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Abstract

This paper investigates a mean reaction rate closure for turbulent reacting flows
called the Direct Quadrature Method of Moments using the Interaction by Exchange
with the Mean micromixing model (DQMoM-IEM). The method is not new, but
we present a systematic study that considers several important new aspects of the
method. We present a rigourous numerical investigation of the behaviour and im-
plementation of the method in a commercial computational fluid dynamics (CFD)
package. The problems that arise are discussed in detail. We present practical hints
and propose solutions to resolve these issues. In particular we demonstrate a new
analytic expression for the DQMoM-IEM source terms. We extend the methodol-
ogy to take advantage of this expression and show details of the implementation in
the CFD code. We present an extensive set of numerical experiments and valida-
tion. The method is demonstrated to work for a problem known from the literature
which includes an isothermal dimerisation process. Experimental and transported
probability density function (PDF) data compare reasonably well. The method is
discussed critically and areas for further research are suggested to make the method
more practical.
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1 Introduction

Turbulent reacting flows are an important field of research. The modelling of such flows
is a valuable element of this research and is relevant to many engineering applications.
For example, the optimisation of diesel combustion to increase fuel efficiency and reduce
soot and NOx emissions. Current turbulent flow models separate the velocity and scalar
fields (for example species concentration) into resolved and unresolved fields. They solve
transport equations for the resolved fields, but need to close terms arising from the unre-
solved fields. In reacting flows, the chemical source term that occurs in the material and
energy balance equations is left unclosed by the unresolved fields and must be modelled.

Transported probability density function (PDF) methods offer a promising approach [18].
They are applicable to all chemistry and flows. The key advantage for reacting flows is
that the chemical source term is closed by the joint composition PDF. However, the direct
solution of transported PDF methods is difficult. Monte Carlo methods are typically used
[18, 19]. This presents several issues. Such methods are often computationally expensive
and they are not available in the existing computational fluid dynamics (CFD) software
that would be the turbulent flow method of choice for many engineering calculations.
Presumed PDF methods offer a related approach. They assume a functional form for the
joint composition PDF based on transported low-order moments, for example the mean
and variance. However, they can only be as accurate as the assumed form of the PDF.
Historically, they have not been successful for non-premixed turbulent combustion [1].

Several method of moments approaches have been used to address unclosed terms that
arise in population balance equations (PBEs). The method of moments with interpolative
closure (MoMIC) [6, 7] closes fractional-order moments by interpolation among whole-
order moments in terms arising due to coagulation and growth processes. However, this
would translate to an extrapolative chemical source term closure and would be rendered
intractable by the number of moments involved. The quadrature method of moments
(QMoM) [16] uses a quadrature approximation (a weighted particle system) to close terms
arising due to growth processes. The quadrature approximation is calculated from low-
order moments each time it is required. QMoM was initially formulated for univariate
distributions [16]. It has since been extended to a bivariate case [28].

The direct quadrature method of moments (DQMoM) [5, 15] is an extension of QMoM.
It uses an arbitrary moment set to derive transport equations for the particle system. It can
be applied to multiple scalars and guarantees to reproduce the transport of the moment set
used in the derivation. The transport equations share the form of standard Eulerian scalar
transport equations and the method is amenable to implementation within the infrastruc-
ture of existing CFD codes. The DQMoM derivation is summarised by Fox [5]. The inter-
action by exchange with the mean (IEM) [26] micromixing model is used and the resulting
method is deterministic. A linear system must be inverted to calculate the source terms.
Fox notes that the linear system is singular if any particles occupy the same location in
composition space. A small perturbation of the particles is suggested in order to overcome
this. It is also noted that the application of DQMoM to inhomogeneous scalar mixing is
compromised by violations of boundedness. An alternative algorithm, DQMoM-IEM is
suggested to address this issue. It constrains the method to use conserved weights and
transport unmixed moments. Several applications have been investigated.
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Fan et al. [4] and Fan and Fox [3] applied monovariate DQMoM with N=2, 3, 4 particles
to a PBE describing aggregation and breakage in a fluidised bed. Fan et al. [4] used a
condition number to detect singularities in the source term calculation. In the singular (or
near singular) case, they suggested either setting the source terms to zero, or estimating
them based on neighbour cells. N =3 was reported as optimal. Fan and Fox [3] reported
that N ≥ 3 was required for cases with a wide PSD and significant segregation. Zucca
et al. [29] applied DQMoM to a PBE describing soot formation in turbulent flames, using a
presumed beta-PDF method to close the chemical source term. Zucca et al. [30] extended
this work to validate bivariate DQMoM against Monte Carlo simulations. They showed
that more particles gave increased accuracy, but also greater numerical difficulties. The
choice of the moment set affected accuracy and numerical stability. Lower-order moments
gave better conditioning. The use of fractional moments was suggested.

Wang and Fox [27] applied DQMoM-IEM to simulate reactive-precipitation in plug-flow
and report agreement with transported PDF data forN=2, 3, 4 particles. They discuss the
singularities in the source term calculation and describe approaches using either a pertur-
bation method or values based on neighbour cells. They avoid violations of boundedness
by not calculating the source terms where the scalars are near their theoretical bounds. A
few publications have applied DQMoM-IEM with N = 2 particles to turbulent combus-
tion. Raman et al. [20] reported reasonable agreement with Monte Carlo data for Large
Eddy Simulations (LES) of a reacting shear layer and bluff body flame. In the flame case,
a laminar flamelet chemistry model was used and the mixture fraction was transported by
DQMoM-IEM. Tang et al. [22] reported similar agreement with experimental data for a
Reynolds-averaged Navier Stokes (RANS) simulation of a bluff-body methane flame.

The stochastic fields (SF) [21, 25] method shares some similarities with DQMoM and is
equally amenable to implementation within existing CFD codes. It uses Eulerian fields
to approximate the one-point joint composition PDF. Each field contains the value of
each scalar over the solution domain. This is similar to the particle description used by
DQMoM. The method has been applied a number of turbulent reacting flow problems
including piloted methane flames [17], the auto-ignition of hydrogen flames [12, 13] and
the dispersion of reactive pollutants [10]. Each of these SF applications have used the
IEM micromixing model. The key difference from DQMoM is that SF uses a stochastic
solution method. A sufficient number of fields must be used to reduce statistical error.

The purpose of this paper is to study the numerical behaviour of DQMoM-IEM and
investigate its implementation in the Star-CD [2] CFD code. DQMoM-IEM is attractive
because it is deterministic such that the number of particles can be selected based on the
approximation appropriate to the problem, rather than to control statistical error.

The rest of this paper is structured as follows. Section 2 introduces the key features of
DQMoM and DQMoM-IEM. Section 3 presents a rigorous numerical investigation of
DQMoM-IEM. A new analytic expression is presented for the DQMoM-IEM source
terms. Two DQMoM-IEM solvers based on this expression and the coupling to the
Star-CD [2] CFD code are discussed in detail. Section 4 validates the DQMoM-IEM
solvers against the method of moments and a turbulent reaction test case known from the
literature [14, 23, 24]. Issues regarding boundary conditions are discussed and areas for
further investigation are suggested to make the method more practical.
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2 Theoretical background

This section introduces the key features of DQMoM and DQMoM-IEM. The derivations
are well documented in the literature and are described in detail by Fox [5, Appendix B].

The derivations are summarised in Appendix A for the benefit of any readers who would
appreciate more detail. The derivations are presented in a general multivariate component
form and may be of particular use to anyone who wishes to implement DQMoM.

