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Abstra
tIn this arti
le a sto
hasti
 parti
le system approximation to the parametri
sensitivity in the Smolu
howski 
oagulation equation is introdu
ed. The para-metri
 sensitivity is the derivative of the solution to the equation with respe
tto some parameter, where the 
oagulation kernel depends on this parameter.It is proved that the parti
le system 
onverges weakly to the sensitivity as thenumber of parti
les N in
reases. A Monte Carlo algorithm is developed andvarian
e redu
tion te
hniques are applied. Numeri
al experiments are 
on-du
ted for two kernels: the additive kernel and one whi
h has been used forstudying soot formation in a free mole
ular regime. It is shown empiri
allythat the te
hniques for varian
e redu
tion are indeed very e�e
tive and thatthe order of 
onvergen
e is O(1/N). The algorithm is then 
ompared to analgorithm based on a �nite di�eren
e approximation to the sensitivity and itis found that the varian
e of the sensitivity estimators are 
onsiderably lowerthan that for the �nite di�eren
e approa
h. Furthermore, two methods ofestablishing `e�
ien
y' are 
onsidered and the new algorithm is found to besigni�
antly more e�
ient.
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1 Introdu
tionSmolu
howski's des
ription of a 
oagulation pro
ess is made in terms of densities
µt(x) of parti
les of mass x = 1, 2, 3, . . . and takes the form of an in�nite dimensionaldi�erential equation

d

dt
µt(x) =

1

2

x−1∑

y=1

K(y, x− y) µt(y) µt(x− y)− µt(x)

∞∑

y=1

K(x, y) µt(y). (1)The symmetri
 kernel K(x, y) appearing in this equation should be understood asgiving the rate at whi
h two parti
les of mass x and y 
oagulate. One gets anequivalent and more symmetri
 equation 
onsidering µt(·) as a measure on the setof non-negative integers and looking at the time evolution of observables of the form
(f, µt) :=

∑
x f(x)µt(x); moments are examples of su
h observables. In these terms,equation (1) takes the form

(f, µt) = (f, µ0) +
1

2

∫ t

0

(
∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K(x, y) µs(x) µs(y)

)ds.(2)The basi
 problem we address is to derive a numeri
al s
heme to understand howthe solution to this equation depends on possible parameters in the kernel. We shallwrite Kλ to indi
ate that K depends on some d-dimensional parameter λ, and shallwrite µλ
t for the solution of equation (2). Formally di�erentiating this equation withrespe
t to λ and setting σλ

t = ∂λµ
λ
t we get

(f, σλ
t ) = (f, σλ

0 ) +
1

2

∫ t

0

(∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
Kλ(x, y) µλ

s (x) σλ
s (y)

)ds

+

∫ t

0

(∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K ′

λ(x, y) µλ
s (x) µλ

s (y)
)ds.(3)

K ′
λ is here the derivative of Kλ with respe
t to λ. Se
tion 2 presents an algorithmwhi
h simulates the sensitivity σλ

t very a

urately and in an e�
ient way.There are two main motivations for performing sensitivity analysis. The �rst is forsolving inverse problems. If some parti
le system is governed by a partial di�erentialequation whi
h in turn is dependent upon some unknown parameter, it is desirableto �nd this parameter. This 
an be a
hieved by 
hoosing the parameter value whi
hminimises some residual whi
h is a fun
tion of experimentally realised quantities andits 
omputational analogue, whi
h varies with the parameter. The minimisationpro
edure often uses a gradient sear
h, thus the value of 
omputing parametri
derivatives is apparent. Se
ondly, in 
onsidering a s
ienti�
 model, we often wish to
onsider the smallest model whi
h reasonably �ts the data, in whi
h 
ase sensitivityanalysis 
an be performed to dis
ard parameters with small sensitivity.Whilst the usual tools of solving di�erential equations (and their asso
iated numer-i
al s
hemes) are badly adapted to the above in�nite dimensional framework, the3



sto
hasti
 approa
h of intera
tion parti
le systems (basi
ally Markov 
hains) 
anbe used e�
iently, in this setting, as Mar
us in [1℄, and later Lushnikov in [2℄, �rstrealised. We follow their approa
h and give a sto
hasti
 parti
le approximation ofthe sensitivity σλ
t .Before running any simulation, one should investigate the well-posedness of equation(3): if it had more than one solution it would be un
lear what solution a numeri
als
heme approximates. The most general answers to this theoreti
al question forSmolu
howski equation were given by Jeon in [3℄ and Norris in [4℄, under a growthassumption on the intera
tion kernel and a moment 
ondition on the initial 
ondition

µ0. Surprisingly enough, the existen
e and uniqueness problem for the sensitivitywas only solved re
ently, by Bailleul [5℄, using methods developed by Kolokoltsov[6℄. The algorithm developed in this arti
le is the numeri
al 
ounterpart of thistheoreti
al work1.Three approa
hes to the simulation of the sensitivity by systems of parti
les havemainly been used up to now. The �rst uses weighted parti
les, as illustrated byVikhansky and Kraft [7℄. They approximate the family of solutions {µλ
t

}
λ
byMar
us-Lushnikov pro
esses ∑n>0 wn(t ; λ)δxn(t) where the dependen
e on λ is en-tirely put on the weights wn(t ; λ). A heuristi
 argument imposes to their derivativeto satisfy a kind of Markov evolution rule. Despite its (numeri
ally veri�ed) 
on-vergen
e this approa
h essentially has the same speed of 
onvergen
e and varian
eas the Mar
us-Lushnikov pro
ess. Further, the paper does not any informationregarding 
omputation run times.The se
ond approa
h 
onsiders adjoint sensitivity [8℄. A ba
kward partial di�erentialequation is used rather than a forward one, as used in most other methods. Theadvantage of this method is that sensitivity for any parameter value is immediateon
e the 
omputation have been done whereas using the forward equation requiresexpli
it 
al
ulation for ea
h parameter value. The disadvantage is that one 
an only
al
ulate the sensitivities for a parti
ular fun
tional of the parti
le ensemble.In the third approa
h, devised by the authors with J. R. Norris in the forth
omingarti
le [9℄, the sensitivity σλ

t is approximated by the ratio (µλ+δλ ;N
t − µλ ; N

t )/δλ,where µλ+δλ ;N
t and µλ ;N

t are two Markus-Lushnikov pro
esses 
orresponding to 
loseparameters, 
oupled so as to minimise the di�eren
e of their random �u
tuationsaround µλ+δλ
t and µλ

t . This approa
h leads to a massive de
rease of varian
e butdoes not improve the speed of 
onvergen
e of the algorithm.The algorithm we propose improves the varian
e of the sensitivity estimator andrequires a mu
h smaller number of parti
les to 
onverge. This is des
ribed in se
tion2. The reader who is not interested in mathemati
al details 
an skip se
tions 2.1and 2.2 where it is proven that the parti
le system introdu
ed in se
tion 2 
onvergesto the sensitivity. Se
tion 3 presents the algorithm we have used to obtain thenumeri
al results of se
tion 4.Notation. We shall prove 
onvergen
e of the parti
le system in a general setting1Consult this arti
le for 
onditions under whi
h existen
e and uniqueness of a solution to thesensitivity equation (3) holds. 4



where masses of parti
les 
an take any positive real value. The densities of parti
leswill then be represented by non-negative measures µt and all sums will be repla
ed byintegrals. In this framework we shall write (f, µ) for ∫ f(x)µ(dx) and Smolu
howski'sequation (2) will be written
(f, µt) = (f, µ0) +

1

2

∫ t

0

∫ {
f(x + y)− f(x)− f(y)

}
K(x, y) µs(dx) µs(dy) ds.We shall formally write it as

µ̇λ
t =

1

2
Kλ(µ

λ
t , µ

λ
t ). (4)In the same way, we shall write formally equation (3) for the sensitivity as

