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AbstratIn this artile a stohasti partile system approximation to the parametrisensitivity in the Smoluhowski oagulation equation is introdued. The para-metri sensitivity is the derivative of the solution to the equation with respetto some parameter, where the oagulation kernel depends on this parameter.It is proved that the partile system onverges weakly to the sensitivity as thenumber of partiles N inreases. A Monte Carlo algorithm is developed andvariane redution tehniques are applied. Numerial experiments are on-duted for two kernels: the additive kernel and one whih has been used forstudying soot formation in a free moleular regime. It is shown empiriallythat the tehniques for variane redution are indeed very e�etive and thatthe order of onvergene is O(1/N). The algorithm is then ompared to analgorithm based on a �nite di�erene approximation to the sensitivity and itis found that the variane of the sensitivity estimators are onsiderably lowerthan that for the �nite di�erene approah. Furthermore, two methods ofestablishing `e�ieny' are onsidered and the new algorithm is found to besigni�antly more e�ient.
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1 IntrodutionSmoluhowski's desription of a oagulation proess is made in terms of densities
µt(x) of partiles of mass x = 1, 2, 3, . . . and takes the form of an in�nite dimensionaldi�erential equation

d

dt
µt(x) =

1

2

x−1∑

y=1

K(y, x− y) µt(y) µt(x− y)− µt(x)

∞∑

y=1

K(x, y) µt(y). (1)The symmetri kernel K(x, y) appearing in this equation should be understood asgiving the rate at whih two partiles of mass x and y oagulate. One gets anequivalent and more symmetri equation onsidering µt(·) as a measure on the setof non-negative integers and looking at the time evolution of observables of the form
(f, µt) :=

∑
x f(x)µt(x); moments are examples of suh observables. In these terms,equation (1) takes the form

(f, µt) = (f, µ0) +
1

2

∫ t

0

(
∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K(x, y) µs(x) µs(y)

)ds.(2)The basi problem we address is to derive a numerial sheme to understand howthe solution to this equation depends on possible parameters in the kernel. We shallwrite Kλ to indiate that K depends on some d-dimensional parameter λ, and shallwrite µλ
t for the solution of equation (2). Formally di�erentiating this equation withrespet to λ and setting σλ

t = ∂λµ
λ
t we get

(f, σλ
t ) = (f, σλ

0 ) +
1

2

∫ t

0

(∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
Kλ(x, y) µλ

s (x) σλ
s (y)

)ds

+

∫ t

0

(∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K ′

λ(x, y) µλ
s (x) µλ

s (y)
)ds.(3)

K ′
λ is here the derivative of Kλ with respet to λ. Setion 2 presents an algorithmwhih simulates the sensitivity σλ

t very aurately and in an e�ient way.There are two main motivations for performing sensitivity analysis. The �rst is forsolving inverse problems. If some partile system is governed by a partial di�erentialequation whih in turn is dependent upon some unknown parameter, it is desirableto �nd this parameter. This an be ahieved by hoosing the parameter value whihminimises some residual whih is a funtion of experimentally realised quantities andits omputational analogue, whih varies with the parameter. The minimisationproedure often uses a gradient searh, thus the value of omputing parametriderivatives is apparent. Seondly, in onsidering a sienti� model, we often wish toonsider the smallest model whih reasonably �ts the data, in whih ase sensitivityanalysis an be performed to disard parameters with small sensitivity.Whilst the usual tools of solving di�erential equations (and their assoiated numer-ial shemes) are badly adapted to the above in�nite dimensional framework, the3



stohasti approah of interation partile systems (basially Markov hains) anbe used e�iently, in this setting, as Marus in [1℄, and later Lushnikov in [2℄, �rstrealised. We follow their approah and give a stohasti partile approximation ofthe sensitivity σλ
t .Before running any simulation, one should investigate the well-posedness of equation(3): if it had more than one solution it would be unlear what solution a numerialsheme approximates. The most general answers to this theoretial question forSmoluhowski equation were given by Jeon in [3℄ and Norris in [4℄, under a growthassumption on the interation kernel and a moment ondition on the initial ondition

µ0. Surprisingly enough, the existene and uniqueness problem for the sensitivitywas only solved reently, by Bailleul [5℄, using methods developed by Kolokoltsov[6℄. The algorithm developed in this artile is the numerial ounterpart of thistheoretial work1.Three approahes to the simulation of the sensitivity by systems of partiles havemainly been used up to now. The �rst uses weighted partiles, as illustrated byVikhansky and Kraft [7℄. They approximate the family of solutions {µλ
t

}
λ
byMarus-Lushnikov proesses ∑n>0 wn(t ; λ)δxn(t) where the dependene on λ is en-tirely put on the weights wn(t ; λ). A heuristi argument imposes to their derivativeto satisfy a kind of Markov evolution rule. Despite its (numerially veri�ed) on-vergene this approah essentially has the same speed of onvergene and varianeas the Marus-Lushnikov proess. Further, the paper does not any informationregarding omputation run times.The seond approah onsiders adjoint sensitivity [8℄. A bakward partial di�erentialequation is used rather than a forward one, as used in most other methods. Theadvantage of this method is that sensitivity for any parameter value is immediateone the omputation have been done whereas using the forward equation requiresexpliit alulation for eah parameter value. The disadvantage is that one an onlyalulate the sensitivities for a partiular funtional of the partile ensemble.In the third approah, devised by the authors with J. R. Norris in the forthomingartile [9℄, the sensitivity σλ

t is approximated by the ratio (µλ+δλ ;N
t − µλ ; N

t )/δλ,where µλ+δλ ;N
t and µλ ;N

t are two Markus-Lushnikov proesses orresponding to loseparameters, oupled so as to minimise the di�erene of their random �utuationsaround µλ+δλ
t and µλ

t . This approah leads to a massive derease of variane butdoes not improve the speed of onvergene of the algorithm.The algorithm we propose improves the variane of the sensitivity estimator andrequires a muh smaller number of partiles to onverge. This is desribed in setion2. The reader who is not interested in mathematial details an skip setions 2.1and 2.2 where it is proven that the partile system introdued in setion 2 onvergesto the sensitivity. Setion 3 presents the algorithm we have used to obtain thenumerial results of setion 4.Notation. We shall prove onvergene of the partile system in a general setting1Consult this artile for onditions under whih existene and uniqueness of a solution to thesensitivity equation (3) holds. 4



where masses of partiles an take any positive real value. The densities of partileswill then be represented by non-negative measures µt and all sums will be replaed byintegrals. In this framework we shall write (f, µ) for ∫ f(x)µ(dx) and Smoluhowski'sequation (2) will be written
(f, µt) = (f, µ0) +

1

2

∫ t

0

∫ {
f(x + y)− f(x)− f(y)

}
K(x, y) µs(dx) µs(dy) ds.We shall formally write it as

µ̇λ
t =

1

2
Kλ(µ

λ
t , µ

λ
t ). (4)In the same way, we shall write formally equation (3) for the sensitivity as