2.1 DQMoM

A closed joint composition PDF transport equation

∂fφ
∂t

+ 〈Ui〉
∂fφ
∂xi
− ∂

∂xi

(
ΓT
∂fφ
∂xi

)
= − ∂

∂ψα

[(
Cφ
2τφ

(〈φα〉 − ψα) + Sα(ψ)

)
fφ

]
. (1)

is approximated using a weighted particle system

fφ(ψ;x, t) dψ = fφ(ψ1, ψ2, . . . , ψK ;x, t) dψ1 · · · dψK

≈
N∑
n=1

w(n)(x, t)
K∏
α=1

δ
ψ

(n)
α ;x,t

dψ(n)
α , (2)

where

δ
ψ

(n)
α ;x,t

≡ δ
[
ψα − ψ(n)

α (x, t)
]
, (3)

N∑
n=1

w(n)(x, t) = 1 . (4)

The system containsN(K+1) unknowns comprising the weights w(n) and positions ψ(n)
α ,

where n = 1, . . . , N particles and α = 1, . . . , K scalars in the composition vector φ.

Transport equations that share the form of standard scalar transport equations are derived
for the weights w(n) and weighted positions s(n)

α of the particle system

∂w
(n)

∂t
+ 〈Ui〉

∂w
(n)

∂xi
− ∂

∂xi

[
ΓT
∂w

(n)

∂xi

]
= a(n) , (5)

∂s
(n)
α

∂t
+ 〈Ui〉

∂s
(n)
α

∂xi
− ∂

∂xi

[
ΓT
∂s

(n)
α

∂xi

]
= b(n)

α , (6)

where

s(n)
α ≡ w(n)ψ(n)

α . (7)

5



The source terms a(n) and b(n)
α are described by an algebraic linear system (equation A.16).

The derivation of the linear system uses a set of M=N(K + 1) empirical moments

〈φm �m�1
1 . . . φm�m�K

K 〉N =
N∑
n=1

w(n)

K∏
α=1

ψ(n)
α

m �m�α for �m� = 1, . . . ,M , (8)

to force the particle system to obey the equivalent moment transport equations that could
be derived from equation (1). The correct transport of empirical moments outside this set
is not certain.

Fox [5] notes that DQMoM does not guarantee boundedness of the particle positions
when applied to joint PDFs defined on bounded domains. It is further noted that the linear
system is often poorly conditioned and is rank deficient if any particles occupy the same
location in composition space. It is implicit that this difficulty will increase as the size of
the linear system increases with the number of scalars.

2.2 DQMoM-IEM

DQMoM-IEM constrains DQMoM to use particles with conserved weights and transport
only unmixed moments. It is suggested by Fox [5] to ensure boundedness.

By definition, the source term of a conserved scalar is null

a(n) = 0 . (9)

The source terms b(n)
α are described by an algebraic linear system of NK equations. The

derivation of the linear system uses M=NK unmixed empirical moments

〈φm �m�α
α 〉N =

N∑
n=1

w(n)ψ(n)
α

m �m�α for �m� = 1, . . . ,M . (10)

The unmixed constraint ensures that the scalars are uncoupled [5] and the linear system
may be written

N∑
n=1

ψ(n)
α

m �m�α−1 (
b(n)
α − w(n)r(n)

α

)
=

N∑
n=1

(m
�m�α − 1)ψ(n)

α

m �m�α−2
w(n)c(n)

αα (11)

for �m� = 1, . . . ,M ,

where

c
(n)
αβ ≡ ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi
, (12)

r(n)
α ≡

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
+ Sα

(
ψ(n)

)
. (13)

DQMoM-IEM is likely to be of most interest in applications where only low-order integer
moments are required. For example, in a two-particle system, the unmixed empirical
moments may be specified as K means 〈φα〉N and K second moments 〈φ2

α〉N .
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3 Numerical investigation

The implementation of DQMoM-IEM in the Star-CD [2] CFD code and the numerical
behaviour of DQMoM-IEM were considered in detail.

Section 3.1 describes an operator splitting used to couple DQMoM-IEM and Star-CD.
The splitting enables the most appropriate numerical method to be applied to each part of
the problem. For example, the Star-CD algebraic multigrid (AMG) method works well
for conserved scalars, but not scalars with stiff source terms. For this reason, the splitting
is such that the DQMoM-IEM source terms are integrated outside Star-CD.

Section 3.2 presents a new analytic expression for the source terms b(n)
α and considers their

numerical behaviour in detail. The problems that arise during the integration of the source
terms are discussed and two DQMoM-IEM solvers are suggested to resolve these issues.

3.1 DQMoM-IEM coupling to Star-CD

DQMoM-IEM and Star-CD [2] are coupled using an operator splitting. The objective is
to solve equations (5) and (6).

The weights w(n) and weighted positions s(n)
α are set up in Star-CD as passive scalars with

no source term. The transport equations (5) and (6) are rewritten as

∂ϕ

∂t
= F1(ϕ) + F2(ϕ) , (14)

and are integrated as a transient problem using a second-order operator splitting

Step 1: ϕ†1 = ϕ(t) +

∫ 1
2

∆t

0

F1(ϕ) dτ with ϕ = ϕ(t) at τ = 0 , (15)

Step 2: ϕ†2 = ϕ†1 +

∫ ∆t

0

F2(ϕ) dτ with ϕ = ϕ†1 at τ = 0 , (16)

Step 3: ϕ(t+ ∆t) = ϕ†2 +

∫ 1
2

∆t

0

F1(ϕ) dτ with ϕ = ϕ†2 at τ = 0 , (17)

where the time step ∆t is specified via Star-CD. The operators F1 and F2 are defined

F1

(
w(n)

)
= a(n) , (18)

F1

(
s(n)
α

)
= b(n)

α , (19)

F2

(
w(n)

)
= −〈Ui〉

∂w
(n)

∂xi
+

∂

∂xi

[
ΓT
∂w

(n)

∂xi

]
, (20)

F2

(
s(n)
α

)
= −〈Ui〉

∂s
(n)
α

∂xi
+

∂

∂xi

[
ΓT
∂s

(n)
α

∂xi

]
. (21)
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The operator splitting scheme is illustrated in Figure 1. Step 2 is implemented using
Star-CD to solve conserved transport equations for each scalar. Steps 1 and 3 are called
from a user-defined subroutine at the beginning and end of each Star-CD iteration. This
provides a convenient way to perform each splitting step within a single iteration.

A computationally efficient coupling is achieved by combining step 3 with step 1 of the
following iteration, with the obvious exception of the last iteration. The implementation
may be easily run across multiple processors using the parallel features of Star-CD.

START

FINISH

2 Star-CD

Integrate operator 2

USER CODE

Calculate scalar gradients

Integrate operator 1 

1

USER CODE

Calculate scalar gradients

Integrate operator 1 

3

START

FINISH

2 Star-CD

Integrate operator 2

USER CODE

Calculate scalar gradients

Integrate operator 1 

1 USER CODE

Calculate scalar gradients

Integrate operator 1 

3

2 Star-CD

Integrate operator 2

USER CODE

Calculate scalar gradients

Integrate operator 1 

1

Scalar gradients are treated as 
constant inside the dashed line

Scalar gradients are treated as 
constant inside the dashed line

USER CODE

Calculate scalar gradients

Integrate operator 1 

3

START

FINISH

τ = ∆tτ = 1
2 ∆tτ = 0

Figure 1: Operator splitting used to implement DQMoM-IEM within Star-CD.

The spatial gradients of ψ(n)
α are required in steps 1 and 3. The gradients of the transported

scalars w(n) and s(n)
α are evaluated using Star-CD and the gradients of ψ(n)

α are calculated

∂ψ
(n)
α

∂xi
=


1

w
(n)

(
∂s

(n)
α

∂xi
− s

(n)
α

w
(n)

∂w
(n)

∂xi

)
if w(n) 6= 0

0 otherwise .
(22)

In the case w(n)
= 0, the gradient is arbitrarily set to zero. A feature of Star-CD is that

the gradients are evaluated simultaneously for all cells in a domain. It is convenient to
calculate the gradients over the whole domain at the start of the step. These values are
treated as constants for the remainder of step, as illustrated by the dashed lines in Figure 1.
The numerical approach to the remainder of steps 1 and 3 is described in Section 3.2.