σ̇λ
t = Kλ

(
µλ

t , σ
λ
t

)
+

1

2
K ′

λ

(
µλ

t , µ
λ
t

)
. (5)The integral notation is adopted from now on.2 Markov 
hain approximationIt is probably fair to say that although the Smolu
howski equation (2) is a deter-ministi
 evolution equation it should primarily be thought of as a deterministi
 larges
ale pi
ture of a sto
hasti
 mesos
opi
 dynami
s. Indeed, Smolu
howski obtainedhis equation from a representation of the 
oagulation pro
ess using `parti
les' mov-ing a

ording to Brownian traje
tories whose di�usivity depends on their mass and
oagulate when they are 
lose to ea
h other. As explained in the arti
le [10℄ ofChandrasekhar, se
tion 6 of 
hapter III, in a region of spa
e where the 
oagulatingparti
les are well mixed, one 
an forget about their spatial lo
ation and obtain amean-�eld evolution for their mass distribution. This mean-�eld pi
ture is providedby Smolu
howski equation. Given in its simple form (1), it is not 
lear at �rst sighthow one should simulate a solution to this in�nite dimensional di�erential system.The approa
h developed by Mar
us in his seminal paper [1℄ in a sense 
omes ba
kto the primary sto
hasti
 des
ription of the 
oagulation phenomenon and relies onthe intuitive 
ontent of Smolu
howski equation. Two parti
les of masses x and y
oagulate at rate K(x, y) to 
reate a new parti
le of mass x + y: The parti
les xand y are removed from the system and the parti
le x + y added. This motivatedMar
us, and later Lushnikov, to represent a parti
le of mass x by a Dira
 mass δxat x and to introdu
e a strong Markov jump pro
ess on the spa
e of dis
rete non-negative measures with the following simple dynami
s. Denote by µN

0 =
1

N

∑
δxiits initial state and by µN

t its state at time t. Asso
iate to ea
h pair 1 6 i < j 6 Nindependent exponential random times Tij with parameter K
(
xi, xj

)

N
and set

T = min{Tij ; 1 6 i < j 6 N}.5



The pro
ess remains 
onstant on the time interval [0, T ), and if T = Tpq it has ajump 1

N

(
δxp+xq

− δxp
− δxq

) at time T . The dynami
s then starts afresh. Note thatthe new measure at time T is still non-negative, and that the above des
ription leadsto a mean jump of the pro
ess during a time interval [t, t + δt] equal to2
δt
∑

x,x′

(
δx+x′ − δx − δx′

)
K(x, y) µN

t (x) µN
t (x′)up to terms of order δt

N
and o(δt). This property makes it 
lear that the pro
ess
onverges to a solution of the Smolu
howski equation as N goes to in�nity (underproper 
onditions), a fa
t whi
h was used for simulation purposes long before it wasproved under general 
onditions in [4℄.Following the heuristi
 approa
h of Mar
us and Lushnikov, we are going to give inthe next se
tion a parti
le des
ription of the sensitivity equation
σ̇λ

t = Kλ

(
µλ

t , σ
λ
t

)
+

1

2
K ′

λ

(
µλ

t , µ
λ
t

)
. (6)To that end, introdu
e the notation K ′

+ := K ′ ∨ 0 and K ′
− := K ′ ∧ 0 (dropping theindex λ for it will be �xed), and write, for a signed measure σ,

σ = σ1 dσ
d|σ|

>0 − |σ|1 dσ
d|σ|

<0 =: σ+ − σ−,Using this notation, re-write equation (6) as
σ̇+

t − σ̇−
t =

(
Kλ

(
µλ

t , σ
+
t

)
+

1

2
K ′

+

(
µλ

t , µ
λ
t

))
−
(
Kλ

(
µλ

t , σ
−
t

)
+

1

2
K ′

−

(
µλ

t , µ
λ
t

)) (7)This equation will motivate the introdu
tion of the Markov 
hain des
ribed in thenext se
tion.Notation. Given three non-negative measures µ, σ+, σ− on (0,∞) we shall adoptthe notation µ⊕σ+⊕σ− to denote the R
3
+-valued measure on (0,∞)3. It will 
larifythe notation to denote by x ⊕ y ⊕ z the point of R

3 with 
o-ordinates x, y and z.Given non-negative fun
tions f, g, h on (0,∞) set
(
f ⊕ g ⊕ h, µ⊕ σ+ ⊕ σ−

)
:= (f, µ)⊕ (g, σ+)⊕ (h, σ−).As we shall simulate both µt and (σ+

t , σ−
t ) at the same time, our approximatingMarkov 
hain will take values in the set

N :=
{
µ⊕ σ+ ⊕ σ− ; µ, σ+, σ− non-negative dis
rete measures on (0,∞)

}
.2µN

t denotes the state of the pro
ess at time t.
6



2.1 Chain, generatorIn the same way as the right hand side of Smolu
howski equation (4) 
an be in-terpreted as the 
oagulation of parti
les of µt of mass x and y at rate K(x, y), weare going to follow what equation (7) suggests and interpret the term K(µt, σ
+
t )appearing there as the 
oagulation of a parti
le in µt of mass x with a parti
le in

σ+
t of mass y at rate K(x, y). Note that this leads to a jump δx+y − δx − δy of σ+whi
h 
ould transform the non-negative measure σ+

t into a signed measure, as theterm δx does not ne
essarily appear inside σ+
t (while δy does). We shall take 
areof this by adding δx to the negative part σ−

t of σt instead of subtra
ting it from σ+
t ;as we are only interested in the di�eren
e σ+

t − σ−
t (= σt) this has no 
onsequen
e.Note also that the parti
le δx from µt used in that 
oagulation event will not beremoved from µt. Similar interpretations of the terms K(µt, σ

−
t ) and 1

2
K ′

±(µt, µt)lead us to de�ne the following Markov 
hain Θt = Xt ⊕ Yt ⊕ Zt on N . Denote by
Θ0 =

( ∑

i=1..m

δxi

)
⊕
( ∑

k=1..p

δyk

)
⊕
(∑

ℓ=1..q

δzℓ

) its starting point.2.1.1 Dynami
sAsso
iate to ea
h pair
• 1 6 i < j 6 m, exponential random variables Rij , Sij and Tij with respe
tiveparameters K(xi, xj) and K ′

+(xi, xj) and K ′
−(xi, xj),

• (i, k) ∈ J1, mK×J1, pK an exponential random variable Uik with parameter K(xi, yk),
• (i, ℓ) ∈ J1, mK×J1, qK an exponential random variable Viℓ with parameter K(xi, zℓ).All these random variables are supposed to be independent. Denoting by W the�rst event happening in the system

W = min
{
Rij , Sij, Tij , Uik, Viℓ ; 1 6 i < j 6 m, k ∈ J1, pK, ℓ ∈ J1, qK

}
,the jump ∆Θ of the Markov 
hain depends on whi
h of these exponential 
lo
ksrings �rst. For future referen
e, the di�erent types of events that 
an happen arenumbered. If

W = Rij , then ∆Θ =
(
δxi+xj

− δxi
− δxj

)
⊕ 0⊕ 0 (event type: 0 )

W = Sij , then ∆Θ = 0⊕ δxi+xj
⊕
(
δxi

+ δxj

) (event type: 1+)
W = Tij , then ∆Θ = 0⊕

(
δxi

+ δxj

)
⊕ δxi+xj

(event type: 1−)
W = Uik, then ∆Θ = 0⊕

(
δxi+yk

− δyk

)
⊕ δxi

(event type: 2+)
W = Viℓ, then ∆Θ = 0⊕ δxi

⊕
(
δxi+zℓ

− δzℓ

) (event type: 2−)The pro
ess Θt will be 
onstant on the time interval [0, W ) and have jump ∆Θ attime W . The dynami
s then starts afresh.Remark. It is 
lear from this des
ription that for any fun
tion ϕ satisfying therelation ϕ(a + b) > ϕ(a)− ϕ(b) for any a, b > 0, the fun
tion (ϕ, Yt + Zt) in
reaseswith time. This fa
t is useful for the 
onvergen
e result stated in theorem 2.7