σ̇λ
t = Kλ

(
µλ

t , σ
λ
t

)
+

1

2
K ′

λ

(
µλ

t , µ
λ
t

)
. (5)The integral notation is adopted from now on.2 Markov hain approximationIt is probably fair to say that although the Smoluhowski equation (2) is a deter-ministi evolution equation it should primarily be thought of as a deterministi largesale piture of a stohasti mesosopi dynamis. Indeed, Smoluhowski obtainedhis equation from a representation of the oagulation proess using `partiles' mov-ing aording to Brownian trajetories whose di�usivity depends on their mass andoagulate when they are lose to eah other. As explained in the artile [10℄ ofChandrasekhar, setion 6 of hapter III, in a region of spae where the oagulatingpartiles are well mixed, one an forget about their spatial loation and obtain amean-�eld evolution for their mass distribution. This mean-�eld piture is providedby Smoluhowski equation. Given in its simple form (1), it is not lear at �rst sighthow one should simulate a solution to this in�nite dimensional di�erential system.The approah developed by Marus in his seminal paper [1℄ in a sense omes bakto the primary stohasti desription of the oagulation phenomenon and relies onthe intuitive ontent of Smoluhowski equation. Two partiles of masses x and yoagulate at rate K(x, y) to reate a new partile of mass x + y: The partiles xand y are removed from the system and the partile x + y added. This motivatedMarus, and later Lushnikov, to represent a partile of mass x by a Dira mass δxat x and to introdue a strong Markov jump proess on the spae of disrete non-negative measures with the following simple dynamis. Denote by µN

0 =
1

N

∑
δxiits initial state and by µN

t its state at time t. Assoiate to eah pair 1 6 i < j 6 Nindependent exponential random times Tij with parameter K
(
xi, xj

)

N
and set

T = min{Tij ; 1 6 i < j 6 N}.5



The proess remains onstant on the time interval [0, T ), and if T = Tpq it has ajump 1

N

(
δxp+xq

− δxp
− δxq

) at time T . The dynamis then starts afresh. Note thatthe new measure at time T is still non-negative, and that the above desription leadsto a mean jump of the proess during a time interval [t, t + δt] equal to2
δt
∑

x,x′

(
δx+x′ − δx − δx′

)
K(x, y) µN

t (x) µN
t (x′)up to terms of order δt

N
and o(δt). This property makes it lear that the proessonverges to a solution of the Smoluhowski equation as N goes to in�nity (underproper onditions), a fat whih was used for simulation purposes long before it wasproved under general onditions in [4℄.Following the heuristi approah of Marus and Lushnikov, we are going to give inthe next setion a partile desription of the sensitivity equation
σ̇λ

t = Kλ

(
µλ

t , σ
λ
t

)
+

1

2
K ′

λ

(
µλ

t , µ
λ
t

)
. (6)To that end, introdue the notation K ′

+ := K ′ ∨ 0 and K ′
− := K ′ ∧ 0 (dropping theindex λ for it will be �xed), and write, for a signed measure σ,

σ = σ1 dσ
d|σ|

>0 − |σ|1 dσ
d|σ|

<0 =: σ+ − σ−,Using this notation, re-write equation (6) as
σ̇+

t − σ̇−
t =

(
Kλ

(
µλ

t , σ
+
t

)
+

1

2
K ′

+

(
µλ

t , µ
λ
t

))
−
(
Kλ

(
µλ

t , σ
−
t

)
+

1

2
K ′

−

(
µλ

t , µ
λ
t

)) (7)This equation will motivate the introdution of the Markov hain desribed in thenext setion.Notation. Given three non-negative measures µ, σ+, σ− on (0,∞) we shall adoptthe notation µ⊕σ+⊕σ− to denote the R
3
+-valued measure on (0,∞)3. It will larifythe notation to denote by x ⊕ y ⊕ z the point of R

3 with o-ordinates x, y and z.Given non-negative funtions f, g, h on (0,∞) set
(
f ⊕ g ⊕ h, µ⊕ σ+ ⊕ σ−

)
:= (f, µ)⊕ (g, σ+)⊕ (h, σ−).As we shall simulate both µt and (σ+

t , σ−
t ) at the same time, our approximatingMarkov hain will take values in the set

N :=
{
µ⊕ σ+ ⊕ σ− ; µ, σ+, σ− non-negative disrete measures on (0,∞)

}
.2µN

t denotes the state of the proess at time t.
6



2.1 Chain, generatorIn the same way as the right hand side of Smoluhowski equation (4) an be in-terpreted as the oagulation of partiles of µt of mass x and y at rate K(x, y), weare going to follow what equation (7) suggests and interpret the term K(µt, σ
+
t )appearing there as the oagulation of a partile in µt of mass x with a partile in

σ+
t of mass y at rate K(x, y). Note that this leads to a jump δx+y − δx − δy of σ+whih ould transform the non-negative measure σ+

t into a signed measure, as theterm δx does not neessarily appear inside σ+
t (while δy does). We shall take areof this by adding δx to the negative part σ−

t of σt instead of subtrating it from σ+
t ;as we are only interested in the di�erene σ+

t − σ−
t (= σt) this has no onsequene.Note also that the partile δx from µt used in that oagulation event will not beremoved from µt. Similar interpretations of the terms K(µt, σ

−
t ) and 1

2
K ′

±(µt, µt)lead us to de�ne the following Markov hain Θt = Xt ⊕ Yt ⊕ Zt on N . Denote by
Θ0 =

( ∑

i=1..m

δxi

)
⊕
( ∑

k=1..p

δyk

)
⊕
(∑

ℓ=1..q

δzℓ

) its starting point.2.1.1 DynamisAssoiate to eah pair
• 1 6 i < j 6 m, exponential random variables Rij , Sij and Tij with respetiveparameters K(xi, xj) and K ′

+(xi, xj) and K ′
−(xi, xj),

• (i, k) ∈ J1, mK×J1, pK an exponential random variable Uik with parameter K(xi, yk),
• (i, ℓ) ∈ J1, mK×J1, qK an exponential random variable Viℓ with parameter K(xi, zℓ).All these random variables are supposed to be independent. Denoting by W the�rst event happening in the system

W = min
{
Rij , Sij, Tij , Uik, Viℓ ; 1 6 i < j 6 m, k ∈ J1, pK, ℓ ∈ J1, qK

}
,the jump ∆Θ of the Markov hain depends on whih of these exponential loksrings �rst. For future referene, the di�erent types of events that an happen arenumbered. If

W = Rij , then ∆Θ =
(
δxi+xj

− δxi
− δxj

)
⊕ 0⊕ 0 (event type: 0 )

W = Sij , then ∆Θ = 0⊕ δxi+xj
⊕
(
δxi

+ δxj

) (event type: 1+)
W = Tij , then ∆Θ = 0⊕

(
δxi

+ δxj

)
⊕ δxi+xj

(event type: 1−)
W = Uik, then ∆Θ = 0⊕

(
δxi+yk

− δyk

)
⊕ δxi

(event type: 2+)
W = Viℓ, then ∆Θ = 0⊕ δxi

⊕
(
δxi+zℓ

− δzℓ

) (event type: 2−)The proess Θt will be onstant on the time interval [0, W ) and have jump ∆Θ attime W . The dynamis then starts afresh.Remark. It is lear from this desription that for any funtion ϕ satisfying therelation ϕ(a + b) > ϕ(a)− ϕ(b) for any a, b > 0, the funtion (ϕ, Yt + Zt) inreaseswith time. This fat is useful for the onvergene result stated in theorem 2.7