3.2 DQMoM-IEM behaviour

This section considers the numerical behaviour of DQMoM-IEM. The objective is to
identify and resolve the problems that occur when integrating the set of NK ordinary
differential equations (ODEs)

∂s
(n)
α

∂t
= b(n)

α , (23)

as per steps 1 and 3 of the operator splitting (see Section 3.1, equations 15, 17 and 19).

8



3.2.1 Source terms

This section presents a new analytic expression for the DQMoM-IEM source terms b(n)
α

and discusses the numerical issues that arise when integrating equation (23).

The source terms are described by the algebraic linear system given in equation (11). The
scalars in equation (11) are uncoupled and if the unmixed empirical moments are specified

m
�m�α = �m� for �m� = 1, . . . , N and α = 1, . . . , K . (24)

equation (11) represents a set of N equations for each scalar α = 1, . . . , K and can be
solved analytically to give

b(n)
α = w(n)r(n)

α (25)

+ w(n)c(n)
αα

N∑
i=1
i 6=n

1

ψ
(n)
α − ψ(i)

α

+
N∏
i=1
i 6=n

1

ψ
(n)
α − ψ(i)

α

 N∑
j=1
j 6=n

w(j)c(j)
αα

N∏
k=1
k 6=j,n

(
ψ(j)
α − ψ(k)

α

) .

The solution is constrained to the moments specified in equation (24), but is general in the
sense that equation (25) may be applied to any number of particles and scalars. In the
N=2 particle case, equation (25) simplifies to

b(1)
α =

w
(1)
c

(1)
αα + w

(2)
c

(2)
αα

ψ
(1)
α − ψ(2)

α

+ w(1)r(1)
α , b(2)

α =
w

(1)
c

(1)
αα + w

(2)
c

(2)
αα

ψ
(2)
α − ψ(1)

α

+ w(2)r(2)
α , (26)

where an equivalent expression was previously given by Wang and Fox [27] for N=2.

The availability of equation (25) presents two key advantages. Firstly, it negates the need
to solve equation (11) numerically. Secondly, the analytic form of the source terms gives
the following valuable insights into the behaviour of the system.

The term containing rα describes the chemical reaction and micromixing processes. These
will be referred to as the reaction and micromixing terms. The reaction term will likely
require an implicit ODE solver. The micromixing term may be integrated numerically
with the reaction term. The numerical treatment of such systems has been widely studied
[11]. The presence of these terms does not pose a new challenge.

The terms containing cαα describe the effect of turbulent diffusion in the presence of
spatial gradients of scalar α. They will be collectively referred to as the diffusion term.
The diffusion term conserves the scalar means. This is demonstrated in equation (26),
where the diffusion terms are equal and opposite. However, the functional form of the
diffusion term presents several challenges to the DQMoM-IEM implementation.

Figure 2(a) shows the form of the diffusion and micromixing terms in an inert N = 2
particle system. The diffusion term produces variance by causing the particles to diverge.
It is singular and discontinuous where ψ(1)

α = ψ
(2)
α . The micromixing term causes the

particles to converge. It is responsible for decay of the variance. Figure 2(b) shows the
net source term and illustrates a problem. If ψ(n)

α is defined on a bounded domain [0, 1], a
particle 0.8<ψ

(2)
α 61 has a net positive source term and will move out of bounds.
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Figure 2: Functional form of the source term for an inert N=2 particle system.
The source term is shown as a function of the particle position ψ(2)

α where
ψ

(1)
α =0.8, w(1) =w

(2) =1/2, c(1)
αα=10−1 1/s, c(2)

αα=10−4 1/s and Cφ=2, τφ=1/2 s.

Figure 3 shows two possible forms of the diffusion term in an N=3 particle system. The
diffusion term is singular and discontinuous where any ψ(n)

α are equal. The difference be-
tween Figure 3(a) and 3(b) is due to the relative magnitude of the c(n)

αα terms. Figure 3(a)
shows two unstable discontinuities. Figure 3(b) shows a stable and an unstable discon-
tinuity. ψ(1)

α and ψ(3)
α will converge where ψ(3)

α ≈ 0.2, ψ(2)
α and ψ(3)

α will diverge where
ψ

(3)
α ≈0.6. Both figures show potential boundedness problems. For example, the positive

source terms for ψ(3)
α >0.6 and the negative source term for ψ(3)

α <0.2 in Figure 3(a).

The diffusion terms for N > 3 particle systems show more instances of the behaviour
illustrated in Figure 3, up to a maximum of N−1 discontinuities.
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Figure 3: Functional form of the diffusion source term for an N=3 particle system.
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The numerical integration of the diffusion term presents several challenges. At a stable
discontinuity, the particles will converge and the discontinuity will persist. The risk is
that the solution may ‘overshoot’ and oscillate about the discontinuity. At an unstable
discontinuity, the particles will diverge. The sign of the diffusion term will determine the
direction of divergence. However, the source term is singular at the discontinuity. The
sign is undefined and may not necessarily be arbitrarily assigned. The diffusion term may
lead to violations of boundedness. This is most likely in regions of high turbulence and
high scalar gradients. Analogous issues arise due to the turbulent diffusion process in
other Eulerian particle methods, for example the Stochastic Fields method [8, 9].

3.2.2 General solver

A general DQMoM-IEM solver was developed to numerically integrate equation (23) us-
ing RADAU5 [11], an implicit 5th order Runge-Kutta method with low start-up cost. The
source terms b(n)

α are supplied by functional evaluation. The diffusion term is modified to
address the issues highlighted in Figures 2 and 3. Equation (25) is rewritten

b(n)
α = w(n)r(n)

α + fb

(
ψ(n)
α , b

(n)
dxα

)
, (27)

where

b
(n)
dxα = w(n)c(n)

αα

N∑
i=1
i 6=n

fp
(
ψ(n)
α − ψ(i)

α

)
+

N∏
i=1
i 6=n

fp
(
ψ(n)
α − ψ(i)

α

) N∑
j=1
j 6=n

w(j)c(j)
αα

N∏
k=1
k 6=j,n

(
ψ(j)
α − ψ(k)

α

) ,
(28)

and

fb(ψ, bdx) =


bdx f

(
ub− ψ
εb

)
if bdx > 0 and ub− ψ > 0

bdx f

(
ψ − lb

εb

)
if bdx < 0 and ψ − lb > 0

0 otherwise ,

(29)

fp(∆ψ) =


1

∆ψ
f

(
∆ψ

εp

)
if ∆ψ 6= 0

0 otherwise .
(30)

A bounding function fb(ψ, bdx) is used to clip the diffusion term to enforce boundedness.
The lower bound lb and upper bound ub are defined for each ψ(n)

α

lb(n)
α = max

[
lbgb, min

({
ψ(n)
α

}
nb

)]
(31)

ub(n)
α = min

[
ubgb, max

({
ψ(n)
α

}
nb

)]
(32)
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where {·}nb denotes the set of Star-CD neighbour cells and [lbgb, ubgb] is a global bound
interval imposed over the entire domain. In the case of mass fractions [lbgb, ubgb] = [0, 1].

A particle function fp(∆ψ) is used to control the discontinuities and singularities. Several
approaches were considered. The most obvious is to impose a minimum particle sepa-
ration. This avoids singularities, but not discontinuities. It risks limiting the effect of
the diffusion term and would not necessarily prevent oscillation of the numerical solution
about a stable discontinuity. The same reasoning may be applied to approaches that limit
the maximum value of the diffusion term or set it to zero near a discontinuity. A less
arbitrary approach is to replace the discontinuity and singularity with a smooth transition.

