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Abstract

Partially stirred reactor (PaSR), a stochastic reactor model based on a
simplified joint composition PDF transport equation, is investigated numer-
ically. Analytical solutions for the first four moments of the mass density
function (MDF), for four different Cauchy problems obtained from the MDF
transport equation are presented. The Monte Carlo particle method with
first order time splitting algorithm is implemented to obtain the first four
moments of the MDF numerically. The dynamics of the stochastic particle
system is determined by inflow-outflow, reaction and mixing events. Three
different inflow-outflow algorithms are investigated : algorithm based on the
inflow-outflow event modelled as a poisson process; inflow-outflow algorithm
mentioned in the literature and a novel algorithm derived on the basis of an-
alytical solutions. It is demonstrated that the inflow-outflow algorithm used
in the literature can be explained by considering a deterministic waiting time
parameter of a corresponding stochastic process, and also forms a specific case
of the new algorithm. The number of particles in the ensemble, N , the non-
dimensional time step, ∆t∗(ratio of the global time step to the characteristic
time of an event), and the number of independent simulation trials, L are the
three sources of the numerical error. Based on the split analytical solutions,
the convergence with respect to ∆t∗ is studied. Numerical experiments are
carried out to study the convergence with respect to N and L. For a linear
reaction, and the IEM model implemented, the investigation reveals that the
systematic error converges as N−1 and ∆t∗. The statistical error scales as
L−1/2 and N−1/2. Finally the significance of the numerical parameters and
the inflow-outflow algorithms is studied, by applying the PaSR model to a
practical case of premixed kerosene and air combustion.
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1 Introduction

In many practical combustion devices, e.g., gas turbines, the characteristic time
scales for mixing are of the same order of magnitude as the time scales for chem-
ical kinetics. When modelling such practical combustion devices it is important
to account for both effects. However in order to include detailed reaction chem-
istry, simplifying assumptions regarding the fluid flow description are necessary to
avoid excessive computational and storage expenses. The partially stirred reactor
(PaSR) is one such model based on the probability density function (PDF) trans-
port equation of the physical quantities, assuming statistical spatial homogeneity.
The model accounts for mixing and is computationally efficient for large coupled
chemical reaction mechanisms involving many chemical species.

Several applications of the PaSR model are mentioned in the literature. An early ex-
ample of the simulation of a stirred tank reactor incorporating mixing, through-flow
and reaction, is given in [13]. Over the last decade, with the substantial improvement
in data storage and computational power, PaSR has received increased attention in
combustion research. PaSR model was employed to investigate premixed methane
combustion and study the effect of mixing frequency on composition and tempera-
ture [6]. PaSR was applied to evaluate reduced chemistry mechanisms for hydrogen
combustion, and compared with detailed chemistry mechanisms [5]. Cannon et al.
[4] used three reduced mechanisms to investigate their performance in the predic-
tion of CO and NO in premixed turbulent combustion of methane and air simulated
in a PaSR. The PaSR model was used to study the coupling effect of chemistry
and mixing for detailed and reduced chemical kinetics, and a projection scheme
was introduced for mixing models to be used in conjunction with the intrinsic low
dimensional manifold (ILDM) method [2]. Thus, PaSR offers an ideal test bed
for evaluating reduced chemical mechanisms as well as mixing schemes, for use in
PDF-methods-based models.

The PaSR model can be derived from the one point joint scalar PDF transport
equation, assuming statistical homogeneity [5]. The analytical solutions for some
simple cases of the PDF transport equation describing the PaSR model have been
presented in [11]. The PDF equation has been solved numerically using a Monte
Carlo particle method with time splitting techniques. This method involves approx-
imating the PDF by an ensemble of stochastic particles, and has been successfully
exploited for solving high dimensional PDF equations [8, 16, 17]. However, with
the implementation of Monte Carlo particle techniques, a need for sufficiently small
time step has been emphasised in previous works [6, 5, 4]. In order to remove the
dependence of simulation on the time step, Chen [5] introduced an improved PaSR
algorithm based on theoretical age distribution of particles. However, the effect of
this modified algorithm on the resulting PDF transport equation is not clear.

To understand the influence of the numerical parameters in a numerical algorithm,
a systematic investigation of the convergence of the algorithm is essential. Recently,
in [18] a semi-analytic, steady state solution of the pdf for a PaSR model was
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presented and compared with a numerical solution obtained using a standard Monte
Carlo particle algorithm as mentioned in [6, 5]. Overall, in the context of PDF
methods, Xu and Pope [19] noted that less attention has been paid to the accuracy
of numerical algorithms. Particularly, the literature does not report convergence
study of the Monte Carlo particle algorithms implemented for PaSR.