Given any positive integer N , de�ne 1
N

Θt as the element 1
N

Xt ⊕
1
N

Yt ⊕
1
N

Zt of N ,and set
ΘN

t :=
1

N
Θ t

N
=: µN

t ⊕ σ+,N
t ⊕ σ−,N

t .Note that the �rst 
omponent of ΘN
t is the usual Mar
us-Lushnikov pro
ess. Set

σN
t = σ+,N

t − σ−,N
t . We are going to prove in theorem 2 that σN

t 
onverges in law tothe sensitivity σt. Those who do not 
are about the mathemati
al details of su
h astatement 
an skip the remaining of this se
tion and go to se
tion 3.2.1.2 GeneratorThe analyti
 des
ription of the Markov 
hain {ΘN
t }t>0 in terms of its generator willbe useful in proving theorem 2. Given a non-negative measure µ of the form 1

N

∑
δxide�ne the res
aled 
ounting measure on ordered pairs of masses of distin
t parti
lesby

µ̃(A× A′) := µ(A) µ(A′)−
1

N
µ(A ∩ A′),and de�ne the measure G(N)(µ) and the operator P(N)(µ) setting for any measurablebounded fun
tion f

(
f,G(N)(µ)

)
=

1

2

∫ {
f(x + x′)− f(x)− f(x′)

}
K(x, x′) µ̃(dx, dx′)

(
f,P(N)(µ)

)
=

1

2

∫ {
f(x + x′)− f(x)− f(x′)

}2
K(x, x′) µ̃(dx, dx′).Given x > 0 and a non-negative measure γ on R

∗
+ we shall write K(x, γ) for theintegral ∫ K(x, y)γ(dy).Denote by H(N) the generator of the pro
ess {ΘN

t

}
06t6T

; for any bounded measur-able fun
tions f, g, h on (0,∞) the R
3-valued pro
ess

Mf,g,h ; N
t :=

(
f ⊕ g ⊕ h, ΘN

t

)
−
(
f ⊕ g ⊕ h, ΘN

0

)
−

∫ t

0

(
f ⊕ g ⊕ h,H(N)

(
ΘN

s

)) dsis a martingale (with respe
t to its natural �ltration). For a measure µ of the form

8



1
N

∑
δxi

and Θ = µ⊕ σ+ ⊕ σ− ∈ N we have
(
f ⊕ g ⊕ h,H(N)(Θ)

)
=

(
f,G(N)(µ)

)
⊕

{
1

2

∫ {
g(x + x′)K ′

+(x, x′) +
(
g(x) + g(x′)

)
K ′

−(x, x′)
}

µ̃(dx, dx′)

+

∫ {(
g(x + y)− g(y)

)
K(x, y)σ+(dy) + g(x)K(x, σ−)

}
µ(dx)

}
⊕

{
1

2

∫ {
h(x + x′)K ′

−(x, x′) +
(
h(x) + h(x′)

)
K ′

+(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
h(x + z)− h(z)

)
K(x, z)σ−(dz) + h(x)K(x, σ+)

}
µ(dx)

} (8)Compare this formula with the des
ription of the dynami
s given in the se
tion 2.1.1.
• Event {W = Rij} 
orresponds to the term (

f,G(N)(µ)
)
⊕ 0⊕ 0;

• Event {W = Sij} 
orresponds to the term 1
2

∫
0 ⊕ g(x + y) ⊕

(
h(x) +

h(y)
)
K ′

+(x, y)µ̃(dx, dy); a similar term 
orresponds to the event {W = Tij};
• Event {W = Uik} 
orresponds to the term ∫ {

0 ⊕
(
g(x + z) − g(z)

)
⊕

h(x)K(x, z)σ+(dz)
}
µ(dx); a similar term 
orresponds to the event {W = Viℓ}.The sum of all these terms gives (f ⊕ g ⊕ h,H(N)(Θ)

).Following a 
lassi
al approa
h, the study of martingales of the form Mf,g,h ;N
· willbe our main tool in the proof of the 
onvergen
e theorem. The expli
it expressionof the bra
ket of Mf,g,h ;N will be useful in that task. We have

〈
Mf,g,h ;N

〉
t
=

1

N

∫ t

0

(
f ⊕ g ⊕ h,Q(N)

(
ΘN

s

))ds,where QN
(
Θ
) is 
hara
terised on measures Θ of the form (

1
N

∑
δxi

)
⊕ σ+ ⊕ σ− by

9



the formula(
f ⊕ g ⊕ h,Q(N)(Θ)

)
=

(
f,P(N)(µ)

)
⊕

{
1

2

∫ {
g(x + x′)2K ′

+(x, x′) +
(
g(x) + g(x′)

)2
K ′

−(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
g(x + y)− g(y)

)2
K(x, y) σ+(dy) + g(x)2 K(x, σ−)

}
µ(dx)

}
⊕

{
1

2

∫ {
h(x + x′)2K ′

−(x, x′) +
(
h(x) + h(x′)

)2
K ′

+(x, x′)
}
µ̃(dx, dx′)

+

∫ {(
h(x + z)− h(z)

)2
K(x, z)σ−(dz) + h(x)2 K(x, σ+)

}
µ(dx)

}

2.2 Convergen
e theoremDenote by U a bounded open set of some R
d indexing the family Kλ of kernels.Let ϕ : (0,∞) → R+ be a sublinear fun
tion: ϕ(sx) 6 sϕ(x) for any s > 0 and

x ∈ (0,∞); su
h a fun
tion is also subadditive: ϕ(x + y) 6 ϕ(x) + ϕ(y), for any
x, y ∈ (0,∞). We shall suppose that the intera
tion kernels Kλ satisfy the growth
ondition

Kλ(x, y) 6 ϕ(x)ϕ(y)for any x, y ∈ (0,∞), λ ∈ U , and that the initial 
ondition of Smolu
howski equation(2) (or better its `
ontinuous mass version') satis�es the moment 
ondition
∫

ϕ(x)4+ǫµ0(dx) <∞ (9)for some (small) ǫ > 0. We shall suppose in theorem 2 that ϕ2 is sub-additive;together with the above moment 
ondition (9) on µ0 this implies that Smolu
howskiequation has a unique strong solution3, de�ned for all non-negative times.The following norm was used on the spa
e M1 of signed Borel measures µ su
hthat ‖µ‖1 :=
(
ϕ, |µ|

)
< ∞, in the arti
le [5℄ where the following key result aboutsensitivity is proved.Theorem 1. Assume the moment 
ondition (9) and that Kλ(x, y) and ∣∣K ′

λ(x, y)
∣∣are both bounded above by ϕ(x)ϕ(y) for any x, y. Then the map (t, λ) ∈ [0,∞) ×

U 7→ µλ
t ∈

(
M1, ‖.‖1

), is a C1 fun
tion and its derivative σλ
t satis�es the followingequation for any bounded measurable fun
tion f(4).