A symmetrical filter function f(∆ψ/εp) is used by the particle function to remove the
discontinuities. The effect of the filter function on the diffusion source term is illustrated
in Figure 4. An exaggerated value of εp is used for clarity. The diffusion term is set to zero
at and slightly to either side of each discontinuity. The zero region negates the requirement
to assign an arbitrary sign to the diffusion term. The width of the region can be used to
prevent oscillation of the numerical solution without changing the RADAU5 tolerances.
The same filter is used by the bounding function to ensure smooth clipping at the bounds.
εp and εb are small positive numbers. In the current implementation εb =εp =10−3.
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(a) Filter function.
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(b) Filtered source term from Figure 3(b).

Figure 4: Filtered diffusion source term for an N=3 particle system.

The filter function preserves as much of the diffusion term as possible. However, a side-
effect is that the diffusion terms on each particle only sum to zero for anN = 2particle
system with a symmetric filter. This is also the case where a maximum value is imposed
on the diffusion term instead of using a filter. A similar problem is presented where the
diffusion term is clipped to enforce boundedness. In general, the diffusion term cannot
be modified for one scalar on a given particle without disturbing the scalar mean and
mass balance over the set of particles. The diffusion term fb(ψ

(n)
α , b

(n)
dxα) calculated using

equation (27) is normalised to enforce mass balance and conservation of the scalar mean.
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3.2.3 Full analytic solver

An efficient solver was developed to analytically integrate the N = 2 particle case for
scalars with no chemical source term. Equation (23) is rewritten as

∂s
(n)
α

∂t
= F (n)

mxα + F (n)
dxα , (33)

and integrated using an additional second-order operator splitting

Step i: s(n)
α

†1
= s(n)

α (t) +

∫ 1
2

∆t

0

F (n)
mxα dτ with s(n)

α = s(n)
α (t) at τ = 0 , (34)

Step ii: s(n)
α

†2
= s(n)

α

†1
+

∫ ∆t

0

F (n)
dxα dτ with s(n)

α = s(n)
α

†1 at τ = 0 , (35)

Step iii: s(n)
α (t+ ∆t) = s(n)

α

†2
+

∫ 1
2

∆t

0

F (n)
mxα dτ with s(n)

α = s(n)
α

†2 at τ = 0 . (36)

The operators are defined

F (n)
mxα = w(n) Cφ

2τφ

(
〈φα〉N − ψ

(n)
α

)
n ∈ {1, 2} , (37)

F (n)
dxα =

w
(1)
c

(1)
αα + w

(2)
c

(2)
αα

ψ
(n)
α − ψ(i)

α

n, i ∈ {1, 2}, i 6= n , (38)

and are integrated analytically∫ t2

t1

F (n)
mxα dτ = w(1)w(2)∆ψ(n)

α

(
1− exp

[
−Cφ

2τφ
(t2 − t1)

])
(39)

∫ t2

t1

F (n)
dxα dτ = w(1)w(2)∆ψ(n)

α

±
√

2 (t2 − t1)w
(1)
w

(2)
(
w

(1)
c

(1)
αα + w

(2)
c

(2)
αα

)
+
(
w

(1)
w

(2)
∆ψ

(n)
α

)2

,

(40)

where

∆ψ(n)
α = ψ(i)

α (t1)− ψ(n)
α (t1) n, i ∈ {1, 2}, i 6= n .

The values of the micromixing parameters Cφ and τφ , weights w(n) and terms in c(n)
αα are

treated as constant during the integration as per Section 3.1.

The root in equation (40) is chosen so that the particles diverge as per the behaviour
illustrated in Figure 2. If ∆ψ

(n)
α <0, the positive root is chosen. If ∆ψ

(n)
α >0, the negative

root is chosen. If ∆ψ
(n)
α = 0, the right hand side of equation (40) is set to zero. The

current code enforces the mass fraction bounds [0, 1] over the whole domain by clipping
the magnitude of the root. No neighbour cells are considered.

The advantage of this solver is that it is very fast. It is general in the sense that it may be
applied to any number of scalars, although it is restricted to N=2 particles.
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4 Numerical experiments and validation

This section presents the numerical validation of the DQMoM-IEM solvers described in
Section 3 against a constant density test case known from the literature.

Section 4.1 describes salient details of the test case. Section 4.2 describes the validation of
the solvers against the method of moments. This validates the treatment of the diffusion
term described in Section 3. Section 4.3 demonstrates the application of the general solver
to a reacting test case. Sections and 4.4 and 4.5 discuss the solver efficiency in terms of
CPU time and the significance of the choice of boundary conditions.

4.1 Model problem

The investigations in this paper were performed using a constant density test case known
from the literature. This was selected because it has been well studied numerically [23, 24]
and experimentally [14]. The system considered is the isothermal liquid-phase reaction:

A + B
k1−→ R, B + R

k2−→ S , (41)

where k1 = 5.0 × 106 m3/kmol s and k2 = 1.8 × 103 m3/kmol s [23]. In regions where
mixing is slow relative to the second reaction, a significant proportion of B and R react to
form S before B can be quenched by further mixing with A. The yield of R defined by

Y =
CR

CR + 2CS

, (42)

is sensitive to the rate of mixing. The case offers a simple approximation to stiff chemistry.

The reactor configuration is illustrated in Figure 5. It is the single-jet system studied by Li
and Toor [14] and Tsai and Fox [23]. This paper considers the case where a turbulent jet of
reactant B is injected into an annular laminar coflow of reactant A. Cases are considered
for two jet Reynolds numbers, Re=3530 and Re=7552, and two inlet concentrations.
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Figure 5: Configuration of the single-jet tubular reactor.

The reactor is modelled in 3D using a triangular prism-shaped domain and boundary con-
ditions to exploit axial symmetry. The flow in the reactor was solved as a steady problem
using Star-CD [2] as per the approach detailed by Tsai and Fox [23]. The RANS equa-
tions were solved using a k-ε High Reynolds Number turbulence model and a standard

14



wall function. The default model constants were used with unit Prandtl numbers. The
inlet boundary conditions are summarised in Table 1.

A base grid was defined for each Reynolds number using the axial and radial coordinates
specified by Tsai and Fox [23, Table 1 and Table 2]. A refined grid was defined for each
case by dividing each cell in the base grid by a factor of two in the axial direction, and
each cell except those adjacent to the outer wall by a factor of two in the radial direction.
The exception was made necessary by the wall function, which required the coarse radial
resolution at the wall to be retained. All the grids were one cell deep in the circumferential
direction. The base grid turbulent kinetic energy k and turbulent dissipation ε fields are
presented for the Re=3530 and Re=7552 cases. See Figures 6 and 7.

(a) Turbulent kinetic energy, k (m2/s2). (b) Turbulent dissipation, ε (m2/s3).

Figure 6: Jet reactor flow field for the base grid at Re=3530.

(a) Turbulent kinetic energy, k (m2/s2). (b) Turbulent dissipation, ε (m2/s3).

Figure 7: Jet reactor flow field for the base grid at Re=7552.

The refined grid data show a modest grid-sensitivity in the peak values of k, ε and νT at
the inlets. However, the flow fields are considered to be grid-independent for engineering
purposes based on the grid causing an observed variation of less than 0.2% in the yield of
the reacting flow cases presented in Section 4.3.