Given any positive integer N , de�ne 1
N

Θt as the element 1
N

Xt ⊕
1
N

Yt ⊕
1
N

Zt of N ,and set
ΘN

t :=
1

N
Θ t

N
=: µN

t ⊕ σ+,N
t ⊕ σ−,N

t .Note that the �rst omponent of ΘN
t is the usual Marus-Lushnikov proess. Set

σN
t = σ+,N

t − σ−,N
t . We are going to prove in theorem 2 that σN

t onverges in law tothe sensitivity σt. Those who do not are about the mathematial details of suh astatement an skip the remaining of this setion and go to setion 3.2.1.2 GeneratorThe analyti desription of the Markov hain {ΘN
t }t>0 in terms of its generator willbe useful in proving theorem 2. Given a non-negative measure µ of the form 1

N

∑
δxide�ne the resaled ounting measure on ordered pairs of masses of distint partilesby

µ̃(A× A′) := µ(A) µ(A′)−
1

N
µ(A ∩ A′),and de�ne the measure G(N)(µ) and the operator P(N)(µ) setting for any measurablebounded funtion f

(
f,G(N)(µ)

)
=

1

2

∫ {
f(x + x′)− f(x)− f(x′)

}
K(x, x′) µ̃(dx, dx′)

(
f,P(N)(µ)

)
=

1

2

∫ {
f(x + x′)− f(x)− f(x′)

}2
K(x, x′) µ̃(dx, dx′).Given x > 0 and a non-negative measure γ on R

∗
+ we shall write K(x, γ) for theintegral ∫ K(x, y)γ(dy).Denote by H(N) the generator of the proess {ΘN

t

}
06t6T

; for any bounded measur-able funtions f, g, h on (0,∞) the R
3-valued proess

Mf,g,h ; N
t :=

(
f ⊕ g ⊕ h, ΘN

t

)
−
(
f ⊕ g ⊕ h, ΘN

0

)
−

∫ t

0

(
f ⊕ g ⊕ h,H(N)

(
ΘN

s

)) dsis a martingale (with respet to its natural �ltration). For a measure µ of the form

8



1
N

∑
δxi

and Θ = µ⊕ σ+ ⊕ σ− ∈ N we have
(
f ⊕ g ⊕ h,H(N)(Θ)

)
=

(
f,G(N)(µ)

)
⊕

{
1

2

∫ {
g(x + x′)K ′

+(x, x′) +
(
g(x) + g(x′)

)
K ′

−(x, x′)
}

µ̃(dx, dx′)

+

∫ {(
g(x + y)− g(y)

)
K(x, y)σ+(dy) + g(x)K(x, σ−)

}
µ(dx)

}
⊕

{
1

2

∫ {
h(x + x′)K ′

−(x, x′) +
(
h(x) + h(x′)

)
K ′

+(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
h(x + z)− h(z)

)
K(x, z)σ−(dz) + h(x)K(x, σ+)

}
µ(dx)

} (8)Compare this formula with the desription of the dynamis given in the setion 2.1.1.
• Event {W = Rij} orresponds to the term (

f,G(N)(µ)
)
⊕ 0⊕ 0;

• Event {W = Sij} orresponds to the term 1
2

∫
0 ⊕ g(x + y) ⊕

(
h(x) +

h(y)
)
K ′

+(x, y)µ̃(dx, dy); a similar term orresponds to the event {W = Tij};
• Event {W = Uik} orresponds to the term ∫ {

0 ⊕
(
g(x + z) − g(z)

)
⊕

h(x)K(x, z)σ+(dz)
}
µ(dx); a similar term orresponds to the event {W = Viℓ}.The sum of all these terms gives (f ⊕ g ⊕ h,H(N)(Θ)

).Following a lassial approah, the study of martingales of the form Mf,g,h ;N
· willbe our main tool in the proof of the onvergene theorem. The expliit expressionof the braket of Mf,g,h ;N will be useful in that task. We have

〈
Mf,g,h ;N

〉
t
=

1

N

∫ t

0

(
f ⊕ g ⊕ h,Q(N)

(
ΘN

s

))ds,where QN
(
Θ
) is haraterised on measures Θ of the form (

1
N

∑
δxi

)
⊕ σ+ ⊕ σ− by

9



the formula(
f ⊕ g ⊕ h,Q(N)(Θ)

)
=

(
f,P(N)(µ)

)
⊕

{
1

2

∫ {
g(x + x′)2K ′

+(x, x′) +
(
g(x) + g(x′)

)2
K ′

−(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
g(x + y)− g(y)

)2
K(x, y) σ+(dy) + g(x)2 K(x, σ−)

}
µ(dx)

}
⊕

{
1

2

∫ {
h(x + x′)2K ′

−(x, x′) +
(
h(x) + h(x′)

)2
K ′

+(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
h(x + z)− h(z)

)2
K(x, z)σ−(dz) + h(x)2 K(x, σ+)

}
µ(dx)

}

2.2 Convergene theoremDenote by U a bounded open set of some R
d indexing the family Kλ of kernels.Let ϕ : (0,∞) → R+ be a sublinear funtion: ϕ(sx) 6 sϕ(x) for any s > 0 and

x ∈ (0,∞); suh a funtion is also subadditive: ϕ(x + y) 6 ϕ(x) + ϕ(y), for any
x, y ∈ (0,∞). We shall suppose that the interation kernels Kλ satisfy the growthondition

Kλ(x, y) 6 ϕ(x)ϕ(y)for any x, y ∈ (0,∞), λ ∈ U , and that the initial ondition of Smoluhowski equation(2) (or better its `ontinuous mass version') satis�es the moment ondition
∫

ϕ(x)4+ǫµ0(dx) <∞ (9)for some (small) ǫ > 0. We shall suppose in theorem 2 that ϕ2 is sub-additive;together with the above moment ondition (9) on µ0 this implies that Smoluhowskiequation has a unique strong solution3, de�ned for all non-negative times.The following norm was used on the spae M1 of signed Borel measures µ suhthat ‖µ‖1 :=
(
ϕ, |µ|

)
< ∞, in the artile [5℄ where the following key result aboutsensitivity is proved.Theorem 1. Assume the moment ondition (9) and that Kλ(x, y) and ∣∣K ′

λ(x, y)
∣∣are both bounded above by ϕ(x)ϕ(y) for any x, y. Then the map (t, λ) ∈ [0,∞) ×

U 7→ µλ
t ∈

(
M1, ‖.‖1

), is a C1 funtion and its derivative σλ
t satis�es the followingequation for any bounded measurable funtion f(4).