The aims of the present work are as follows:

• To extend and develop the analytical solutions presented in [11], to a more
general case of the MDF transport equation and obtain the first four moments
(zeroth to third) of the mass density function (MDF) describing the PaSR
model.

• To present a novel inflow-outflow algorithm, derived on the basis of the analyt-
ical solution, and to compare its performance with that of the inflow-outflow
algorithm mentioned in the literature, by implementing both in a Monte Carlo
particle scheme with time splitting.

• Based on analytical solutions, understand the significance of the global time
step in the time splitting scheme and study the convergence of the Monte
Carlo particle method with respect to the various numerical parameters.

The paper is organised in the following way. The PaSR model is discussed and
the analytical solutions for the MDF and its first four moments are presented in
Section 2. In Section 3, we describe a Monte Carlo particle scheme based on
particle approximation and a time splitting technique. Additionally the inflow-
outflow algorithm based on a stochastic jump approach is described. A new inflow-
outflow algorithm is derived based on the analytical solutions. These two inflow-
outflow algorithms are compared with the inflow-outflow algorithm mentioned in
the literature. Section 4 is devoted to numerical experiments, dealing with the
order of convergence of the particle algorithm with respect to particle ensemble size
N , number of independent simulation trials L and the non dimensional time step
∆t∗ (ratio of time step to the characteristic time of an event). In Section 5, a
practical case of premixed kerosene and air combustion is studied using the PaSR
model. Conclusions are drawn in Section 6.

2 PaSR model and analytical solutions

The PaSR model is described by the following PDE, giving the evolution of the joint
composition MDF:

∂F(ψ, t)

∂t
+

R+1∑
l=1

∂

∂ψl

[
(Al(ψ) + Sl(ψ)

]
F(ψ, t) =

1

τ
(Fin(ψ) −F(ψ, t)) (1)

with the initial conditions,
F(ψ; 0) = F0(ψ). (2)
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The MDF is represented by F , and the variable ψ represents scalars such as mass
fraction of chemical species, temperature, density etc. The R.H.S. of Eq. (1) de-
scribes the inflow and outflow events in a partially stirred reactor, with the charac-
teristic residence time τ . Sl denotes the chemical source term for the species. In the
present paper, we employ the IEM (Interaction by exchange with the mean) mixing
model. The coefficients of Eq. (1) are:

Al = −B(ψl − 〈φl〉), B =
Cφ

2τm

(3)

where τm is the characteristic mixing time and 〈φl〉 is the Favre average mean given
by

〈φl〉 =

∫ ∞
−∞ ψlF(ψ, t)dψ∫ ∞
−∞ F(ψ, t)dψ

. (4)

The initial condition for the MDF is a double delta distribution:

F0(ψ) =

[
δψ1(ψ) + δψ2(ψ)

2

]
. (5)

In this investigation, we implement two different conditions for inflow:

1. Delta distribution:
Fin(ψ) = δψin

(ψ). (6)

2. Uniform distribution:

Fin(ψ) =

{
1 for, 0.0 < ψ < 1.0

0 elsewhere.
(7)

In order to carry out a systematic numerical investigation, four different Cauchy
problems of ascending complexity are addressed in this section. These Cauchy prob-
lems are obtained from Eq. (1), and describe the following events: inflow-outflow,
inflow-outflow + reaction, inflow-outflow + mixing and inflow-outflow + reaction
+ mixing. The analytical solutions for the MDF, in case of inflow-outflow+mixing
and inflow-outflow+mixing+reaction, as mentioned by Kraft [10], are valid only in
a particular case with inflow, Fin = 0. As an extension of the work carried out by
Kraft [10], more general analytical solutions of the MDF and its first four moments
for the different Cauchy problems are presented next.

2.1 Inflow-Outflow

The inflow-outflow term on the R.H.S. of Eq. (1) makes the equation inhomoge-
neous. We first investigate the inflow-outflow events without considering mixing
and reactions. Thus, Eq. (1) simplifies to,

∂

∂t
F(ψ, t) =

1

τ
(Fin(ψ) −F(ψ, t)). (8)
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with initial condition F(ψ, 0) = F0(ψ).