The DQMoM-IEM scalar transport equations are solved as unsteady problems (see Sec-
tion 3.1) in Sections 4.2 and 4.3, using the steady flow solutions without re-solving the
flow. This one-way coupling is acceptable for the constant density test case. The flow
affects the scalars, but the scalars are passive and do not affect the flow.
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The DQMoM-IEM data are presented in terms of the empirical mean and standard devia-
tion of each species. The composition space is defined in terms of the mass fractions

φ> = [YA, YB, YR, YS] . (43)

The chemical source terms are given by

Sα(Y ) = Sα(C)
Wα

CT
, (44)

where the total mass concentration CT is transported as an additional conserved scalar and

SA(C) = −k1CACB

SB(C) = −k1CACB − k2CBCR

SR(C) = +k1CACB − k2CBCR

SS(C) = +k2CBCR ,

(45)

Cα =
CTYα
Wα

. (46)

Table 1 gives the mass concentration boundary conditions. Mass balance was not used
to reduce the number of transport equations. This was a deliberate decision motivated
by a desire to keep the test case general. Likewise, the option to use a mixture fraction
approach is acknowledged, but was not pursued.

The micromixing parameters are given as Cφ =1.65 and τφ = d/
√
k, where d=0.0066 m

is the diameter of the reactor [23]. The turbulent diffusivity ΓT is calculated ΓT = νT/σT,
where the turbulent Schmidt number is given σT = 0.7 for all scalars [24]. The turbulent
kinetic energy k and turbulent viscosity νT are supplied by Star-CD.

Table 1: Model problem: Inlet boundary conditions.
Re=3530 case Re=7552 case

Jet Annulus Jet Annulus

Volumetric flow (m3/s) 0.988×10−5 2.11×10−5

Average velocity (m/s) 0.786 0.613 1.68 1.13
Mixing length (m) 28×10−5 6.3×10−5 28×10−5 6.3×10−5

Turbulence intensity (%) 5.76 4.00 5.24 4.00

Density (kg/m3) 998
Molecular viscosity (kg/m s) 0.889

High conc. case Low conc. case
Mol. wt. Jet Annulus Jet Annulus

(kg/kmol) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

Species A 143.1 − 0.426 − 0.144
Species B 183.2 0.524 − 0.177 −
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4.2 Solver validation

This section describes the validation of the DQMoM-IEM solvers presented in Section 3.
A scalar mixing case is used to validate the treatment of the DQMoM-IEM diffusion term
against the method of moments. The application of the method of moments to transported
PDF problems is well established and provides an exact solution to equation (1) in the inert
case where the chemical source term is null, Sα = 0. For readers who would appreciate
more detail, the method of moments implementation is summarised in Appendix B.

The scalar mixing of species A and B was investigated for the high concentration case
at Re = 3530. The empirical mean and standard deviation calculated by DQMoM-IEM
with N = 2 particles are presented for species A in Figure 8. The mean of species B is
given by the complement of Figure 8(a), the standard deviation of species B is identical
to Figure 8(b). The boundary and initial conditions are given in Table 5 (see Section 4.5).

(a) Empirical mean, species A. (b) Empirical standard deviation, species A.

Figure 8: Jet reactor species fields for the inert high concentration case at Re=3530.
The case was run on the base grid with time step ∆t=10−4 s for t=2 s physical time.

The agreement between the DQMoM-IEM solvers was assessed for the first four integer
moments and the standard deviation

εmα =
1

Ncells

K∑
α=1

∥∥∥∥ 〈φmαα 〉N |general
solver

− 〈φmαα 〉N |full analytic
solver

∥∥∥∥ mα ∈ {1, 2, 3, 4} , (47)

εsd =
1

Ncells

K∑
α=1

∥∥∥∥∥
√
〈φ2

α〉N−〈φα〉
2
N

∣∣∣∣general
solver

−
√
〈φ2

α〉N−〈φα〉
2
N

∣∣∣∣full analytic
solver

∥∥∥∥∥ , (48)

where the norm notation denotes an L2-norm over space. The agreement with the method
of moments was assessed likewise.

Table 2 shows that the DQMoM-IEM solvers reproduce the method of moments case
for the first four integer moments, and give almost identical results for N = 2 particles.
The N = 3 case shows less satisfactory agreement with the method of moments. The
differences occur in the region of high spatial gradient between the inlets of species A
and B. The differences are attributed to the numerical treatment of the diffusion term,
where, in particular, the filtered terms no longer necessarily sum to zero for N > 2 (see
Section 3.2.2). To the naked eye, all the cases were indistinguishable from Figure 8.
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Table 2: DQMoM-IEM validation data for the jet reactor inert high conc. case at Re=3530.
The cases were run on the base grid with time step ∆t=10−4 s for t=2 s physical time.
Case 1: DQMoM-IEM general solver, N=2 vs. analytic solver.
Case 2: DQMoM-IEM general solver, N=2 vs. method of moments.
Case 3: DQMoM-IEM general solver, N=3 vs. method of moments.

Integer moments Standard deviation
εmα=1 εmα=2 εmα=3 εmα=4 εsd

Case 1 6.98×10−9 7.55×10−8 1.13×10−7 1.43×10−7 3.37×10−7

Case 2 3.30×10−6 1.78×10−5 3.79×10−5 7.15×10−5 4.03×10−5

Case 3 3.32×10−4 3.34×10−4 2.99×10−4 2.69×10−4 1.71×10−4

4.3 Solver application to reacting flow

This section describes the application of the DQMoM-IEM general solver presented in
Section 3 to a real turbulent reaction chemical engineering problem (see Section 4.1).
The results are validated against previous studies of the same system [14, 23].

The empirical mean and standard deviations calculated by DQMoM-IEM with N = 2
particles are presented in Figures 9 and 10 for the high concentration case at Re = 3530.
The boundary and initial conditions are summarised in Tables 1 and 5 (see Section 4.5).
They are visually consistent with the transported PDF data of Tsai and Fox [23, Fig. 7
and 8 (with the caveat that the scaling makes the standard deviation look less ‘peaky’)].

Figures 9 shows rapid reaction between species A and B, with a small region of coexis-
tence near the wall between the inlets. The product R forms very rapidly in the reaction
zone. The side-product S forms more slowly, with most forming in the zone of high
concentration of B and R at the centre of the reactor near the jet inlet.

Figure 10(c) shows an arc of zero standard deviation running clockwise from the wall
between the inlets to the centre of the reactor at an axial distance of about 0.1 m. This is
an artefact of the N = 2 particle case. It is caused by the transition from a region where
ψ

(1)
R >ψ

(2)
R near the jet inlet to a region where ψ(1)

R <ψ
(2)
R in the bulk of the reactor. The

zero standard deviations marks the locus ψ(1)
R =ψ

(2)
R . In the N = 3 particle case, the zero

standard deviation does not occur. Rather, there is a shallow local minimum.
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(a) Empirical mean, species A. (b) Empirical mean, species B.

(c) Empirical mean, species R. (d) Empirical mean, species S.

Figure 9: Jet reactor species means for the high concentration case at Re=3530.
The case was run on the base grid with time step ∆t=10−4 s for t=2 s physical time.

(a) Empirical standard deviation, species A. (b) Empirical standard deviation, species B.

(c) Empirical standard deviation, species R. (d) Empirical standard deviation, species S.

Figure 10: Jet reactor species standard deviations for the high concentration case at Re=3530.
The case was run on the base grid with time step ∆t=10−4 s for t=2 s physical time.
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Table 3 summarises the yield for all cases considered. The yields were calculated as per
equation (42) and show a grid-sensitivity of less than 0.2%. The solutions are considered
to be grid-independent. The Re=3530 high concentration case shows no significant dif-
ference for N=2, 3 particles. DQMoM-IEM correctly predicts the effect of the Reynolds
number and reactant concentration, but slightly over estimates the yields compared to Tsai
and Fox [23] and Li and Toor [14]. Whether this is acceptable will be case specific.