(
f, σλ

t

)
=
(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ
s (dy)ds

+
1

2

∫ t

0

∫
{f}(x, y)K ′

λ(x, y)µλ
s (dx)µλ

s (dy)ds3In the sense de�ned in [4℄.4We write here {f}(x, y) for f(x + y)− f(x)− f(y).10



The funtion σλ
· is the only (M1, ‖.‖1

)-valued solution of this equation.We shall onsider here a weaker topology than the ‖·‖1-topology. We shall equip thespae R
⊕3
+ with the ℓ1-distane: ‖x⊕y⊕z−x′⊕y′⊕z′‖ := |x−x′|+ |y−y′|+ |z−z′|.Write M⊕3 for the set of non-negative R

⊕3
+ -valued measures on R

∗
+, and let d beany distane on M⊕3 metrising weak onvergene: {Θn}n>0 onverges to Θ∞ i�for any bounded ontinuous funtions f, g, h on R

∗
+, we have (f ⊕ g ⊕ h, Θn

)
→(

f ⊕ g ⊕ h, Θ∞

). The spae (M⊕3, d
) is a Polish spae with N as a dense subset.Fix a positive time T . We shall state our onvergene theorem in the funtionalsetting D([0, T ], (M⊕3, d)

) of àdlàg paths from [0, T ] to (M⊕3, d). This spae willbe equipped with its Skorokhod topology, for whih we refer the reader to the books[11℄ or [12℄ of Billingsley and Pollard. Last, we shall denote by d0 any distane onthe set of all non-negative Borel measures on (0,∞) metrising the following notionof onvergene5: {µn}n>0 onverges to µ∞ i� we have (f, µn) → (f, µ∞) for anybounded ontinuous measurable funtion f with bounded support.The starting point ΘN
0 of ΘN

· will be of the form 1
N

XN
0 ⊕

1
N

Y N
0 ⊕

1
N

Zn
0 for somenon-negative integer-valued �nite measures XN

0 , Y N
0 , ZN

0 on (0,∞). To shorten thenotation we shall denote by
ΘN

t =: µN
t ⊕ σ+,N

t ⊕ σ−,N
tthe proess starting from ΘN

0 onstruted in setion 2.1 and orresponding to a givenparameter λ.We shall suppose that the funtion ϕ ontrolling the kernels Kλ satis�es identity(10) below. As noted in the remark on page 7, this hypothesis implies that thefuntion (ϕ, σ+,N
t +σ−,N

t

) inreases with time; this fat will enable us to ontrol ΘN .Note that this hypothesis is weaker than requiring that ϕ be inreasing.Theorem 2 (Convergene of the partile system). Let Kλ(·, ·) : R
∗
+×R

∗
+ → [0, +∞)be a family of symmetri kernels indexed by λ ∈ U . We suppose the map (λ ; x, x′) 7→

Kλ(x, x′) ontinuous and di�erentiable with respet to λ, with a derivative K ′
λ(x, x′)ontinuous with respet to (x, x′). Let ϕ > 1 be a subadditive funtion whose squareis also subadditive. Assume that

ϕ(a + b) > ϕ(a)− ϕ(b), for any positive a, b, (10)
∀λ ∈ U , ∀x, x′, y ∈ R

∗
+, Kλ(x, x′) 6 ϕ(x) ϕ(x′),∣∣K ′

λ(x, y)
∣∣ 6 ϕ(x) ϕ(y),

(11)
Kλ(x, x′)

ϕ(x) ϕ(x′)
and K ′

λ(x, x′)

ϕ(x) ϕ(x′)
−→

x+x′→∞
0 (12)5This notion of onvergene, usually alled vague onvergene, is weaker than weak onvergene.11



Fix λ ∈ U and write ΘN
· for the orresponding proess in N , started from µN

0 ⊕
σ+,N

0 ⊕ σ−,N
0 . Suppose that µ0 satis�es the moment ondition (9) for some (small)

ǫ, that
d0

(
ϕµN

0 , ϕµ0

)
→ 0, (13)and that there exists a positive onstant C bigger than (ϕ2, µN

0

) and (ϕ, σ+,N
0 +σ−,N

0

)for any N > 1.Then the sequene of the laws of the proesses ΘN is tight and any (random) weaklimit is almost surely of the form {
µt ⊕ σ+,∞

t ⊕ σ−,∞
t

}
06t6T

, with
σ+,∞

t − σ−,∞
t = σt.Proof. The following estimate is essential in ontrolling the behaviour of the pro-esses σ+,N and σ−,N .Lemma 3. There exists a positive onstant C1 suh that

E

[
sup

06t6T

(
ϕ, σ+,N

t + σ−,N
t

)]
6 C1.First deompose (ϕ, σ+,N

t +σ−,N
t

) as the sum of a martingale {Mt

}
06t6T

and a �nitevariation term:
(
ϕ, σ+,N

t + σ−,N
t

)
=
(
ϕ, σ+,N

0 + σ−,N
0

)
+ Mt

+

∫ t

0

(∫ {
ϕ(x + x′) + ϕ(x) + ϕ(x′)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
ϕ(x + y)− ϕ(y) + ϕ(x)

}
K(x, y) µN

s (dx)
(
σ+,N

s + σ−,N
s

)
(dy)

) ds.From (11) we have for eah N > 1 and t ∈ [0, T ]

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt +

∫ t

0

∫
2
{
ϕ(x) + ϕ(x′)

}
ϕ(x)ϕ(x′)µN

s (dx)µN
s (dx′) ds

+2

∫ t

0

(
ϕ2, µN

s

) (
ϕ, σ+,N

s + σ−,N
s

) ds.This upper bound is simpli�ed using the subadditivity of ϕ and ϕ2 from whih wehave6
(ϕ, µN

t ) 6 (ϕ, µN
0 ) 6 C and (ϕ2, µN

t ) 6 (ϕ2, µN
0 ) 6 C.This gives a Grönwall-type inequality

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt + 4C2T + 2C

∫ t

0

(
ϕ, σ+,N

s + σ−,N
s

) ds6Sine ϕ > 1 we have (ϕ, µN
0

)
6
(
ϕ2, µN

0

)
6 C.12



whose mean version gives a onstant C1 suh that E

[(
ϕ, σ+,N

t + σ−,N
t

)]
6 C1 forany 0 6 t 6 T . We get the statement of the lemma realling that hypothesis (10)implies that the funtion t 7→

(
ϕ, σ+,N

t + σ−,N
t

) is inreasing.Given ǫ > 0 de�ne the ompat subset
Kǫ =

{
µ⊕ σ+ ⊕ σ− ∈M⊕3 ; max

{
(ϕ, µ),

(
ϕ, σ+

)
,
(
ϕ, σ−

)}
6

1

ǫ

}
⊂M⊕3,and denote by P

N the law of ΘN
· on D([0, T ],

(
M⊕3, d

)).Corollary 4 (Compatness). Given η > 0, there exists ǫ > 0 suh that
P

N
(
D
(
[0, T ], Kǫ

))
> 1− η.Now let f, g, h be bounded measurable funtions on (0,∞) no greater than 1. Bylemma 3 we have for all s < t

E

[∫ t

s

∥∥(f ⊕ g ⊕ h,H(N)
(
ΘN

s

))∥∥ds]
6 2C2(t− s) + 2

∫ t

s

E

[
3C2

2
+ 2C

(
ϕ, σ+,N

r + σ−,N
r

)] dr
6 C2(t− s)and

E
[〈

Mf,g,h ; N
〉

t
−
〈
Mf,g,h ;N

〉
s

]

6
1

N
E

[∫ t

s

∥∥(f ⊕ g ⊕ h,Q(N)
(
ΘN

r

))∥∥ds]
6

4C2

N
+

1

N

∫ t

s

2E

[C2 + 4C2

2
+ 4C

(
ϕ, σ+,N

r

)
+ C

(
ϕ, σ−,N

r

)] dr
6

C2

N
(t− s),where C2 is a positive onstant depending only on C. So, by Doob's L

2-inequality,we have
E

[
sup

s6r6t

∥∥(f ⊕ g ⊕ h, ΘN
r −ΘN

s

)∥∥2
]