The solution of the MDF is given by:

F(ψ, t) = Fin(ψ)
(
1 − e(

−t
τ )

)
+ F0(ψ)e(

−t
τ ) (9)

Moments

mj =

∫ ∞

−∞
ψjF(ψ, t)dψ, (10)

min
j =

∫ ∞

−∞
ψjFin(ψ, t)dψ, j = 0, 1, 2, 3, . . . . (11)

The analytical solution for the moments of the MDF is given by:

mj(t) = min
j + e−t/τ (mj(0) − min

j ) j = 0, 1, 2, 3, . . . . (12)

2.2 Inflow-Outflow + Reaction

The inflow-outflow and reaction events can be described by:

∂F(ψ, t)

∂t
− ∂

∂ψ
(kψ)F(ψ, t) =

Fin(ψ)

τ
− F(ψ, t)

τ
. (13)

Employing the method of characteristics, two ODEs for ψ(t) and F(ψ, t) are ob-
tained.

dψ

dt
= −kψ (14)

dF(ψ(t), t)

dt
=

Fin(ψ(t))

τ
+

(
k − 1

τ

)
F(ψ(t), t) (15)

Solving Eq. (14), the inverse characteristic curve is

ψ∗ = ψekt. (16)

Solving the ODE for F(ψ(t), t):

F(ψ(t), t)e(
1
τ
−k)t =

∫ [Fin(ψ(t))

τ

]
e(

1
τ
−k)tdt + CI

where CI is a constant of integration. The solution for MDF is obtained by substi-
tuting the conditions for the inflow, Fin

Inflow as delta distribution:

Substituting the condition for Fin, as given in Eq. (6):

F(ψ(t), t)e(
1
τ
−k)t =

∫ [
δ(ψ(t) − ψin)

τ

]
e(

1
τ
−k)tdt + ĆI(ψ

∗). (17)
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From the Eq. (16),

t = (−1/k) ln

[
ψ

ψ∗

]
. (18)

Thus

F(ψ, t)e(
1
τ
−k)t =

(−1

kτ

) ∫
δ(ψ − ψin)

ψ∗(1−1/kτ)
ψ(−1/kτ)dψ + ĆI(ψ

∗)

F(ψ, t)e(
1
τ
−k)t =

{(−1
kτ

) (ψin)(−1/kτ)

(ψ∗)1−1/kτ + ĆI(ψ
∗) ψ ≥ ψin,

ĆI(ψ
∗) ψ ≤ ψin

which is equivalent to:

F(ψ, t) =


CI(ψ

∗)e(k− 1
τ )t ψ ≥ ψin,(

1
kτ

)
(ψin)(−1/kτ)

(ψ)1−1/kτ + CI(ψ
∗)e(k− 1

τ )t ψ ≤ ψin

Substituting the initial condition

t = 0, ψ = ψ∗ and F(ψ(0), 0) = F0(ψ
∗)

F0(ψ
∗) =

{
CI(ψ

∗) ψ∗ ≥ ψin,

CI(ψ
∗) + ψin

(−1/kτ)

kτ
ψ∗[(1/kτ)−1] ψ∗ ≤ ψin

The value of the constant of integration, CI(ψ
∗) is:

CI(ψe(kt)) =

{
F0(ψe(kt)) ψ ≥ ψine(−kt)

F0(ψe(kt)) − ψin
(−1/kτ)

kτ

(
ψ[(1/kτ)−1]e(

1
τ
−k)t

)
ψ ≤ ψine(−kt)

(19)

Thus ψ will have three regimes: ψ ≥ ψin, ψine(−kt) ≤ ψ ≤ ψin and ψ ≤ ψine(−kt).

Corresponding MDF:

F(ψ, t) =



F0(ψe(kt))e(k− 1

τ )t ψ ≥ ψin,

F0(ψe(kt))e(k− 1
τ )t + ψin

(−1/kτ)

kτ
ψ[(1/kτ)−1] ψine

(−kt) ≤ ψ ≤ ψin,

F0(ψe(kt))e(k− 1
τ )t ψ ≤ ψine

(−kt).

(20)

Inflow as a uniform distribution:

Substituting the inflow condition: We get,

F(ψ(t), t)e(
1
τ
−k)t =

∫ t

0

Fin(ψ(t))

τ
e(

1
τ
−k)tdt

=

∫ 1
k

ln ψ∗

0

Fin(ψ(t))

τ
e(

1
τ
−k)tdt +

∫ t

1
k

ln ψ∗

Fin(ψ(t))

τ
e(

1
τ
−k)tdt.
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Now, Fin is equal to 1.0, for the condition: 0 < ψ < 1.0, which is equivalent to:
1
k

ln(ψ∗) < t < ∞.