Table 3: DQMoM-IEM reaction yields.
The base grid cases were run with time step ∆t=10−4 s for t=2 s physical time.
The refined grid cases were run with time step ∆t=4×10−5 s for t=1 s physical time.

Case DQMoM-IEM yield (%) Transported Experimental ‡

Conc Re N=2 N=2 N=3 PDF yield † yield
base grid refined grid base grid (%) (%)

High 3530 85.05 84.96 85.21 81.0 82.05
High 7552 91.10 90.91 − 88.3 88.33
Low 3530 93.84 93.79 − 91.8 88.95
Low 7552 96.58 96.51 − 95.4 93.45

† Tsai and Fox [23, Table 3], ‡ Li and Toor [14, Table 1].

4.4 Solver efficiency

Table 4 shows the CPU times for the Re = 3530 high concentration cases. The analytic
solver showed a significant speed advantage over the general solver with N=2 particles.

The general solver CPU times are comparable between the inert and reacting cases. The
inclusion of the test reaction reduces the CPU time in the N = 3 case. This is repeatable.
It is attributed to the reaction causing the particles to move away from each other in com-
position space, reducing the impact of the numerical issues that characterise the diffusion
term as per Figure 3.

The efficient treatment of the diffusion term represents an important area of future re-
search to make the general solver more practical. One route may be to improve efficiency
at the expense of detail where particles approach each other in composition space.

Table 4: DQMoM-IEM CPU times for the jet reactor high concentration case at Re=3530.
The cases were run on the base grid with time step ∆t=10−4 s for t=2 s physical time.

CPU time (s)
Inert flow Reacting flow

DQMoM-IEM analytic solver 323 −

DQMoM-IEM general solver, N=2 9048 9236
DQMoM-IEM general solver, N=3 15222 12977
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4.5 Significance of the choice of boundary conditions

The choice of boundary conditions to represent a given physical condition is not arbitrary.
Different representations of the same physical condition may give different results.

The code development was performed using the inert case and equi-weighted particles
such that the observed central moments were solely due to the diffusion term. However,
equal weights are a poor choice. For example, an equi-weighted N = 2 particle system
cannot reproduce Figure 8. The peak standard deviation is significantly restricted by the
physical bounds. The correct scalar mixing was only achieved when the boundary condi-
tions were specified to be consistent with each particle being assigned to a specific inlet.

Table 5 summarises the boundary and initial conditions for Figures 8-10 and Tables 2-4.
The N =2 case is specified such that particle 1 represents the annular inlet and particle 2
the jet inlet. The N = 3 case is specified such that particle 1 represents the annular inlet
and particles 2 and 3 represent the jet inlet. The rationale for the extra particle at the jet is
that it gave slightly better agreement with the method of moments. The initial conditions
were specified to be consistent with the inlet boundaries whilst avoiding equal ψ(n)

α .

Table 5: DQMoM-IEM inlet boundary and initial conditions.
The positions are specified in terms of ψ(n)

α for clarity. The transported
variables are the weights w(n) and weighted positions s(n)

α = w
(n)
ψ

(n)
α .

N = 2 case N = 3 case
Inlet boundary Initial Inlet boundary Initial
Jet Annulus condition Jet Annulus condition

w
(1)

0 1 1/2 0 1 1/3

w
(2)

1 0 1/2 1/2 0 1/3

w
(3) − − − 1/2 0 1/3

ψ
(1)
A 0 1 1 0 1 1

ψ
(2)
A 0 1 0 0 1 1/2

ψ
(3)
A − − − 0 1 0

ψ
(n)
B 1 0 1− ψ(n)

A 1 0 1− ψ(n)
A

ψ
(n)
R,S 0 0 0 0 0 0

This specification of boundary conditions is perhaps intuitive considering the evolution
of DQMoM-IEM from multi-environment presumed PDF methods [5]. DQMoM-IEM
should be interpreted as an environment model. The number of inlets should dictate the
minimum number of particles. The benefit of extra particles is illustrated by the change in
the region of zero standard deviation between the N =2 and N =3 particle reacting flow
cases, see Figure 10(c).
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5 Conclusions

The numerical behaviour of DQMoM-IEM has been investigated as a turbulent reaction
closure. DQMoM-IEM uses a deterministic particle method to approximate the joint com-
position PDF. It is attractive because it may offer a computationally efficient turbulent
reaction method suitable for engineering calculations using standard software.

An analytic expression has been derived for the DQMoM-IEM source terms. It is valid
for any number of particles and scalars. Explicit reaction, micromixing and turbulent
diffusion terms can be identified. The diffusion term may cause loss of boundedness. It
is discontinuous and singular if two or more particle positions are equal in any dimension
of composition space.

Two DQMoM-IEM solvers have been coupled to the Star-CD CFD code using an operator
splitting method. They have been validated against the method of moments and a reacting
flow case. The choice of boundary conditions to represent a given physical condition is not
arbitrary. The correct scalar mixing was only reproduced when the boundary conditions
were specified to be consistent with each particle being assigned to a specific inlet.

The first (general) solver can be applied to cases with any number of particles and scalars.
The diffusion terms are calculated by functional evaluation and are filtered to eliminate
discontinuities and enforce boundedness. The approach is similar to methods that limit the
size of the diffusion term or set it to zero near a discontinuity. It differs in that it preserves
more information and eliminates the discontinuity, which the other methods would not.
The source terms are integrated numerically using the RADAU5 implicit ODE solver.

The second (analytic) solver is specific to N = 2 particles. It uses analytic solutions of
the DQMoM-IEM terms arising due to turbulent diffusion and micromixing and may be
applied to any number of scalars.

The key challenge in the methodology is the efficient integration of the diffusion terms.
The analytic solver provides an elegant approach to the N = 2 particle case. The numer-
ical treatment of the diffusion term by the general solver was considered in detail and
demonstrated for N = 2 and N = 3 particles, and remains an important area of future
research to make the method more practical.
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Nomenclature

Upper-case Roman
A DQMoM coefficient matrix, see Eq. (A.16)
A1 DQMoM coefficient matrix, see Eqs. (A.16) and (A.23)
A2 DQMoM coefficient matrix, see Eqs. (A.16), (A.21) and (A.24)
A3 DQMoM coefficient matrix, see Eqs. (A.16), (A.22) and (A.25)
CT Total mass concentration
Cα Molar concentration of species α
Cφ IEM micromixing model constant
F1 DQMoM-IEM source term operator, see Eqs. (14), (18) and (19)
F2 DQMoM-IEM physical space advection and diffusion operator,

see Eqs. (14), (20) and (21)
Fdx DQMoM-IEM diffusion term operator, see Eqs. (33) and (38)
Fmx DQMoM-IEM micromixing term operator, see Eqs. (33) and (37)
K Number of scalars
M Number of moments
N Number of particles

Ncells Number of cells in the CFD domain
Rλ(x, t) Micromixing and chemical source term for λ, see Eq. (B.1)

Re Reynolds number
S(φ) Chemical source term vector

U(x, t) Eulerian velocity vector

W2 Diagonal matrix of the particle weights w(n), see Eq. (A.26)

W3 Diagonal matrix of the particle weights w(n), see Eq. (A.27)
Wα Relative molecular mass of scalar α
Y Yield of the test reaction, see Eq. (42)
Yα Mass fraction of scalar α

Lower-case Roman

a(n) Source term for the weights w(n), see Eq. (5)

b(n)
α Source term for the weighted positions s(n)