6 C3

(
(t− s)2 +

t− s

N

) (14)for some positive onstant C3 depending only on C. It is then a standard fat thatthe equiontinuity inequality (14) together with orollary on ompatness enable theuse of Jakubowski's riterion7; so the sequene of laws of ΘN
· in D([0, T ],

(
M⊕3, d

))has a onvergent subsequene. Denote by Θ∞
· = µ∞ ⊕ σ+,∞ ⊕ σ−,∞ any limit7See for instane Dawson's leture notes [13℄.13



point. Taking a subsequene and hanging the probability spae if neessary wean suppose without loss of generality that ΘN
· onverges almost surely to Θ∞

· in
D
(
[0, T ],

(
M⊕3, d

)). As ΘN
· makes jumps of size at most 3

N
, in the total variationdistane, the limit proess is a ontinuous proess from [0, T ] to (M⊕3, d

).It is proved in [4℄ that under onditions (13) and (9) the proess µ∞
· is almost surelyequal to the unique strong solution µ· of Smoluhowski equation, and that we havealmost surely sup

s6t

d0

(
ϕµN

s , ϕµs

)
→ 0, as N goes to ∞.To prove that σ+,∞

· − σ−,∞
· is equal to the unique solution of equation (5) it su�esto prove that it satis�es this equation for any bounded measurable funtion g withompat support, as a straightforward limit argument will give it for any boundedmeasurable funtion. We shall suppose without loss of generality that σ+,N

0 −σ−,N
0 =

0. We shall adopt the notation
σN

s := σ+,N
s − σ−,N

s ,
∣∣σN

s

∣∣ := σ+,N
s + σ−,N

sand
σ∞

s := σ+,∞
s − σ−,∞

s ,
∣∣σ∞

s

∣∣ := σ+,∞
s + σ−,∞

s .The onlusion of lemma 3 an now be re-written as E

[
sup

06t6T

(
ϕ,
∣∣σN

t

∣∣)
]

6 C1.It an be seen from expression (8) for H(N) that the real-valued proess
Bg ;N

t =
(
g, σN

t

)
−

∫ t

0

(∫
1

2

{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
g(x + y)− g(y)− g(x)

}
K(x, y) µN

s (dx) σN
s (dy)

)ds

(15)is a martingale with previsible inreasing proess
〈
Bg ;N

〉
t
=

1

N

∫ t

0

(∫
1

2

{
g(x + x′)− g(x′)− g(x)

}2
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
g(x + y)− g(y)− g(x)

}2
K(x, y) µN

s (dx) σN
s (dy)

)dsUsing lemma 3 together with the almost sure inequality (ϕ, µN
s

)
6 C, it is seen that

E
〈
Bg ;N

〉
T
onverges to 0 as N goes to∞. So, to show that σ∞

· satis�es equation (5),it is su�ient to prove that the two integrals inside the right hand side of equation(15) onverge almost surely to
∫

1

2

{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µs(dx) µs(dx′)and ∫ {

g(x + y)− g(y)− g(x)
}

K(x, y) µs(dx) σ∞
s (dy) (16)14



respetively, and that we have uniform bounds on them so that dominated onver-gene under the time integral an be used. The onvergene of the �rst integralwas proved in [4℄ using hypotheses (11) and (12), with K in plae of K ′; the sameargument applies here. This integral is bounded above by 3
2
‖g‖∞C2, uniformly in

s ∈ [0, T ] and N > 1.Given δ ∈ (0,∞], the funtion ϕδ(x) = ϕ(x)1x6δ is subadditive. It omes fromFatou's lemma that the inequality
E

[
sup

06t6T

(
ϕδ,
∣∣σ∞

T

∣∣)
]

6 C1holds for any δ ∈ (0,∞]. So, to any ω ∈ Ω one an assoiate a positive onstant
m(δ ; ω) suh that we have

(
ϕδ,
∣∣σ∞

t (ω)
∣∣) 6

(
ϕδ,
∣∣σ∞

T (ω)
∣∣) 6 m(δ ; ω)on the time interval [0, T ]. One an hoose this onstant m(δ ; ω) so that it onvergesto 0 as δ dereases to 0. Taking ω in a subset Ω1 of Ω of probability 1, for whih

ΘN
· (ω) onverges to Θ∞

· (ω) in D([0, T ],
(
M⊕3, d

)), we get that
(
ϕδ,
∣∣σN

t (ω)
∣∣) 6

(
ϕδ,
∣∣σN

T (ω)
∣∣)is arbitrarily small provided δ is small enough, and bounded above uniformly in

t ∈ [0, T ], N > 1 and δ ∈ (0,∞].Proeed now as in [4℄ and write K as the sum of a kernel K1 with ompat supportand a kernel K2 with support in
F1 ∪ F2 ∪ F3 :=

{
(x, y) ; x 6 δ

}
∪
{
(x, y) ; y 6 δ

}
∪
{

(x, y) ; max{x, y} >
1

δ

}
.There is no problem in justifying the onvergene of the integral in (16) orrespond-ing to K1. For K2 write, with {g}(x, y) := g(x + y)− g(x)− g(y),

∣∣∣∣
∫
{g}(x, y) K2(x, y)

(
µN

s (dx) σN
s (dy)− µs(dx) σ∞

s (dy)
)∣∣∣∣

6

∣∣∣∣
∫
{g}(x, y) K2(x, y)

(
µN

s − µ∞
s

)
(dx) σN

s (dy)

∣∣∣∣

+

∣∣∣∣
∫
{g}(x, y) K2(x, y) µs(dx)

(
σN

s − σ∞
s

)
(dy)

)∣∣∣∣and deal with eah term of the right hand side separately. The �rst term is boundedabove by d0

(
ϕµN

s (ω), ϕµs

)(
ϕ,
∣∣σN

s (ω)
∣∣), up to a multipliative onstant. As the �rstfator onverges to 0 (and is no greater than 2C) while the seond is uniformlybounded above, one an apply dominated onvergene in the orresponding integralwith respet to s. To deal with the seond term, use the pointwise bounds8

∥∥K21F1
µs ⊕ σN

s (ω)
∥∥

0
6 γδ C

(
ϕ,
∣∣σN

s

∣∣(ω)
)
,

∥∥K21F2
µs ⊕ σN

s (ω)
∥∥

0
6 C

(
ϕδ,
∣∣σN

s

∣∣(ω)
)
,

∥∥K21F3
µs ⊕ σN

s (ω)
∥∥

0
6
(
ϕδ, µs

)(
ϕ,
∣∣σN

s

∣∣(ω)
)
,8‖ · ‖0 denotes total variation norm. 15



where γδ = max
{

K(x,y)
ϕ(x)ϕ(y)

; (x, y) ∈ F3

} onverges to 0 as δ dereases to 0. As
(
ϕ,
∣∣σN

s (ω)
∣∣) is uniformly bounded above by a onstant, and both (ϕδ,

∣∣σN
s (ω)

∣∣) and(
ϕδ, µs

) an be made arbitrarily small for small enough δ, we have enough ontrolto apply dominated onvergene.3 AlgorithmWe desribe in this setion the algorithm used to simulate the partile system studiedabove; the numerial results are to be found in setion 4. Two points of omputa-tional interest are �rst put forward in setions 3.1 and 3.2; the algorithm itself isdesribed in setion 3.3.3.1 CouplingThe basi algorithm to simulate the sensitivity σt is given by the dynamis of theproess ΘN desribed in setion 2.1. A fresh look at it reveals a potential omputa-tional drawbak of this approah: It is seen from the expliit expression (8) of thegenerator of ΘN that the mean number of partiles inside σN satis�es a Grönwall-type inequality, whih implies an exponential growth of this quantity. One shouldsee in this exponential growth of the number of partiles a good feature for the ap-proximation qualities of our estimator σN
t of σt, espeially regarding auray andvariane. This should be opposed to what happens for the weighed and oupledpartiles systems desribed in the introdution, for whih the number of partiles inthe system dereases with time9.As an exponential growth of the quantity of information to onsider is non-desirablefor simulations, three kinds of triks are used in order to redue it.