F(ψ(t), t) = F0(ψ
∗)e(k− 1

τ )t +
1

(1 − kτ)

{
1 − e(k− 1

τ )t ψ∗ < 1.0

1 − ψ∗( 1
kτ

−1)e(k− 1
τ )t ψ∗ > 1.0

(21)

Analytical solutions for the moments of the MDF are obtained as follows: The
procedure to obtain the zeroth moment of the MDF is given below. The same
procedure is followed to obtain first, second and third moments.

m0 =

∫ ∞

−∞
F(ψ, t)dψ (22)

dm0

dt
=

∫ ∞

−∞

[Fin(ψ)

τ
− F(ψ, t)

τ
+ kψ

∂F(ψ, t)

∂ψ
+ kF(ψ, t)

]
dψ.

m0(t) = min
0 + (m0(0) − min

0 )e(
−t
τ ).

In general, the analytical solution for the moments of the MDF is given as:

mj(t) =
min

j

(1 + jkτ)
+

[
mj(0) − min

j

(1 + jkτ)

]
e−(jk+ 1

τ )t j = 0, 1, 2, 3, . . . (23)

2.3 Inflow-Outflow + Mixing

The inflow-outflow and mixing events are described by:

∂F(ψ, t)

∂t
− ∂

∂ψ
(B(ψ − 〈φ〉))F(ψ, t) =

Fin(ψ)

τ
− F(ψ, t)

τ
(24)

with initial condition F(ψ, 0) = F0(ψ). In this (inflow-outflow+reaction) and the
next case (inflow-outflow+mixing+reaction), solving the characteristic curve does
not yield an explicit relation between t and ψ. Thus the transformation of variable
from dt to dψ is not possible, as that in Eq. (18) and hence the analytical solution
for the MDF cannot be obtained by our method. However, the analytical solutions
for the first four moments of the MDF are obtained, as explained previously. The
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analytical solutions for the moments of MDF are as follows:

m0(t) = min
0 + (m0(0) − min

0 )e−t/τ (25)

m1(t) = min
1 + (m1(0) − min

1 )e−t/τ (26)

m2(t) =
min

2

2Bτ + 1

(
1 − e−(2B+ 1

τ
)
)

+ e−(2B+ 1
τ
)t

(
m2(0) +

2B

m0(0)
×

[(m1(0) − min
1 )

2

(2B − 1
τ
)

(e(2B− 1
τ
)t − 1) +

min
1 (m1(0) − min

1 )

B
(e2Bt − 1)

+
(min

1 )
2

2B + 1
τ

(e2B+ 1
τ − 1)

])

m3(t) =
min

3 (1 − e−(3B+ 1
τ
))

(3Bτ + 1)
+ (m3(0) + 3BL)e−(3B+ 1

τ
)t

(27)

where,

L = min
1

[(
(m2(0) − 2m1(0)min

1 + 2 (min
1 )

2
)

B
− min

2 + 2Bτ(min
1 )

2

B(2Bτ + 1)

− (2τ(min
1 − m1(0))

2
)

(2Bτ − 1)

)[
eBt − 1

]
+

(2m1(0)min
1 − 2min

1
2
)

3B

[
e(3Bt) − 1

]

+
2Bτ(min

1 − m1(0))
2

(2Bτ − 1)(3B − 1
τ
)

[
e(3B− 1

τ )t − 1
]
+

(min
2 + 2Bτ(min

1 )
2
)

(2Bτ + 1)(3B + 1
τ
)

[
e(3B+ 1

τ
)t − 1

]]

+ (m1(0) − min
1 )

[(
(m2(0) − 2m1(0)min

1 + 2 (min
1 )

2
)

(B − 1
τ
)

− min
2 + 2Bτ(min

1 )
2

(B − 1
τ
)(2Bτ + 1)

− (2Bτ(min
1 − m1(0))

2
)

(B − 1
τ
)(2Bτ − 1)

)[
e(B− 1

τ )t − 1
]
+

(2m1(0)min
1 − 2min

1
2
)

(3B − 1
τ
)

[
e(3B− 1

τ )t − 1
]

+
2Bτ(min

1 − m1(0))
2

(2Bτ − 1)(3B − 2
τ
)

[
e(3B− 2

τ )t − 1
]
+

(min
2 + 2Bτ(min

1 )
2
)

(2Bτ + 1)(3B)

[
e(3B)t − 1

]]
.