(
f, σλ

t

)
=
(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ
s (dy)ds

+
1

2

∫ t

0

∫
{f}(x, y)K ′

λ(x, y)µλ
s (dx)µλ

s (dy)ds3In the sense de�ned in [4℄.4We write here {f}(x, y) for f(x + y)− f(x)− f(y).10



The fun
tion σλ
· is the only (M1, ‖.‖1

)-valued solution of this equation.We shall 
onsider here a weaker topology than the ‖·‖1-topology. We shall equip thespa
e R
⊕3
+ with the ℓ1-distan
e: ‖x⊕y⊕z−x′⊕y′⊕z′‖ := |x−x′|+ |y−y′|+ |z−z′|.Write M⊕3 for the set of non-negative R

⊕3
+ -valued measures on R

∗
+, and let d beany distan
e on M⊕3 metrising weak 
onvergen
e: {Θn}n>0 
onverges to Θ∞ i�for any bounded 
ontinuous fun
tions f, g, h on R

∗
+, we have (f ⊕ g ⊕ h, Θn

)
→(

f ⊕ g ⊕ h, Θ∞

). The spa
e (M⊕3, d
) is a Polish spa
e with N as a dense subset.Fix a positive time T . We shall state our 
onvergen
e theorem in the fun
tionalsetting D([0, T ], (M⊕3, d)

) of 
àdlàg paths from [0, T ] to (M⊕3, d). This spa
e willbe equipped with its Skorokhod topology, for whi
h we refer the reader to the books[11℄ or [12℄ of Billingsley and Pollard. Last, we shall denote by d0 any distan
e onthe set of all non-negative Borel measures on (0,∞) metrising the following notionof 
onvergen
e5: {µn}n>0 
onverges to µ∞ i� we have (f, µn) → (f, µ∞) for anybounded 
ontinuous measurable fun
tion f with bounded support.The starting point ΘN
0 of ΘN

· will be of the form 1
N

XN
0 ⊕

1
N

Y N
0 ⊕

1
N

Zn
0 for somenon-negative integer-valued �nite measures XN

0 , Y N
0 , ZN

0 on (0,∞). To shorten thenotation we shall denote by
ΘN

t =: µN
t ⊕ σ+,N

t ⊕ σ−,N
tthe pro
ess starting from ΘN

0 
onstru
ted in se
tion 2.1 and 
orresponding to a givenparameter λ.We shall suppose that the fun
tion ϕ 
ontrolling the kernels Kλ satis�es identity(10) below. As noted in the remark on page 7, this hypothesis implies that thefun
tion (ϕ, σ+,N
t +σ−,N

t

) in
reases with time; this fa
t will enable us to 
ontrol ΘN .Note that this hypothesis is weaker than requiring that ϕ be in
reasing.Theorem 2 (Convergen
e of the parti
le system). Let Kλ(·, ·) : R
∗
+×R

∗
+ → [0, +∞)be a family of symmetri
 kernels indexed by λ ∈ U . We suppose the map (λ ; x, x′) 7→

Kλ(x, x′) 
ontinuous and di�erentiable with respe
t to λ, with a derivative K ′
λ(x, x′)
ontinuous with respe
t to (x, x′). Let ϕ > 1 be a subadditive fun
tion whose squareis also subadditive. Assume that

ϕ(a + b) > ϕ(a)− ϕ(b), for any positive a, b, (10)
∀λ ∈ U , ∀x, x′, y ∈ R

∗
+, Kλ(x, x′) 6 ϕ(x) ϕ(x′),∣∣K ′

λ(x, y)
∣∣ 6 ϕ(x) ϕ(y),

(11)
Kλ(x, x′)

ϕ(x) ϕ(x′)
and K ′

λ(x, x′)

ϕ(x) ϕ(x′)
−→

x+x′→∞
0 (12)5This notion of 
onvergen
e, usually 
alled vague 
onvergen
e, is weaker than weak 
onvergen
e.11



Fix λ ∈ U and write ΘN
· for the 
orresponding pro
ess in N , started from µN

0 ⊕
σ+,N

0 ⊕ σ−,N
0 . Suppose that µ0 satis�es the moment 
ondition (9) for some (small)

ǫ, that
d0

(
ϕµN

0 , ϕµ0

)
→ 0, (13)and that there exists a positive 
onstant C bigger than (ϕ2, µN

0

) and (ϕ, σ+,N
0 +σ−,N

0

)for any N > 1.Then the sequen
e of the laws of the pro
esses ΘN is tight and any (random) weaklimit is almost surely of the form {
µt ⊕ σ+,∞

t ⊕ σ−,∞
t

}
06t6T

, with
σ+,∞

t − σ−,∞
t = σt.Proof. The following estimate is essential in 
ontrolling the behaviour of the pro-
esses σ+,N and σ−,N .Lemma 3. There exists a positive 
onstant C1 su
h that

E

[
sup

06t6T

(
ϕ, σ+,N

t + σ−,N
t

)]
6 C1.First de
ompose (ϕ, σ+,N

t +σ−,N
t

) as the sum of a martingale {Mt

}
06t6T

and a �nitevariation term:
(
ϕ, σ+,N

t + σ−,N
t

)
=
(
ϕ, σ+,N

0 + σ−,N
0

)
+ Mt

+

∫ t

0

(∫ {
ϕ(x + x′) + ϕ(x) + ϕ(x′)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
ϕ(x + y)− ϕ(y) + ϕ(x)

}
K(x, y) µN

s (dx)
(
σ+,N

s + σ−,N
s

)
(dy)

) ds.From (11) we have for ea
h N > 1 and t ∈ [0, T ]

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt +

∫ t

0

∫
2
{
ϕ(x) + ϕ(x′)

}
ϕ(x)ϕ(x′)µN

s (dx)µN
s (dx′) ds

+2

∫ t

0

(
ϕ2, µN

s

) (
ϕ, σ+,N

s + σ−,N
s

) ds.This upper bound is simpli�ed using the subadditivity of ϕ and ϕ2 from whi
h wehave6
(ϕ, µN

t ) 6 (ϕ, µN
0 ) 6 C and (ϕ2, µN

t ) 6 (ϕ2, µN
0 ) 6 C.This gives a Grönwall-type inequality

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt + 4C2T + 2C

∫ t

0

(
ϕ, σ+,N

s + σ−,N
s

) ds6Sin
e ϕ > 1 we have (ϕ, µN
0

)
6
(
ϕ2, µN

0

)
6 C.12



whose mean version gives a 
onstant C1 su
h that E

[(
ϕ, σ+,N

t + σ−,N
t

)]
6 C1 forany 0 6 t 6 T . We get the statement of the lemma re
alling that hypothesis (10)implies that the fun
tion t 7→

(
ϕ, σ+,N

t + σ−,N
t

) is in
reasing.Given ǫ > 0 de�ne the 
ompa
t subset
Kǫ =

{
µ⊕ σ+ ⊕ σ− ∈M⊕3 ; max

{
(ϕ, µ),

(
ϕ, σ+

)
,
(
ϕ, σ−

)}
6

1

ǫ

}
⊂M⊕3,and denote by P

N the law of ΘN
· on D([0, T ],

(
M⊕3, d

)).Corollary 4 (Compa
tness). Given η > 0, there exists ǫ > 0 su
h that
P

N
(
D
(
[0, T ], Kǫ

))
> 1− η.Now let f, g, h be bounded measurable fun
tions on (0,∞) no greater than 1. Bylemma 3 we have for all s < t

E

[∫ t

s

∥∥(f ⊕ g ⊕ h,H(N)
(
ΘN

s

))∥∥ds]
6 2C2(t− s) + 2

∫ t

s

E

[
3C2

2
+ 2C

(
ϕ, σ+,N

r + σ−,N
r

)] dr
6 C2(t− s)and

E
[〈

Mf,g,h ; N
〉

t
−
〈
Mf,g,h ;N

〉
s

]

6
1

N
E

[∫ t

s

∥∥(f ⊕ g ⊕ h,Q(N)
(
ΘN

r

))∥∥ds]
6

4C2

N
+

1

N

∫ t

s

2E

[C2 + 4C2

2
+ 4C

(
ϕ, σ+,N

r

)
+ C

(
ϕ, σ−,N

r

)] dr
6

C2

N
(t− s),where C2 is a positive 
onstant depending only on C. So, by Doob's L

2-inequality,we have
E

[
sup

s6r6t

∥∥(f ⊕ g ⊕ h, ΘN
r −ΘN

s

)∥∥2
]

