �k)︸ ︷︷ ︸
D

+
K∑
k=1

2 �kk x0,k ck �k︸ ︷︷ ︸
E

⎞⎟⎟⎟⎟⎠ . (25)
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In the following we use the relationships:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

Cov (Xi, Xj) (26)

=
n∑

i=1

Var (Xi) + 2
n∑

i=1

n∑
j>i

Cov (Xi, Xj) with (27)

Cov (Xi, Xj)i=j = Var (Xi) , Cov (Xi, Xj) = 0 if Xi, Xj i.i.d. (28)

Cov (X, V +W ) = Cov (X, V ) + Cov (X,W ) (29)
Cov (X, bZ) = bCov (X,Z) . (30)

Hence eq. (25) takes following form,

Var (�) = Var (A) + Var (B) + Var (C) + Var (D) + Var (E)

+ 2 Cov (A,B) + 2 Cov (A,C) + 2 Cov (A,D) + 2 Cov (A,E)

+ 2,Cov (B,C) + 2 Cov (B,D) + 2 Cov (B,E)

+ 2 Cov (C,D) + 2 Cov (C,E) + 2 Cov (D,E) . (31)

In detail the different terms equate as

Var

(
K∑
k=1

�k ck �k

)
=

K∑
k=1

�2
k c

2
k Var (�k) =

K∑
k=1

�2
k c

2
k , (32)

Var

(
K∑
k=1

K∑
l>k

�kl ck cl �k �l

)
=

K∑
k=1

K∑
l>k

�2
kl c

2
k c

2
l Var (�k �l) =

K∑
k=1

K∑
l>k

�2
kl c

2
k c

2
l , (33)
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because �k and �l are independent for k ∕= l, Var (�k �l) = E (�2k �
2
l )− [E(�k)E(�l)]

2 and
Cov (�k �l, �k �m) = 0 if k, l,m are all different . We note that Var (�2

n = X2
1 , . . . , X

2
n) =

2n for Xi ∼ N (0, 1) (i = 1, . . . , n).

Var

(
K∑
k=1

�kk c
2
k �

2
k

)
=

K∑
k=1

(�kk c
2
k)2 Var

(
�2k
)

= 2
K∑
k=1

(�kk c
2
k)2 , (34)

Var

(
K∑
k=1

K∑
l>k

�kl (x0,k cl �l + x0,l ck �k)

)

=
K∑
k=1

K∑
l>k

�2
kl

[
x20,k c

2
l Var (�l) + x20,l c

2
k Var (�k)

]
+

K∑
k=1

K∑
l>k

K∑
s=1

K∑
t>s

�kl �st Cov (x0,k cl �l + x0,l ck �k, x0,s ct �t + x0,t cs �s)

=
K∑
k=1

K∑
l>k

�2
kl

[
x20,k c

2
l + x20,l c

2
k

]
+

K∑
k=1

K∑
s=1
s ∕=k

K∑
l>k
l>s

�kl �sl x0,k c
2
l x0,s +

K∑
s=1

K∑
k>s

K∑
l>k

�kl �sk x0,l c
2
k x0,s

+
K∑
k=1

K∑
l>k

K∑
t>l

�kl �lt x0,k c
2
l x0,t +

K∑
k=1

K∑
l>k

K∑
t>k
t∕=l

�kl �kt x0,l c
2
k x0,t . (35)

Var

(
K∑
k=1

2 �kk x0,k ck �k

)
=

K∑
k=1

(2 �kk x0,k ck)2 . (36)

For the computation of the covariances a few more relationships are needed,

Cov (X, Y ) = E(X Y )− E(X)E(Y ) . (37)

Let X, Y, Z be i.i.d. and ∼ N (0, 1) then

E(X Y Z) = 0 , E(X2 Y ) = 0 , E(X Y 2) = 0 , E(X3) = 0 . (38)

The covariances equate subsequently as,

Cov (A,B) = 0 , (39)
Cov (A,C) = 0 , (40)

Cov (A,D) =
K∑
k=1

K∑
l>k

�kl
(
�l x0,k c

2
l + �k x0,l c

2
k

)
, (41)

Cov (A,E) =
K∑
k=1

2 �k �kk x0,k c
2
k , (42)
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Cov (B,C) = 0 , (43)
Cov (B,D) = 0 , (44)
Cov (B,E) = 0 , (45)
Cov (C,D) = 0 , (46)
Cov (C,E) = 0 , (47)

Cov (D,E) =
K∑
k=1

K∑
l>k

2x0,k x0,l �kl (c2k �kk + c2l �ll) . (48)

Subsequently these calculations yield the variance of the model response,

�2(x0, c) = Var (� (x0, c, �))

=
K∑
k=1

�2
k c

2
k +

K∑
k=1

K∑
l>k

�2
kl c

2
k c

2
l + 2

K∑
k=1

(�kk c
2
k)2

+
K∑
k=1

K∑
l>k

�2
kl

[
(x0,k cl)

2 + (x0,l ck)2
]

+
K∑
k=1

K∑
s=1
s ∕=k

K∑
l>k
l>s

�kl �sl x0,k c
2
l x0,s +

K∑
s=1

K∑
k>s

K∑
l>k

�kl �sk x0,l c
2
k x0,s

+
K∑
k=1

K∑
l>k

K∑
t>l

�kl �lt x0,k c
2
l x0,t +

K∑
k=1

K∑
l>k

K∑
t>k
t∕=l

�kl �kt x0,l c
2
k x0,t

+
K∑
k=1

(2 �kk x0,k ck)2 + 2
K∑
k=1

K∑
l>k

�kl
(
�l x0,k c

2
l + �k x0,l c

2
k

)
+ 4

K∑
k=1

�k �kk x0,k c
2
k + 4

K∑
k=1

K∑
l>k

x0,k x0,l �kl
(
c2k �kk + c2l �ll

)
.

(14)
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