2.4 Inflow-Outflow + Mixing + Reaction

Finally we present the most complicated Cauchy problem. The inflow-outflow, mix-
ing and reaction events are described by:

∂F(ψ, t)

∂t
− ∂

∂ψ

(
B(ψ − 〈φ〉) + kψ

)F(ψ, t) =
Fin(ψ)

τ
− F(ψ, t)

τ
(27)
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with initial condition F(ψ, 0) = F0(ψ). The analytical solution for the moments of
MDF are as given below:

m0(t) = min
0 + (m0(0) − min

0 )e−t/τ

m1(t) =
min

1 (1 − e−(k+ 1
τ )t)

(kτ + 1)
+ m1(0)e−(k+ 1

τ )t

m2(t) =
min

2 (1 − e−(2B+2k+ 1
τ
)t)

(2Bτ + 2kτ + 1)
+ (m2(0) + 2BG)e−(2B+2k+ 1

τ
)t

m3(t) =
min

3 (1 − e−(3B+3k+ 1
τ
)t)

(3Bτ + 3kτ + 1)
+ (m3(0) + 3BT )e−(3B+3k+ 1

τ
)t

where,

H = − (m1(0))2

(2B − 1
τ
)

+
2m1(0)min

1

τ(2B − 1
τ
)(2B + k)

− (min
1 )

2
(2k2 + 4k

τ
+ 2

τ2 )

(1 + kτ)2(2B + k)(2B − 1
τ
)(2B + 2k + 1

τ
)

G =

(
m1(0) − min

1

(1 + kτ)

)2
e(2B− 1

τ
)t

(2B − 1
τ
)

+

(
(min

1 )
2

(2B + 2k + 1
τ
)(1 + kτ)2

)
e(2B+2k+ 1

τ )t

+

[
2m1(0)min

1

1 + kτ
− 2 (min

1 )
2

(1 + kτ)2

]
e(2B+k)t

(2B + k)
+ H

T =

(
m1(0) − min

1

(1 + kτ)

) [
(m2(0) + 2BH − min

2

(2Bτ+2kτ+1)
)

(B − 1
τ
)

[
e(B− 1

τ
)t − 1]

+

(
2B (min

1 )
2

(1 + kτ)2 +
min

2

τ

) [
e(3B+2k)t − 1

]
(2B + 2k + 1

τ
)(3B + 2k)

+
2B

(2B − 1
τ
)

(
m1(0) − min

1

(1 + kτ)

) [
e(3B− 2

τ
)t − 1

]
(3B − 2

τ
)

+
4B

(2B + k)

(
m1(0)min

1

(1 + kτ)
− (min

1 )
2

(1 + kτ)2

) [
e(3B+k− 1

τ
)t − 1

]
(3B + k − 1

τ
)

]

+

(
min

1

1 + kτ

) [
(m2(0) + 2BH − min

2

(2Bτ+2kτ+1)
)

(B + k)

[
e(B+k)t − 1]

+

(
2B (min

1 )
2

(1 + kτ)2 +
min

2

τ

) [
e(3B+3k+ 1

τ
)t − 1

]
(2B + 2k + 1

τ
)(3B + 3k + 1

τ
)

+
2B

(2B − 1
τ
)

(
m1(0) − min

1

(1 + kτ)

) [
e(3B+k− 1

τ
)t − 1

]
(3B + k − 1

τ
)

+
4B

(2B + k)

(
m1(0)min

1

(1 + kτ)
− (min

1 )
2

(1 + kτ)2

) [
e(3B+2k)t − 1

]
(3B + 2k)

]
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The analytical solutions developed here are exploited for a detailed numerical inves-
tigation of the Monte Carlo particle method. The following section deals with the
description of a Monte Carlo particle algorithm implemented with a first order time
splitting technique.

3 Numerical solution

A Monte Carlo particle method with time splitting procedure is adopted to obtain
the first four moments of the MDF numerically. The numerical method is explained
in detail in this section. Monte Carlo particle algorithms involve the approxima-
tion of the initial density function by a notional particle ensemble. These particles
are then moved according to the evolution equation of the corresponding density
function [17, 15].

In the present work, the system of stochastic particles is introduced as

ψ(1)(t), ψ(2)(t), . . . , ψ(N)(t), t > 0.

The MDF (F) is approximated by,

F ≈ FN =
1

N

N∑
n=1

δψ(n)

A time splitting algorithm is implemented in which the inflow-outflow, mixing and
reaction events are treated sequentially, in a given time step ∆t.