6 C3

(
(t− s)2 +

t− s

N

) (14)for some positive 
onstant C3 depending only on C. It is then a standard fa
t thatthe equi
ontinuity inequality (14) together with 
orollary on 
ompa
tness enable theuse of Jakubowski's 
riterion7; so the sequen
e of laws of ΘN
· in D([0, T ],

(
M⊕3, d

))has a 
onvergent subsequen
e. Denote by Θ∞
· = µ∞ ⊕ σ+,∞ ⊕ σ−,∞ any limit7See for instan
e Dawson's le
ture notes [13℄.13



point. Taking a subsequen
e and 
hanging the probability spa
e if ne
essary we
an suppose without loss of generality that ΘN
· 
onverges almost surely to Θ∞

· in
D
(
[0, T ],

(
M⊕3, d

)). As ΘN
· makes jumps of size at most 3

N
, in the total variationdistan
e, the limit pro
ess is a 
ontinuous pro
ess from [0, T ] to (M⊕3, d

).It is proved in [4℄ that under 
onditions (13) and (9) the pro
ess µ∞
· is almost surelyequal to the unique strong solution µ· of Smolu
howski equation, and that we havealmost surely sup

s6t

d0

(
ϕµN

s , ϕµs

)
→ 0, as N goes to ∞.To prove that σ+,∞

· − σ−,∞
· is equal to the unique solution of equation (5) it su�
esto prove that it satis�es this equation for any bounded measurable fun
tion g with
ompa
t support, as a straightforward limit argument will give it for any boundedmeasurable fun
tion. We shall suppose without loss of generality that σ+,N

0 −σ−,N
0 =

0. We shall adopt the notation
σN

s := σ+,N
s − σ−,N

s ,
∣∣σN

s

∣∣ := σ+,N
s + σ−,N

sand
σ∞

s := σ+,∞
s − σ−,∞

s ,
∣∣σ∞

s

∣∣ := σ+,∞
s + σ−,∞

s .The 
on
lusion of lemma 3 
an now be re-written as E

[
sup

06t6T

(
ϕ,
∣∣σN

t

∣∣)
]

6 C1.It 
an be seen from expression (8) for H(N) that the real-valued pro
ess
Bg ;N

t =
(
g, σN

t

)
−

∫ t

0

(∫
1

2

{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
g(x + y)− g(y)− g(x)

}
K(x, y) µN

s (dx) σN
s (dy)

)ds

(15)is a martingale with previsible in
reasing pro
ess
〈
Bg ;N

〉
t
=

1

N

∫ t

0

(∫
1

2

{
g(x + x′)− g(x′)− g(x)

}2
K ′(x, x′) µ̃N

s (dx, dx′)

+

∫ {
g(x + y)− g(y)− g(x)

}2
K(x, y) µN

s (dx) σN
s (dy)

)dsUsing lemma 3 together with the almost sure inequality (ϕ, µN
s

)
6 C, it is seen that

E
〈
Bg ;N

〉
T

onverges to 0 as N goes to∞. So, to show that σ∞

· satis�es equation (5),it is su�
ient to prove that the two integrals inside the right hand side of equation(15) 
onverge almost surely to
∫

1

2

{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µs(dx) µs(dx′)and ∫ {

g(x + y)− g(y)− g(x)
}

K(x, y) µs(dx) σ∞
s (dy) (16)14



respe
tively, and that we have uniform bounds on them so that dominated 
onver-gen
e under the time integral 
an be used. The 
onvergen
e of the �rst integralwas proved in [4℄ using hypotheses (11) and (12), with K in pla
e of K ′; the sameargument applies here. This integral is bounded above by 3
2
‖g‖∞C2, uniformly in

s ∈ [0, T ] and N > 1.Given δ ∈ (0,∞], the fun
tion ϕδ(x) = ϕ(x)1x6δ is subadditive. It 
omes fromFatou's lemma that the inequality
E

[
sup

06t6T

(
ϕδ,
∣∣σ∞

T

∣∣)
]

6 C1holds for any δ ∈ (0,∞]. So, to any ω ∈ Ω one 
an asso
iate a positive 
onstant
m(δ ; ω) su
h that we have

(
ϕδ,
∣∣σ∞

t (ω)
∣∣) 6

(
ϕδ,
∣∣σ∞

T (ω)
∣∣) 6 m(δ ; ω)on the time interval [0, T ]. One 
an 
hoose this 
onstant m(δ ; ω) so that it 
onvergesto 0 as δ de
reases to 0. Taking ω in a subset Ω1 of Ω of probability 1, for whi
h

ΘN
· (ω) 
onverges to Θ∞

· (ω) in D([0, T ],
(
M⊕3, d

)), we get that
(
ϕδ,
∣∣σN

t (ω)
∣∣) 6

(
ϕδ,
∣∣σN

T (ω)
∣∣)is arbitrarily small provided δ is small enough, and bounded above uniformly in

t ∈ [0, T ], N > 1 and δ ∈ (0,∞].Pro
eed now as in [4℄ and write K as the sum of a kernel K1 with 
ompa
t supportand a kernel K2 with support in
F1 ∪ F2 ∪ F3 :=

{
(x, y) ; x 6 δ

}
∪
{
(x, y) ; y 6 δ

}
∪
{

(x, y) ; max{x, y} >
1

δ

}
.There is no problem in justifying the 
onvergen
e of the integral in (16) 
orrespond-ing to K1. For K2 write, with {g}(x, y) := g(x + y)− g(x)− g(y),

∣∣∣∣
∫
{g}(x, y) K2(x, y)

(
µN

s (dx) σN
s (dy)− µs(dx) σ∞

s (dy)
)∣∣∣∣

6

∣∣∣∣
∫
{g}(x, y) K2(x, y)

(
µN

s − µ∞
s

)
(dx) σN

s (dy)

∣∣∣∣

+

∣∣∣∣
∫
{g}(x, y) K2(x, y) µs(dx)

(
σN

s − σ∞
s

)
(dy)

)∣∣∣∣and deal with ea
h term of the right hand side separately. The �rst term is boundedabove by d0

(
ϕµN

s (ω), ϕµs

)(
ϕ,
∣∣σN

s (ω)
∣∣), up to a multipli
ative 
onstant. As the �rstfa
tor 
onverges to 0 (and is no greater than 2C) while the se
ond is uniformlybounded above, one 
an apply dominated 
onvergen
e in the 
orresponding integralwith respe
t to s. To deal with the se
ond term, use the pointwise bounds8

∥∥K21F1
µs ⊕ σN

s (ω)
∥∥

0
6 γδ C

(
ϕ,
∣∣σN

s

∣∣(ω)
)
,

∥∥K21F2
µs ⊕ σN

s (ω)
∥∥

0
6 C

(
ϕδ,
∣∣σN

s

∣∣(ω)
)
,

∥∥K21F3
µs ⊕ σN

s (ω)
∥∥

0
6
(
ϕδ, µs

)(
ϕ,
∣∣σN

s

∣∣(ω)
)
,8‖ · ‖0 denotes total variation norm. 15



where γδ = max
{

K(x,y)
ϕ(x)ϕ(y)

; (x, y) ∈ F3

} 
onverges to 0 as δ de
reases to 0. As
(
ϕ,
∣∣σN

s (ω)
∣∣) is uniformly bounded above by a 
onstant, and both (ϕδ,

∣∣σN
s (ω)

∣∣) and(
ϕδ, µs

) 
an be made arbitrarily small for small enough δ, we have enough 
ontrolto apply dominated 
onvergen
e.3 AlgorithmWe des
ribe in this se
tion the algorithm used to simulate the parti
le system studiedabove; the numeri
al results are to be found in se
tion 4. Two points of 
omputa-tional interest are �rst put forward in se
tions 3.1 and 3.2; the algorithm itself isdes
ribed in se
tion 3.3.3.1 CouplingThe basi
 algorithm to simulate the sensitivity σt is given by the dynami
s of thepro
ess ΘN des
ribed in se
tion 2.1. A fresh look at it reveals a potential 
omputa-tional drawba
k of this approa
h: It is seen from the expli
it expression (8) of thegenerator of ΘN that the mean number of parti
les inside σN satis�es a Grönwall-type inequality, whi
h implies an exponential growth of this quantity. One shouldsee in this exponential growth of the number of parti
les a good feature for the ap-proximation qualities of our estimator σN
t of σt, espe
ially regarding a

ura
y andvarian
e. This should be opposed to what happens for the weighed and 
oupledparti
les systems des
ribed in the introdu
tion, for whi
h the number of parti
les inthe system de
reases with time9.As an exponential growth of the quantity of information to 
onsider is non-desirablefor simulations, three kinds of tri
ks are used in order to redu
e it.