α , see Eq. (6)

c
(n)
αβ Turbulent diffusion-spatial gradient term, see Eq. (12)

d Diameter scale in IEM micromixing model, τφ = d/
√
k

f(∆ψ/εp) Filter function, see Eq. (30)
fb(ψ, bdx) Bounding function, see Eq. (29)

fp(∆ψ) Particle function, see Eq. (30)
fφ(ψ;x, t) Joint composition PDF of the random scalar field φ(x, t)
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k Turbulent kinetic energy
k1 Reaction rate constant for the test reaction, see Eq. (41)
k2 Reaction rate constant for the test reaction, see Eq. (41)
lb Lower bound, see Eq. (29)
mα Moment order of scalar α

m
�m�α Moment order of scalar α in the �m�

th empirical moment
〈φm�m�1

1 . . . φm�m�K
K 〉N of the DQMoM particle system, see Eq. (8)

r(n)
α Micromixing and chemical source term, see Eq. (13)

s(n)
α Weighted particle position, see Eq. (7)
t Time

u(x, t) Fluctuating velocity field u = U −〈U〉
ub Upper bound, see Eq. (29)

w(n) Weight of particle n, see Eq. (2)
x Position vector

Upper-case Greek
ΓT Turbulent diffusivity
Γα Thermal diffusivity of scalar α

Lower-case Greek
α Vector of DQMoM source terms a and bα, see Eq. (A.17)
β Vector of DQMoM terms, see Eq. (A.18)

δ
ψ

(n)
α ;x,t

Dirac delta function, see Eq. (3)

δ′
ψ

(n)
α ;x,t

First derivative of δ
ψ

(n)
α ;x,t

with respect to ψα

δ′′
ψ

(n)
α ;x,t

Second derivative of δ
ψ

(n)
α ;x,t

with respect to ψα

ε Turbulent dissipation rate
εb Bounding function clipping distance, see Eq. (29)

εmα Error metric for the empirical moment 〈φmαα 〉N , see Eq. (47)
εp Particle function filter half-width, see Eq. (30)
εsd Error metric for the empirical standard deviation, see Eq. (48)
λ Moment of the joint composition PDFfφ, see Eq. (B.1)
νT Turbulent viscosity
σT Turbulent Schmidt number
τφ IEM micromixing model mixing time

φ(x, t) Eulerian passive scalar (composition) vector
ψ Sample space variable corresponding to φ

ψ(n)
α Position of particle n, see Eq. (2)
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Superscripts
(n) Denotes the nth particle

Subscripts
dx Denotes the diffusion term
gb Denotes a global bound

i Denotes the ith direction

�m� Denotes the �m�
th moment

mx Denotes the micromixing term

n Denotes the nth particle
nb Denotes a neighbour cell

α Denotes the αth scalar

β Denotes the βth scalar

γ Denotes the γth scalar

Symbols
> Transpose operator
∇ Gradient operator

∇2 Laplacian operator
〈 〉 Expectation
〈·|ψ〉 Expectation conditioned on φ = ψ

〈 〉N Empirical expectation over N particles
〈φα〉N Empirical mean of φα over N particles〈
φ2
α

〉
N

Empirical second moment of φα over N particles

Abbreviations
AMG Algebraic multigrid
CPU Central processing unit
CFD Computational fluid dynamics

DQMoM Direct quadrature method of moments
IEM Interaction by exchange with the mean
LES Large-eddy simulation

MoMIC Method of moments with interpolative closure
ODE Ordinary differential equation
PBE Population balance equation
PDF Probability density function

QMoM Quadrature method of moments
RANS Reynolds-averaged Navier-Stokes

SF Stochastic Fields method
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A DQMoM derivation

The derivations of DQMoM and DQMoM-IEM are well documented in the literature and
are described in detail by Fox [5, Appendix B]. This sections summarises the derivations
in a general multivariate component form and may be of particular use to anyone who
wishes to implement DQMoM.

The text by Fox [5] is recommended to readers who would like more detail.

A.1 DQMoM

The derivation starts with a transport equation for the one-point one-time joint composi-
tion PDF fφ [18]. This equation is exact and contains no approximations

∂fφ
∂t

+
∂

∂xi
[fφ (〈Ui〉+ 〈ui|ψ〉)] = − ∂

∂ψα

[
fφ
(〈

Γα∇2φα|ψ
〉

+ Sα(ψ)
)]
. (A.1)

The turbulent convective flux fφ 〈u|ψ〉 and molecular diffusion 〈Γα∇2φα|ψ〉 terms need
to be closed. Sα(ψ) is the chemical source term. It describes the material and energy
balance of species α and is closed.

Equation (A.1) is closed using a gradient diffusion model for the convective flux, and an
IEM model to approximate the molecular diffusion [26]

−fφ 〈u|ψ〉 = ΓT∇fφ , (A.2)〈
Γα∇2φα|ψ

〉
=
Cφ
2τφ

(〈φα〉 − ψα) , (A.3)

where Cφ is an empirical constant and τφ is the scalar mixing time. Equation (A.3) as-
sumes that all scalars mix at the same rate. The turbulent diffusivity ΓT is calculated

ΓT = νT/σT , (A.4)

where the turbulent viscosity νT is prescribed by the turbulence model and the turbulent
Schmidt number σT is typically close to unity. The closed form of equation (A.1) appears
in the main text as equation (1) and is written

∂fφ
∂t

+ 〈Ui〉
∂fφ
∂xi
− ∂

∂xi

(
ΓT
∂fφ
∂xi

)
= − ∂

∂ψα

[(
Cφ
2τφ

(〈φα〉 − ψα) + Sα(ψ)

)
fφ

]
. (A.5)

The joint composition PDF fφ in equation (A.5) is approximated using a weighted-particle
system (equations 2, 3 and 4 in the main text)

fφ(ψ;x, t) dψ = fφ(ψ1, ψ2, . . . , ψK ;x, t) dψ1 · · · dψK

≈
N∑
n=1

w(n)(x, t)
K∏
α=1

δ
ψ

(n)
α ;x,t

dψ(n)
α , (A.6)
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where

δ
ψ

(n)
α ;x,t

≡ δ
[
ψα − ψ(n)

α (x, t)
]
, (A.7)

N∑
n=1

w(n)(x, t) = 1 . (A.8)

The system containsN(K+1) unknowns comprising the weights w(n) and positions ψ(n)
α ,

where n = 1, . . . , N particles and α = 1, . . . , K scalars in the composition vector φ.

A non-constant coefficient linear equation (A.10) leading to transport equations for the
weights (A.11) and weighted positions (A.12) is derived by substituting the weighted-
particle approximation (A.6) into the joint composition PDF transport equation (A.5).
Suppressing the dependency of the weighted-particle system on x and t gives

∂

∂t

[
N∑
n=1

w(n)

K∏
α=1

δ
ψ

(n)
α

]
+

(
〈Ui〉 − ΓT

∂

∂xi

)
∂

∂xi

[
N∑
n=1

w(n)

K∏
α=1

δ
ψ

(n)
α

]

= − ∂

∂ψα

[(
Cφ
2τφ

(〈φα〉 − ψα) + Sα(ψ)

)
fφ

]
.