• Canellation. As we are only interested in the di�erene σ+,N
t − σ−,N

t anypartile whih appears in both partile systems will be removed from both ofthem.
• Coupling. A partile δx of µN oagulates with any partile of σ+,N

t at rate
1
N

K
(
x, σ+,N

t

)
= 1

N

∫
K(x, y)σ+,N

t (dy); it also oagulates with any partile of
σ−,N

t at rate 1
N

K
(
x, σ−,N

t

). This partile is thus used in both systems at rate
1
N

K
(
x, σ+,N

t

)
∧K

(
x, σ−,N

t

), in whih ase a anellation removes the partiles9This derease is of the same order for the weighted partile system and for Marus-Lushnikov'sdynamis; it is worse for the oupled system. In this approah, σt is approximated by the ratio
(µ

λ+ 1

2
δλ ; N

t − µ
λ− 1

2
δλ ; N

t )/δλ, where µ
λ+ 1

2
δλ ; N

t and µ
λ− 1

2
δλ ; N

t are two oupled Markus-Lushnikovproesses. So, the smaller δλ is, the more µ
λ+ 1

2
δλ

t and µ
λ− 1

2
δλ

t (and µ
λ+ 1

2
δλ ; N

t and µ
λ− 1

2
δλ ; N

t withit) look the same. This means that the `real' number of partiles in the di�erene µ
λ+ 1

2
δλ ; N

t −

µ
λ− 1

2
δλ ; N

t is a `funtion' fδλ(N) 6 N of δλ that dereases as δλ goes to 0, a neessary onditionfor the ratio to be a good estimate of σt. 16



δx added to σ−,N
t and σ+,N

t . This operation leaves the total number of partilesin σN onstant. The rest of the time δx is used in only one of the systems.
• Re-sampling. A more drasti ontrol of the number of partiles in σN anbe obtained using re-sampling. Let M and m be two integers depending on

N , with m 6 M . Eah time σ+,N
t or σ−,N

t has M partiles, replae it by an iidsample of itself of size m; this way the total number of partiles in σN remainsno greater than 2M .3.2 Majorant kernelIn order to treat information in a omputationally e�ient way, we have organizedthe data using tree strutures. The use of a majorant kernel with a simple algebraistruture together with an aeptane/rejetion step lead to an e�ient updating ofthe data tree.The hoie of a majorant kernel K̂(·, ·) is made so that K̂ is symmetri, no less than
K and has the form̂

K(xi, xj) =
∑

β

K̂β(xi, xj) :=
∑

β

fβ(xi) gβ(xj) (17)for β in a �nite set of indies [14℄. This form of kernel leads to simple generation ofprobabilities of the form
K̂(xi, xj)∑

a6=b K̂(xa, xb)
=
∑

β

∑
a6=b fβ(xa) gβ(xb)∑

a6=b

∑
β′ fβ′(xa) gβ′(xb)

fβ(xi)∑
a fβ(xa)

gβ(xj)∑
b ; b6=a gβ(xb)

, (18)where a and b run in possibly di�erent �nite sets of indies. Identity (18) orrespondsto hoosing �rst an index β aording to the probability spei�ed by the �rst term ofthe right hand side and then hoosing eah partile xi, xj separately. The hoie of apair (xi, xj) aording to the probability given the left hand side of formula (18) anthus be done in O(N) operations rather than O(N2). All the required informationan be held in binary tree strutures (as desribed in [15℄) whilst allowing an evenfurther redution in the number of operations to hoose eah partile from O(N) to
O(log N). Updating this information also requires O(log N) operations. Further, thesums in the �rst frations of the right hand side of (18) are automatially ontainedin the tree struture without further omputation.Note that in the theoretial framework used in setion 2, the funtion ϕ(x) ϕ(y)an be used as a unique majorant kernel. We have yet hosen to present the abovegeneral proedure as we shall onsider situations in whih the above theory does notapply diretly.3.3 Algorithm desriptionReall ΘN

t is of the form (
1
N

Xt,
1
N

Yt,
1
N

Zt

) for a Markov proess Θt =
(
Xt, Yt, Zt

)whose omponents are sums of Dira masses and whose dynamis was desribed17



in setion 2.1. What the algorithm really simulates is the disrete measure-valuedproess Θt; a resaling gives the time evolution of ΘN
t . The algorithm is desribedin Algorithms 1 and 2 below.Note that there may be up to three di�erent majorant kernels � for K, K

′

+ and
K

′

−. Therefore, we slie up the total majorant rates aording to the event type
α ∈ {0, 1+, 1−, 2+, 2−} to our. We then have K̂αβ suh that ∑β K̂αβ = K̂α (fromeq. 17), where K̂α ∈ {K̂, K̂

′

+, K̂
′

−}. This gives the orresponding rates ρ̂αβ and ρ̂α.To order to desribe numerial results it provides, we shall denote by L the numberof simulations with the same initial onditions and by trun the omputational timetaken to run the algorithm (CPU time in seonds).4 Numerial ResultsWe have hosen to illustrate our approah in situations where the theoretial resultsof setion 2 do not apply, so as to show its robustness. The main motivation ofthis artile is to produe a stohasti estimate of the sensitivity σt whose varianeis smaller than that given by existing methods. One step in this diretion was donein [9℄, where σt was approximated by the ratio (µ
λ+ 1

2
δλ ;N

t − µ
λ− 1

2
δλ ;N

t )/δλ, for twoMarus-Lushnikov proesses with slightly di�erent parameters. The method therealled for oupling them so as to redue the variane of this estimator as muh asan be done; this was done in the same spirit as the oupling used above. We shallrefer to this algorithm as the CD algorithm (for entral di�erene). The varianeredution obtained by this method is signi�ant; we shall thus ompare our resultswith those given by the CD algorithm. As our algorithm simulates σt diretly, itwill be alled Exat; and depending on whether or not we use the oupling step weshall talk of the ExatCoupling or ExatIndep algorithm.The data presented deal with the additive kernel K(x, y) = λ(x + y) and a kernelthat is used in modelling soot formation in a free moleular regime [16�18℄, thus weshall all it the `Soot Kernel':
K(x, y) =

(
1

x
+

1

y

) 1

2 (
x

1

λ + y
1

λ

)2

;both are onsidered in the disrete setting where masses are integers. The referenevalue of λ for the additive kernel will be 1 and for the soot kernel 2.1. We shallalways take as initial ondition for the Marus-Lushnikov proess N partiles withmass equal to 1, and σ+,N
0 = σ+,N