• Can
ellation. As we are only interested in the di�eren
e σ+,N
t − σ−,N

t anyparti
le whi
h appears in both parti
le systems will be removed from both ofthem.
• Coupling. A parti
le δx of µN 
oagulates with any parti
le of σ+,N

t at rate
1
N

K
(
x, σ+,N

t

)
= 1

N

∫
K(x, y)σ+,N

t (dy); it also 
oagulates with any parti
le of
σ−,N

t at rate 1
N

K
(
x, σ−,N

t

). This parti
le is thus used in both systems at rate
1
N

K
(
x, σ+,N

t

)
∧K

(
x, σ−,N

t

), in whi
h 
ase a 
an
ellation removes the parti
les9This de
rease is of the same order for the weighted parti
le system and for Mar
us-Lushnikov'sdynami
s; it is worse for the 
oupled system. In this approa
h, σt is approximated by the ratio
(µ

λ+ 1

2
δλ ; N

t − µ
λ− 1

2
δλ ; N

t )/δλ, where µ
λ+ 1

2
δλ ; N

t and µ
λ− 1

2
δλ ; N

t are two 
oupled Markus-Lushnikovpro
esses. So, the smaller δλ is, the more µ
λ+ 1

2
δλ

t and µ
λ− 1

2
δλ

t (and µ
λ+ 1

2
δλ ; N

t and µ
λ− 1

2
δλ ; N

t withit) look the same. This means that the `real' number of parti
les in the di�eren
e µ
λ+ 1

2
δλ ; N

t −

µ
λ− 1

2
δλ ; N

t is a `fun
tion' fδλ(N) 6 N of δλ that de
reases as δλ goes to 0, a ne
essary 
onditionfor the ratio to be a good estimate of σt. 16



δx added to σ−,N
t and σ+,N

t . This operation leaves the total number of parti
lesin σN 
onstant. The rest of the time δx is used in only one of the systems.
• Re-sampling. A more drasti
 
ontrol of the number of parti
les in σN 
anbe obtained using re-sampling. Let M and m be two integers depending on

N , with m 6 M . Ea
h time σ+,N
t or σ−,N

t has M parti
les, repla
e it by an iidsample of itself of size m; this way the total number of parti
les in σN remainsno greater than 2M .3.2 Majorant kernelIn order to treat information in a 
omputationally e�
ient way, we have organizedthe data using tree stru
tures. The use of a majorant kernel with a simple algebrai
stru
ture together with an a

eptan
e/reje
tion step lead to an e�
ient updating ofthe data tree.The 
hoi
e of a majorant kernel K̂(·, ·) is made so that K̂ is symmetri
, no less than
K and has the form̂

K(xi, xj) =
∑

β

K̂β(xi, xj) :=
∑

β

fβ(xi) gβ(xj) (17)for β in a �nite set of indi
es [14℄. This form of kernel leads to simple generation ofprobabilities of the form
K̂(xi, xj)∑

a6=b K̂(xa, xb)
=
∑

β

∑
a6=b fβ(xa) gβ(xb)∑

a6=b

∑
β′ fβ′(xa) gβ′(xb)

fβ(xi)∑
a fβ(xa)

gβ(xj)∑
b ; b6=a gβ(xb)

, (18)where a and b run in possibly di�erent �nite sets of indi
es. Identity (18) 
orrespondsto 
hoosing �rst an index β a

ording to the probability spe
i�ed by the �rst term ofthe right hand side and then 
hoosing ea
h parti
le xi, xj separately. The 
hoi
e of apair (xi, xj) a

ording to the probability given the left hand side of formula (18) 
anthus be done in O(N) operations rather than O(N2). All the required information
an be held in binary tree stru
tures (as des
ribed in [15℄) whilst allowing an evenfurther redu
tion in the number of operations to 
hoose ea
h parti
le from O(N) to
O(log N). Updating this information also requires O(log N) operations. Further, thesums in the �rst fra
tions of the right hand side of (18) are automati
ally 
ontainedin the tree stru
ture without further 
omputation.Note that in the theoreti
al framework used in se
tion 2, the fun
tion ϕ(x) ϕ(y)
an be used as a unique majorant kernel. We have yet 
hosen to present the abovegeneral pro
edure as we shall 
onsider situations in whi
h the above theory does notapply dire
tly.3.3 Algorithm des
riptionRe
all ΘN

t is of the form (
1
N

Xt,
1
N

Yt,
1
N

Zt

) for a Markov pro
ess Θt =
(
Xt, Yt, Zt

)whose 
omponents are sums of Dira
 masses and whose dynami
s was des
ribed17



in se
tion 2.1. What the algorithm really simulates is the dis
rete measure-valuedpro
ess Θt; a res
aling gives the time evolution of ΘN
t . The algorithm is des
ribedin Algorithms 1 and 2 below.Note that there may be up to three di�erent majorant kernels � for K, K

′

+ and
K

′

−. Therefore, we sli
e up the total majorant rates a

ording to the event type
α ∈ {0, 1+, 1−, 2+, 2−} to o

ur. We then have K̂αβ su
h that ∑β K̂αβ = K̂α (fromeq. 17), where K̂α ∈ {K̂, K̂

′

+, K̂
′

−}. This gives the 
orresponding rates ρ̂αβ and ρ̂α.To order to des
ribe numeri
al results it provides, we shall denote by L the numberof simulations with the same initial 
onditions and by trun the 
omputational timetaken to run the algorithm (CPU time in se
onds).4 Numeri
al ResultsWe have 
hosen to illustrate our approa
h in situations where the theoreti
al resultsof se
tion 2 do not apply, so as to show its robustness. The main motivation ofthis arti
le is to produ
e a sto
hasti
 estimate of the sensitivity σt whose varian
eis smaller than that given by existing methods. One step in this dire
tion was donein [9℄, where σt was approximated by the ratio (µ
λ+ 1

2
δλ ;N

t − µ
λ− 1

2
δλ ;N

t )/δλ, for twoMar
us-Lushnikov pro
esses with slightly di�erent parameters. The method there
alled for 
oupling them so as to redu
e the varian
e of this estimator as mu
h as
an be done; this was done in the same spirit as the 
oupling used above. We shallrefer to this algorithm as the CD algorithm (for 
entral di�eren
e). The varian
eredu
tion obtained by this method is signi�
ant; we shall thus 
ompare our resultswith those given by the CD algorithm. As our algorithm simulates σt dire
tly, itwill be 
alled Exa
t; and depending on whether or not we use the 
oupling step weshall talk of the Exa
tCoupling or Exa
tIndep algorithm.The data presented deal with the additive kernel K(x, y) = λ(x + y) and a kernelthat is used in modelling soot formation in a free mole
ular regime [16�18℄, thus weshall 
all it the `Soot Kernel':
K(x, y) =

(
1

x
+

1

y

) 1

2 (
x

1

λ + y
1

λ

)2

;both are 
onsidered in the dis
rete setting where masses are integers. The referen
evalue of λ for the additive kernel will be 1 and for the soot kernel 2.1. We shallalways take as initial 
ondition for the Mar
us-Lushnikov pro
ess N parti
les withmass equal to 1, and σ+,N
0 = σ+,N