(A.9)

Evaluating the derivatives by systematic application of the product rule and collecting
terms leads to the linear equation in a(n) and b(n)

α

N∑
n=1

 K∏
α=1

δ
ψ

(n)
α

+
K∑
α=1

ψ(n)
α δ′

ψ
(n)
α

K∏
β=1
β 6=α

δ
ψ

(n)
β

 a(n) −
N∑
n=1

K∑
α=1

δ′
ψ

(n)
α

K∏
β=1
β 6=α

δ
ψ

(n)
β
· b(n)
α

=
N∑
n=1

 K∑
α=1

δ′′
ψ

(n)
α

K∏
β=1
β 6=α

δ
ψ

(n)
β
·w(n)c(n)

αα +
K∑
α=1

K∑
β=1
β 6=α

δ′
ψ

(n)
α
δ′
ψ

(n)
β

K∏
γ=1
γ 6=β

δ
ψ

(n)
γ
·w(n)c

(n)
αβ


− ∂

∂ψα

[(
Cφ
2τφ

(〈φα〉 − ψα) + Sα(ψ)

)
fφ

]
,

(A.10)

where (equations 5 and 6 in the main text)

∂w
(n)

∂t
+ 〈Ui〉

∂w
(n)

∂xi
− ∂

∂xi

[
ΓT
∂w

(n)

∂xi

]
= a(n) , (A.11)

∂s
(n)
α

∂t
+ 〈Ui〉

∂s
(n)
α

∂xi
− ∂

∂xi

[
ΓT
∂s

(n)
α

∂xi

]
= b(n)

α , (A.12)

and (equations 7 and 12 in the main text)

s(n)
α ≡ w(n)ψ(n)

α , (A.13)

c
(n)
αβ ≡ ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi
. (A.14)
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The preceding derivation from the closed joint composition PDF transport equation (A.5)
is exact in that, apart from the weighted particle approximation in equation (A.6), no
arbitrary choices are made in the derivation of equations (A.11) and (A.12).

The next step is to use equation (A.10) to derive a linear system that matches the number
of equations to the N(K + 1) unknown source terms a(n) and b(n)

α . The ultimate aim is to
solve equations (A.11) and (A.12) to transport the weights and weighted positions of the
particle system, using the linear system to determine the source terms a(n) and b(n)

α .

The linear system is derived by taking M = N(K + 1) empirical moments of equation
(A.10). The empirical moments are defined (equation 8 in the main text)

〈φm�m�1
1 . . . φm �m�K

K 〉N =
N∑
n=1

w(n)

K∏
α=1

ψ(n)
α

m �m�α for �m� = 1, . . . ,M . (A.15)

The indices m
�m�α are usually low order non-negative integers. The zeroth and first-order

moments are required to ensure that the weights sum to unity and that the empirical means
(of any non-reacting scalars) are conserved. The choice of the moment set is otherwise
arbitrary. Note however that the linear system may be singular for some moment sets [5]
and lower-order moments have been observed to give better conditioning [30].

The linear system may be written as

Aα = β , (A.16)

where A is a square M ×N(K + 1) matrix of the form A = [A1 A2 ]

α> = [a b1 · · · bK ] , (A.17)
β = A3W3c + A2W2r , (A.18)

and a and bα are vectors of length N

a> =
[
a(1) · · · a(N)

]
, (A.19)

b>α =
[
b(1)
α · · · b(N)

α

]
. (A.20)

A2 and A3 are M ×NK and M ×NK2 matrices

A2 = [A21 · · ·A2K ] , (A.21)
A3 = [A311 · · ·A31K

· · ·A3K1
· · ·A3KK ] , (A.22)

and A1 , A2α and A3αβ are M ×N matrices with components defined

A1�m�n =

[
1−

K∑
α=1

m
�m�α

]
K∏
α=1

ψ(n)
α

m�m�α
, (A.23)

A2α,�m�n = m
�m�αψ

(n)
α

m�m�α−1
K∏
β=1
β 6=α

ψ
(n)
β

m
�m�β

, (A.24)
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A3αβ, �m�n
=



m
�m�αψ

(n)
α

m�m�α−1
m

�m�βψ
(n)
β

m
�m�β−1

K∏
γ=1
γ 6=β

ψ(n)
γ

m �m�γ if α 6= β

m
�m�α (m

�m�α − 1)ψ(n)
α

m�m�α−2
K∏
β=1
β 6=α

ψ
(n)
β

m
�m�β

otherwise .

(A.25)

W2 and W3 are NK ×NK and NK2 ×NK2 diagonal matrices

W2 = diag [w1 · · ·wK ] , (A.26)
W3 = diag [w11 · · ·w1K · · ·wK1 · · ·wKK ] , (A.27)

and c and r are vectors of length NK2 and NK

c> = [c11 · · · c1K · · · cK1 · · · cKK ] , (A.28)

r> = [r1 · · · rK ] , (A.29)

where wα, wαβ , cαβ are rα are vectors of length N with components defined

w>α = w>αβ =
[
w(1) · · ·w(N)

]
, (A.30)

c>αβ =
[
c

(1)
αβ · · · c

(N)
αβ

]
, (A.31)

r>α =
[
r(1)
α · · · r(N)

α

]
, (A.32)

and (equation 13 in the main text)

r(n)
α =

Cφ
2τφ

(
〈φα〉N − ψ

(n)
α

)
+ Sα

(
ψ(n)

)
. (A.33)

The final step in the derivation forces theM empirical moments of the transported particle
system to obey the equivalent moment transport equation that could be derived directly
from the closed joint composition PDF transport equation (A.5).

A.2 DQMoM-IEM

The DQMoM derivation can be modified to implement DQMoM-IEM by setting a(n) = 0

in equations (A.10) and (A.11) and evaluating b(n)
α by solving a modified linear system

A2 [ b1 · · · bK ]> = β , (A.34)

where equation (A.34) is derived by taking M = NK unmixed empirical moments of
equation (A.10). The zeroth moment is no longer required because the source term for the
weights is null. A2 and β are defined as previously.

Equation (A.34) is equivalent to equation (11) given in the main text.
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B Method of moments implementation

This section describes the implementation of an inert method of moments solution of the
closed joint composition PDF transport equation (1).

A transport equation for the moments λ of the joint composition PDF is derived by taking
moments of equation (1)

∂λ

∂t
+ 〈Ui〉

∂λ

∂xi
− ∂

∂xi

[
ΓT

∂λ

∂xi

]
= Rλ . (B.1)

In the inert case, the chemical source term in equation (1) is null Sα = 0. The source term
Rλ is found by taking the moments of the micromixing term and integrating by parts

Rλm1,...,mK
=

∫
· · ·
∫ +∞

−∞

K∏
β=1

ψ
mβ
β

(
− ∂

∂ψα

[
Cφ
2τφ

(〈φα〉 − ψα) fφ

])
dψ1 · · · dψK

such that

Rλm1,...,mK
=
Cφ
2τφ

K∑
α=1

∫
· · ·
∫ +∞

−∞
mαψ

−1
α

K∏
β=1

ψ
mβ
β (〈φα〉 − ψα) fφ dψα

K∏
β=1
β 6=α

dψβ

−Cφ
2τφ

K∑
α=1

∫
· · ·
∫ +∞

−∞

[
K∏
β=1

ψ
mβ
β (〈φα〉 − ψα) fφ

]ψα=∞

ψα=−∞

K∏
β=1
β 6=α

dψβ

︸ ︷︷ ︸
=0

=
Cφ
2τφ

[
m1 (λ1,0,...,0 λm1−1,m2,...,mK − λm1,m2,...,mK )

+m2 (λ0,1,...,0 λm1,m2−1,...,mK − λm1,m2,··· ,mK ) (B.2)
...

+mK (λ0,0,...,1 λm1,m2,...,mK−1 − λm1,m2,...,mK )
]
,

where the summation of the underbraced term to zero follows directly from consideration
of the values taken by the PDF fφ and the source term (〈φα〉 − ψα) at the limits.

Equation (B.1) is solved for the λ1, λ2, λ3 and λ4 unmixed moments of each scalar using
the operator splitting described in Section 3.1. The operators are defined

F1(λ) = Rλ ,

F2(λ) = −〈Ui〉
∂λ

∂xi
+

∂

∂xi

[
ΓT

∂λ

∂xi

]
.

The first operator F1(λ) may be integrated either analytically or using RADAU5. Both
methods were implemented for the purpose of this work. Both were observed to give iden-
tical results, with the obvious caveat that the analytic implementation was much faster.
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