0 = 0.Smoluhowski equation has an expliit analyti solution for an additive interation(see the review by Aldous [19℄ for instane) we an ompare our results with it; it willbe onvenient to write σ∞
t for σt in this ase. No analyti solution of Smoluhowskiequation or its sensitivity equation is available for the soot kernel; we shall thus18



ompare our estimators σN
t with what the ExatCoupling algorithm gives us forvery high settings, say N = 3× 106 and L = 103 simulations. Given any N , the lthrun of the algorithm produes an estimator of σt whih we shall denote by σl,N

t . WeAlgorithm 1: The ExatCoupling algorithm - Part 1Set t = 0. while t < tend do1 Generate a realisation of the holding time ∆t with exponential law of2 parameter 1
N

∑
α ρ̂α, and set t← t + ∆t.Choose event type α ∈ {0, 1+, 1−, 2+, 2−} to our with distribution3

ρ̂α∑
α ρ̂α

.Choose proess β with distribution ρ̂αβ

ρ̂α
.4 Given α and β, hoose a pair of partiles using the index distribution5

K̂αβ(xi, xj)

ρ̂αβ

=
fαβ(xi)∑
a fαβ(xa)

gαβ(xj)∑
b gαβ(xb)

(19)where (xi, xj) are the masses of partiles sampled from the appropriateensembles (µN , σ+,N or σ−,N) depending on α.Perform the oagulation step whih depends on α:6 swith the value of α hosen doase α = 0; this part is the original Marus-Lushnikov proess.7 The hosen pair of partiles is of the form (xi, xj).With probability Kα

K̂α
make the jump8

∆ΘN =
(
δxi+xj

− δxi
− δxj

)
⊕ 0⊕ 0.ase α = 1+or 1−9 The hosen pair of partiles is of the form (xi, xj). Set10

p =
max{K

2+
,K

2−}

K̂
2+

+K̂
2−

, and generate a realisation of a uniform randomvariable U in (0, 1).if U 6 p thenif K2+ > K2− thenmake the jump ∆ΘN = 0⊕ δxi+xj
⊕ δxi

+ δxj
.11 elsemake the jump ∆ΘN = 0⊕ δxi

+ δxj
⊕ δxi+xj

.12 else Go to Step 15.13 ase α = 2+or 2−; Go to Algorithm 2.14 For eah partile of σN that has just been involved in a oagulation or15 newly formed, do a anellation operation if it an be done.STOP.16 19



Algorithm 2: The ExatCoupling algorithm - Part 2 (Cases α =
2+, 2− only)ase α = 2+ or α = 2−1 The hosen ordered pair of partiles ontains one partile of µNand one partile of σN , in either order.if the pair is of the form (xi, ·) where xi is the mass of a partilefrom µN thenif the seond partile belongs to σ+,N thenChoose a partile of σ−,N aording to the distribution2

gαβ(·)∑
ℓ∈J1,...,qK gαβ(zℓ)

. (20)elseChoose a partile of σ+,N aording to the distribution
gαβ(·)∑

k∈J1,...,pK gαβ(yk)
. (21)Set3

r+ :=
∑

k∈J1,...,pK

gαβ(yk) , r− :=
∑

ℓ∈J1,...,qK

gαβ(zℓ) (22).elseDo the symmetrial operation, swapping gαβ with fαβ.4 The preeding steps produe a triple (xi, yk, zℓ) of partiles from5
µN ⊕ σ+,N ⊕ σ−,N . Set

pmin =
min{r+, r−}

r+ + r−

K

K̂
, pmax =

max{r+, r−}

r+ + r−

K

K̂
. (23)Generate realisation of a uniform random variable U in (0, 1).6 if 0 < U 6 pmin thenmake the jump ∆ΘN = 0⊕

(
δxi+yk

− δyk

)
⊕
(
δxi+zℓ

− δzℓ

).7 else if pmin < U 6 pmax thenif r+ > r− thenmake the jump ∆ΘN = 0⊕
(
δxi+yk

− δyk

)
⊕ δxi

.8 elsemake the jump ∆ΘN = 0⊕ δxi
⊕
(
δxi+zℓ

− δzℓ

).9 else Go to Step 15 of Algorithm 1.10 Go to Step 15 of Algorithm 1.11 20
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(a) ExatCoupling, t = 0.5
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(b) CD (δλ = 0.05), t = 0.5
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() ExatCoupling, t = 3.0
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(d) CD (δλ = 0.05), t = 3.0Figure 1: Sensitivity for additive kernel, λ = 1.0, N = 103, L = 1000. Theon�dene intervals for the larger partile sizes are omitted for pitoriallarity.shall set σ∞
t := 10−3

∑

l=1,...,103

σl,106

t . Figures 1 and 2 show the empirial estimate of σtgiven after L runs, at di�erent times. The line represents σ∞
t . For omparison, theresults given by the CD algorithm for the same setting, with δλ = 0.05, are plottedusing stars. Also, Figure 3 shows what the solution to the original Smoluhowskiequation looks like.To quantify the onvergene of the empirial sensitivity

σ̄L ;N
t :=

1

L

∑

l=1..L

σl,N
tto σ∞

t as N inreases we have plotted in Figure 4 the quantity
dvar(N) =

∑

j

∑

i>1

∣∣∣
(
σ̄L ; N

tj
− σ∞

tj

)
(i)
∣∣∣,where σ̄t

L ; N(i) and σ∞
t (i) represent the empirial and real sensitivities at partilemass i ∈ N respetively, and dvar(N) represents the total variation distane betweenthe empirial sensitivity and the sensitivity itself summed over some hosen timepoints10 {tj}. These results empirially on�rm Theorem 2 (in this ase where it10For Figure 4, the times points {tj} were hosen to be 0.125j for j = 1, . . . , 5621
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(a) ExatCoupling, t = 0.5
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(b) CD (δλ = 0.05), t = 0.5
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() ExatCoupling, t = 3.0
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(d) CD (δλ = 0.05), t = 3.0Figure 2: Sensitivity for soot kernel, λ = 2.1, N = 103, L = 1000. The on�deneintervals for the larger partile sizes are omitted for pitorial larity.does not apply), and quantify the speed of onvergene as being of order 1
N
. Theanalogue result for the CD algorithm is given in [9℄.4.1 VarianeTo analyse the variane of the random output of the algorithm we shall de�ne theempirial variane at partile mass i ∈ N and time t asVarN(i, t) :=