0 = 0.Smolu
howski equation has an expli
it analyti
 solution for an additive intera
tion(see the review by Aldous [19℄ for instan
e) we 
an 
ompare our results with it; it willbe 
onvenient to write σ∞
t for σt in this 
ase. No analyti
 solution of Smolu
howskiequation or its sensitivity equation is available for the soot kernel; we shall thus18




ompare our estimators σN
t with what the Exa
tCoupling algorithm gives us forvery high settings, say N = 3× 106 and L = 103 simulations. Given any N , the lthrun of the algorithm produ
es an estimator of σt whi
h we shall denote by σl,N

t . WeAlgorithm 1: The Exa
tCoupling algorithm - Part 1Set t = 0. while t < tend do1 Generate a realisation of the holding time ∆t with exponential law of2 parameter 1
N

∑
α ρ̂α, and set t← t + ∆t.Choose event type α ∈ {0, 1+, 1−, 2+, 2−} to o

ur with distribution3

ρ̂α∑
α ρ̂α

.Choose pro
ess β with distribution ρ̂αβ

ρ̂α
.4 Given α and β, 
hoose a pair of parti
les using the index distribution5

K̂αβ(xi, xj)

ρ̂αβ

=
fαβ(xi)∑
a fαβ(xa)

gαβ(xj)∑
b gαβ(xb)

(19)where (xi, xj) are the masses of parti
les sampled from the appropriateensembles (µN , σ+,N or σ−,N) depending on α.Perform the 
oagulation step whi
h depends on α:6 swit
h the value of α 
hosen do
ase α = 0; this part is the original Mar
us-Lushnikov pro
ess.7 The 
hosen pair of parti
les is of the form (xi, xj).With probability Kα

K̂α
make the jump8

∆ΘN =
(
δxi+xj

− δxi
− δxj

)
⊕ 0⊕ 0.
ase α = 1+or 1−9 The 
hosen pair of parti
les is of the form (xi, xj). Set10

p =
max{K

2+
,K

2−}

K̂
2+

+K̂
2−

, and generate a realisation of a uniform randomvariable U in (0, 1).if U 6 p thenif K2+ > K2− thenmake the jump ∆ΘN = 0⊕ δxi+xj
⊕ δxi

+ δxj
.11 elsemake the jump ∆ΘN = 0⊕ δxi

+ δxj
⊕ δxi+xj

.12 else Go to Step 15.13 
ase α = 2+or 2−; Go to Algorithm 2.14 For ea
h parti
le of σN that has just been involved in a 
oagulation or15 newly formed, do a 
an
ellation operation if it 
an be done.STOP.16 19



Algorithm 2: The Exa
tCoupling algorithm - Part 2 (Cases α =
2+, 2− only)
ase α = 2+ or α = 2−1 The 
hosen ordered pair of parti
les 
ontains one parti
le of µNand one parti
le of σN , in either order.if the pair is of the form (xi, ·) where xi is the mass of a parti
lefrom µN thenif the se
ond parti
le belongs to σ+,N thenChoose a parti
le of σ−,N a

ording to the distribution2

gαβ(·)∑
ℓ∈J1,...,qK gαβ(zℓ)

. (20)elseChoose a parti
le of σ+,N a

ording to the distribution
gαβ(·)∑

k∈J1,...,pK gαβ(yk)
. (21)Set3

r+ :=
∑

k∈J1,...,pK

gαβ(yk) , r− :=
∑

ℓ∈J1,...,qK

gαβ(zℓ) (22).elseDo the symmetri
al operation, swapping gαβ with fαβ.4 The pre
eding steps produ
e a triple (xi, yk, zℓ) of parti
les from5
µN ⊕ σ+,N ⊕ σ−,N . Set

pmin =
min{r+, r−}

r+ + r−

K

K̂
, pmax =

max{r+, r−}

r+ + r−

K

K̂
. (23)Generate realisation of a uniform random variable U in (0, 1).6 if 0 < U 6 pmin thenmake the jump ∆ΘN = 0⊕

(
δxi+yk

− δyk

)
⊕
(
δxi+zℓ

− δzℓ

).7 else if pmin < U 6 pmax thenif r+ > r− thenmake the jump ∆ΘN = 0⊕
(
δxi+yk

− δyk

)
⊕ δxi

.8 elsemake the jump ∆ΘN = 0⊕ δxi
⊕
(
δxi+zℓ

− δzℓ

).9 else Go to Step 15 of Algorithm 1.10 Go to Step 15 of Algorithm 1.11 20
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tCoupling, t = 3.0
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(d) CD (δλ = 0.05), t = 3.0Figure 1: Sensitivity for additive kernel, λ = 1.0, N = 103, L = 1000. The
on�den
e intervals for the larger parti
le sizes are omitted for pi
torial
larity.shall set σ∞
t := 10−3

∑

l=1,...,103

σl,106

t . Figures 1 and 2 show the empiri
al estimate of σtgiven after L runs, at di�erent times. The line represents σ∞
t . For 
omparison, theresults given by the CD algorithm for the same setting, with δλ = 0.05, are plottedusing stars. Also, Figure 3 shows what the solution to the original Smolu
howskiequation looks like.To quantify the 
onvergen
e of the empiri
al sensitivity

σ̄L ;N
t :=

1

L

∑

l=1..L

σl,N
tto σ∞

t as N in
reases we have plotted in Figure 4 the quantity
dvar(N) =

∑

j

∑

i>1

∣∣∣
(
σ̄L ; N

tj
− σ∞

tj

)
(i)
∣∣∣,where σ̄t

L ; N(i) and σ∞
t (i) represent the empiri
al and real sensitivities at parti
lemass i ∈ N respe
tively, and dvar(N) represents the total variation distan
e betweenthe empiri
al sensitivity and the sensitivity itself summed over some 
hosen timepoints10 {tj}. These results empiri
ally 
on�rm Theorem 2 (in this 
ase where it10For Figure 4, the times points {tj} were 
hosen to be 0.125j for j = 1, . . . , 5621
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(b) CD (δλ = 0.05), t = 0.5
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(
) Exa
tCoupling, t = 3.0
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(d) CD (δλ = 0.05), t = 3.0Figure 2: Sensitivity for soot kernel, λ = 2.1, N = 103, L = 1000. The 
on�den
eintervals for the larger parti
le sizes are omitted for pi
torial 
larity.does not apply), and quantify the speed of 
onvergen
e as being of order 1
N
. Theanalogue result for the CD algorithm is given in [9℄.4.1 Varian
eTo analyse the varian
e of the random output of the algorithm we shall de�ne theempiri
al varian
e at parti
le mass i ∈ N and time t asVarN(i, t) :=

1

L− 1

L∑

l=1

((σl,N
t − σ̄L ;N

t )(i))2and shall take as a measure of the varian
e the quantityVarN(t) :=
∑

i>1

VarN(i, t). (24)Figure 5 represents its graph as a fun
tion of N using di�erent algorithms. It showsthat the Exa
tCoupling algorithm a
hieves a varian
e redu
tion by a fa
tor 103
ompared to the CD algorithm. The plots also show that VarN(t) is proportionalto 1
N
, a fa
t that should be related to a 
entral limit theorem.22
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) Soot kernel, t = 1.0
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(d) Soot kernel, t = 3.0Figure 3: µt as a fun
tion of log(parti
le size)
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(b) Soot kernelFigure 4: Convergen
e in N of the Exa
tCoupling algorithm, N = 100 × 2i for
i = 0, . . . , 5, NL = 2× 108.4.2 Computational e�
ien
yAlthough se
tion 4.1 indi
ates that the Exa
tCoupling algorithm produ
es very a
-
urate estimators of the sensitivity, it 
omes at the pri
e of a 
omputational time23
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(
) Soot kernel, t = 1.0
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(d) Soot kernel, t = 5.0Figure 5: logVarN(t) as a fun
tion of N . The meaning of the symbols are asfollows: Cir
les = Exa
tCoupling, Diamonds = Exa
tIndep, Triangles =CD(δλ = 0.10), Crosses = CD(δλ = 0.05), Pluses = CD(δλ = 0.01).greater than the one needed by the CD algorithm. This 
omes from the fa
t that thelatter algorithm being essentially a Mar
us-Lushnikov algorithm, it uses a generallyde
reasing amount of information, as the number of sensitivity parti
les de
reaseswith time. On the other hand, the Exa
tCoupling algorithm has to deal with moreand more sensitivity parti
les, whose number tends to grow exponentially. To seewhether the gain of a

ura
y given by the Exa
tCoupling algorithm is worth thee�ort we propose two 
riteria.4.2.1 CPU time to rea
h a 
ertain level of a

ura
yFix the observation time t (we 
hoose large enough t so that the parti
le system hasexperien
ed many jumps, and therefore the varian
es are expe
ted to be larger - seeFigure 3. Given a 
ertain level of a

ura
y, v, �nd for ea
h algorithm the smallest Nfor whi
h VarN(t) is smaller than v. See what 
omputational time is needed to runthe algorithm for this N (during an evolution time t for the parti
le system). Tables1 and 2 show that the Exa
tCoupling algorithm remains mostly better than theCD algorithm. It also shows that it 
onverges mu
h qui
ker to the true sensitivity24



than the CD algorithm does. Note that for the soot kernel the CD algorithm with
δλ = 0.1, 105 initial parti
les are not su�
ient to rea
h the given level of a

ura
y;this setup already requires a CPU time equal to 1058.91 se
onds. The 
omparisonwith the 
orresponding time for the Exa
tCoupling algorithm is greatly in favour ofthe latter. Table 1: Additive kernel, v = 1.43× 10−4

t 1.0 1.0 3.0 3.0algorithm Exa
tCoupling CD (δλ = 0.10) Exa
tCoupling CD (δλ = 0.10)
N 6500 55000 2100 16250
trun (se
s) 281.15 593.99 99.22 213.34Table 2: Soot kernel, v = 2.57× 10−5

t 1.0 1.0 3.0 3.0algorithm Exa
tCoupling CD (δλ = 0.10) Exa
tCoupling CD (δλ = 0.10)
N 10000 100000 6350 55000
trun (se
s) 379.01 1058.91 382.15 1104.24(v not rea
hed)

4.2.2 Gain fa
torEibe
k and Wagner introdu
ed in [14℄ another quantity to 
ompare the relative e�-
ien
y of two algorithms. Fix the observation time t. Given a setup (K(·, ·), N, L),denote by TEC(t) and TCD(t) the empiri
al mean CPU time needed by the Exa
t-Coupling and CD algorithms to be run up to time t. Denote also by VarECN (t) andVaralgN (t) the empiri
al varian
es given by formula (24) when 
omputed using Exa
t-Coupling and the given algorithm `alg' respe
tively. The gain fa
tor of an algorithmover Exa
tCoupling, similar to that as introdu
ed by Eibe
k and Wagner, is de�nedhere by the ratio
TEC(t)VarECN (t)

T alg(t)VaralgN (t)It is related in some way to the analysis made in se
tion 4.2.1. See se
tion 5 of[14℄. Figures 6 and 7 plot the re
ipro
al gain (its logarithm) as a fun
tion of time.Triangles, pluses and 
rosses represent data of the CD algorithm, for δλ = 0.01, 0.05and 0.10 respe
tively, 
ir
les represent data of the Exa
tIndep algorithm, and thehorizontal line at zero represents the threshold for Exa
tCoupling.Figures 6 and 7 show good results. By and large, the CD algorithms appear to be
onsiderably inferior to the Exa
tCoupling algorithm for the Soot kernel, and the25
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(a) N = 103
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(b) N = 104
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(
) N = 105Figure 6: Additive kernel: log(Gain fa
tor−1) as a fun
tion of t. The mean-ings of the symbols are as follows: Cir
les = Exa
tIndep, Crosses =CD(δλ = 0.10), Pluses = CD(δλ = 0.05), Triangles = CD(δλ = 0.01).The horizontal line is the threshold value 1.0 for Exa
tCoupling.
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(
) N = 105Figure 7: Soot kernel: log(Gain fa
tor−1) as a fun
tion of t. The meanings of thesymbols are as follows: Cir
les = Exa
tIndep, Crosses = CD(δλ = 0.10),Pluses = CD(δλ = 0.05), Triangles = CD(δλ = 0.01). The horizontalline is the threshold value 1.0 for Exa
tCoupling.Exa
tIndep algorithm in either performs slightly better than the CD (δλ = 0.10).There appears to be little to moderate di�eren
e in behaviour over di�erent valuesof N .The pi
ture is di�erent for the Additive kernel. For N = 1000, we �nd that the CD
(δλ = 0.1) is better than the Exa
tCoupling, at least for very small or large times.This disadvantage gradually disappears over larger N � this is due to the in
reasedprobability of 
an
ellations for larger N whi
h redu
es the number of parti
les inthe ensembles and therefore the CPU times. Other than this, the Exa
tCouplingalgorithm maintains a substantial lead over the other algorithms.

26



5 Con
lusionsA sto
hasti
 parti
le system approximation to the parametri
 sensitivity in Smolu-
howski's 
oagulation equation was introdu
ed. Rather than taking a �nite di�eren
eapproa
h to 
al
ulating sensitivities, we 
onsidered the dire
t parametri
 derivativeof (2), and developed a Monte-Carlo algorithmwhi
h would approximate its solution.The parti
le system approximation was proved to 
onverge weakly to the solutionof the sensitivity equation (2), as the number of parti
les in
reases inde�nitely.The �rst algorithm developed (Exa
tIndep) allows for an exponential in
rease inthe number of sensitivity parti
les. We sought to redu
e this in
rease using severaltri
ks: Can
ellation removes `unne
essary' sensitivity parti
les whi
h are neededto des
ribe it, whilst 
oupling prevents their 
reation. These make a signi�
antredu
tion to the number of parti
les in the ensemble. Furthermore, the resamplingmethod puts a 
ap on the total number of sensitivity parti
les, thus stopping theirexponential es
alation. This gives us the Exa
tCoupling algorithm.In the Numeri
al Results se
tion, it was empiri
ally 
on�rmed that the order of
onvergen
e is O(1/N) where N is the number of initial parti
les. We then 
om-pared the Exa
t algorithms with those found in [9℄, named here CD algorithms. Itwas shown that the varian
e of the sensitivity estimators were orders of magnitudesmaller for the Exa
tCoupling algorithm than for the CD algorithms. However this
ame at the pri
e of longer CPU run times. Two measures of e�
ien
y, taking boththe varian
e and the CPU time into a

ount, were then 
onsidered. The Exa
tCou-pling algorithm happens to require mu
h smaller time to to rea
h a �xed level oferror than any CD algorithm, and the gain fa
tor, as de�ned in [14℄, also happensto be in favour of the Exa
tCoupling algorithm, most of the time. This de�nitelygives a 
lear advantage of our approa
h over �nite di�eren
e methods.However, both methods have some inherent drawba
k: unlike the adjoint method[8℄, they are unidimensional in nature and 
ompute sensitivity only for a �xed valueof the parameter. It would be useful to 
onstru
t a parti
le system approximationwhi
h do not have these weaknesses. Also, although the 
onvergen
e theorem es-tablished in se
tion 2 in a general framework is quite en
ouraging, it is not 
learwhether the algorithm will be as e�
ient as above if parti
les's masses 
an take anypositive value. We leave the investigation of these questions for future work.Referen
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