1

L− 1

L∑

l=1

((σl,N
t − σ̄L ;N

t )(i))2and shall take as a measure of the variane the quantityVarN(t) :=
∑

i>1

VarN(i, t). (24)Figure 5 represents its graph as a funtion of N using di�erent algorithms. It showsthat the ExatCoupling algorithm ahieves a variane redution by a fator 103ompared to the CD algorithm. The plots also show that VarN(t) is proportionalto 1
N
, a fat that should be related to a entral limit theorem.22
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(b) Additive kernel, t = 3.0
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() Soot kernel, t = 1.0
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(d) Soot kernel, t = 3.0Figure 3: µt as a funtion of log(partile size)
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(b) Soot kernelFigure 4: Convergene in N of the ExatCoupling algorithm, N = 100 × 2i for
i = 0, . . . , 5, NL = 2× 108.4.2 Computational e�ienyAlthough setion 4.1 indiates that the ExatCoupling algorithm produes very a-urate estimators of the sensitivity, it omes at the prie of a omputational time23
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(b) Additive kernel, t = 5.0
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() Soot kernel, t = 1.0
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(d) Soot kernel, t = 5.0Figure 5: logVarN(t) as a funtion of N . The meaning of the symbols are asfollows: Cirles = ExatCoupling, Diamonds = ExatIndep, Triangles =CD(δλ = 0.10), Crosses = CD(δλ = 0.05), Pluses = CD(δλ = 0.01).greater than the one needed by the CD algorithm. This omes from the fat that thelatter algorithm being essentially a Marus-Lushnikov algorithm, it uses a generallydereasing amount of information, as the number of sensitivity partiles dereaseswith time. On the other hand, the ExatCoupling algorithm has to deal with moreand more sensitivity partiles, whose number tends to grow exponentially. To seewhether the gain of auray given by the ExatCoupling algorithm is worth thee�ort we propose two riteria.4.2.1 CPU time to reah a ertain level of aurayFix the observation time t (we hoose large enough t so that the partile system hasexperiened many jumps, and therefore the varianes are expeted to be larger - seeFigure 3. Given a ertain level of auray, v, �nd for eah algorithm the smallest Nfor whih VarN(t) is smaller than v. See what omputational time is needed to runthe algorithm for this N (during an evolution time t for the partile system). Tables1 and 2 show that the ExatCoupling algorithm remains mostly better than theCD algorithm. It also shows that it onverges muh quiker to the true sensitivity24



than the CD algorithm does. Note that for the soot kernel the CD algorithm with
δλ = 0.1, 105 initial partiles are not su�ient to reah the given level of auray;this setup already requires a CPU time equal to 1058.91 seonds. The omparisonwith the orresponding time for the ExatCoupling algorithm is greatly in favour ofthe latter. Table 1: Additive kernel, v = 1.43× 10−4

t 1.0 1.0 3.0 3.0algorithm ExatCoupling CD (δλ = 0.10) ExatCoupling CD (δλ = 0.10)
N 6500 55000 2100 16250
trun (ses) 281.15 593.99 99.22 213.34Table 2: Soot kernel, v = 2.57× 10−5

t 1.0 1.0 3.0 3.0algorithm ExatCoupling CD (δλ = 0.10) ExatCoupling CD (δλ = 0.10)
N 10000 100000 6350 55000
trun (ses) 379.01 1058.91 382.15 1104.24(v not reahed)

4.2.2 Gain fatorEibek and Wagner introdued in [14℄ another quantity to ompare the relative e�-ieny of two algorithms. Fix the observation time t. Given a setup (K(·, ·), N, L),denote by TEC(t) and TCD(t) the empirial mean CPU time needed by the Exat-Coupling and CD algorithms to be run up to time t. Denote also by VarECN (t) andVaralgN (t) the empirial varianes given by formula (24) when omputed using Exat-Coupling and the given algorithm `alg' respetively. The gain fator of an algorithmover ExatCoupling, similar to that as introdued by Eibek and Wagner, is de�nedhere by the ratio
TEC(t)VarECN (t)

T alg(t)VaralgN (t)It is related in some way to the analysis made in setion 4.2.1. See setion 5 of[14℄. Figures 6 and 7 plot the reiproal gain (its logarithm) as a funtion of time.Triangles, pluses and rosses represent data of the CD algorithm, for δλ = 0.01, 0.05and 0.10 respetively, irles represent data of the ExatIndep algorithm, and thehorizontal line at zero represents the threshold for ExatCoupling.Figures 6 and 7 show good results. By and large, the CD algorithms appear to beonsiderably inferior to the ExatCoupling algorithm for the Soot kernel, and the25
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(a) N = 103
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(b) N = 104
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() N = 105Figure 6: Additive kernel: log(Gain fator−1) as a funtion of t. The mean-ings of the symbols are as follows: Cirles = ExatIndep, Crosses =CD(δλ = 0.10), Pluses = CD(δλ = 0.05), Triangles = CD(δλ = 0.01).The horizontal line is the threshold value 1.0 for ExatCoupling.
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() N = 105Figure 7: Soot kernel: log(Gain fator−1) as a funtion of t. The meanings of thesymbols are as follows: Cirles = ExatIndep, Crosses = CD(δλ = 0.10),Pluses = CD(δλ = 0.05), Triangles = CD(δλ = 0.01). The horizontalline is the threshold value 1.0 for ExatCoupling.ExatIndep algorithm in either performs slightly better than the CD (δλ = 0.10).There appears to be little to moderate di�erene in behaviour over di�erent valuesof N .The piture is di�erent for the Additive kernel. For N = 1000, we �nd that the CD
(δλ = 0.1) is better than the ExatCoupling, at least for very small or large times.This disadvantage gradually disappears over larger N � this is due to the inreasedprobability of anellations for larger N whih redues the number of partiles inthe ensembles and therefore the CPU times. Other than this, the ExatCouplingalgorithm maintains a substantial lead over the other algorithms.
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5 ConlusionsA stohasti partile system approximation to the parametri sensitivity in Smolu-howski's oagulation equation was introdued. Rather than taking a �nite di�ereneapproah to alulating sensitivities, we onsidered the diret parametri derivativeof (2), and developed a Monte-Carlo algorithmwhih would approximate its solution.The partile system approximation was proved to onverge weakly to the solutionof the sensitivity equation (2), as the number of partiles inreases inde�nitely.The �rst algorithm developed (ExatIndep) allows for an exponential inrease inthe number of sensitivity partiles. We sought to redue this inrease using severaltriks: Canellation removes `unneessary' sensitivity partiles whih are neededto desribe it, whilst oupling prevents their reation. These make a signi�antredution to the number of partiles in the ensemble. Furthermore, the resamplingmethod puts a ap on the total number of sensitivity partiles, thus stopping theirexponential esalation. This gives us the ExatCoupling algorithm.In the Numerial Results setion, it was empirially on�rmed that the order ofonvergene is O(1/N) where N is the number of initial partiles. We then om-pared the Exat algorithms with those found in [9℄, named here CD algorithms. Itwas shown that the variane of the sensitivity estimators were orders of magnitudesmaller for the ExatCoupling algorithm than for the CD algorithms. However thisame at the prie of longer CPU run times. Two measures of e�ieny, taking boththe variane and the CPU time into aount, were then onsidered. The ExatCou-pling algorithm happens to require muh smaller time to to reah a �xed level oferror than any CD algorithm, and the gain fator, as de�ned in [14℄, also happensto be in favour of the ExatCoupling algorithm, most of the time. This de�nitelygives a lear advantage of our approah over �nite di�erene methods.However, both methods have some inherent drawbak: unlike the adjoint method[8℄, they are unidimensional in nature and ompute sensitivity only for a �xed valueof the parameter. It would be useful to onstrut a partile system approximationwhih do not have these weaknesses. Also, although the onvergene theorem es-tablished in setion 2 in a general framework is quite enouraging, it is not learwhether the algorithm will be as e�ient as above if partiles's masses an take anypositive value. We leave the investigation of these questions for future work.Referenes[1℄ A. H. Marus, Stohasti oalesene, Tehnometris, 10 (1968), pp. 133�143.[2℄ Y. R. Domilovskiy, A. A. Lushnikov and V. N. Piskurov, Monte Carlosimulation of oagulation proesses, Izv. Atmos. Oean. Phys., 15 (1979).[3℄ I. Jeon, Existene of gelling solutions for oagulation-fragmentation equations,Comm. Math. Phys., 194 (1998), pp. 541�567.27
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