Monte Carlo particle method with first order time splitting algorithm is given as
follows:

1. Determine the state of the system of particles (3) at time 0, according to initial
function F0

2. Given the state of the system at time t −→ t + ∆t, perform inflow-outflow
step.

3. Given the system at time t, each particle is moved according to the reaction
step.

4. Given the system at time t, each particle in the ensemble is moved according
to the mixing step.

5. If time exceeds termination time then STOP! Else, go to Step 2.

The individual mixing, reaction, and inflow-outflow events and their implementation
in the particle algorithm are discussed next.

11



3.1 Mixing

The IEM model (also known as linear mean square estimation (LMSE) model) is a
deterministic model that does not introduce any fluctuations. Simplicity and less
computational effort are the salient features of this model. The model works on the
principle that the scalar value of each particle approaches the mean scalar value of
all the particles with a characteristic time τm. The molecular mixing term in Eq. (1)
is closed by the IEM model:

dψ(i)(t)

dt
= −B(ψ(i)(t) − 〈φ〉) (24)

where i is the index for the particle number and 〈φ〉 is the empirical mean calculated
at time t0.

dψ(i)(t)

dt
= −B

[
ψ(i)(t) − 1

N

N∑
j=1

ψ(j)(t)

]
.

For the IEM model,

d

dt

1

N

N∑
i=1

ψ(i)(t) = 0.

The solution is given as

ψ(i) = ψ(i)(t0)e
−B∆t +

[
1 − e−B∆t

] 1

N

N∑
j=1

ψ(j)(t0) (22)

where, ∆t = t − t0. At each time step, the particle ensemble is updated as per the
mixing model.

3.2 Reaction

The reaction step is given by

d

dt
ψ

(i)
l (t) = Sl(ψ

(i)(t)). (22)

For a linear reaction A −→ B,

d

dt
ψ(i)(t) = −k(ψ(i)(t)). (22)

The rate equation can be solved analytically to obtain:

ψ(i)(t) =
(
ψ(i)(t0)

)
e−k∆t, ∆t = t − t0.

12



3.3 Inflow-Outflow

Correa and Braaten [6] stated the number of inflow particles Nin, within a time step
∆t as:

Nin ≈ ṁ × ∆t

mp

(22)

where mp is the mass of a particle and ṁ is the mass flow rate. Chen [5], incorporated
the total reactor mass (M), and the residence time (τ):

Nin ≈ ∆t

(M/Nṁ)
≈ ∆t × N

τ
(22)

The underlying assumption in the inflow-outflow models is that the particles which
are selected according to uniform distribution, flow out at the same rate. Three
different inflow-outflow algorithms are explained.

3.3.1 Algorithm 1

This section contains a stochastic algorithm for inflow-outflow event modelled as a
poisson process [7]. The particle system is as given in Eq. (3). The dynamics of the
particle system can be described by a sequence of jump processes

UN(t), t ≥ 0, N = 1, 2, 3, . . .

taking values in the space of discrete measures

SN = {p =
1

N

N∑
i=1

δψ(i) , ψi > 0, N = 1, 2, . . .}

The generator of a stochastic process relates time evolution of the PDF of a stochas-
tic process with the time evolution of the process itself. The infinitesimal stochastic
generator is given by,

ANΦ(p) =
N∑

i=1

K(ψ(i))

∫
R

[Φ(J(p, γ, i)) − Φ(p)]Fin(γ)dγ (20)

where,

Φ(p) =

∫
ϕ(ψ)p(., dψ)

and ϕ is any test function.

Thus the rate is

N∑
i=1

K(ψ(i)) =
N∑

i=1

1

τ
=

N

τ
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and

J(p, γ, i) = p +
δγ

N
− δψ(i)

N
.

Between each finite time step ∆t, the sequence of stochastic jump processes (algo-
rithm 1) is implemented in the time splitting algorithm as follows:

1. Given the state at time t, UN(t) = p ∈ SN

2. Wait an exponentially distributed time step τ̂ with parameter

π(p) =
N

τ

where

Prob{τ̂ ≥ t} = e−π(p)t.

3. Update time t −→ t + τ̂ . If (t > t + ∆t) then STOP; Else go to Step 4

4. Choose a particle index i according to the mass density

gi =
1

N
i ∈ {1, 2, . . . , N}.

5. Generate a Fin deviate γ and replace particle at position i.

6. go to Step 2.

3.3.2 Algorithm 2

From the Section 3.3.1, the deterministic waiting time is given as

dtω = π−1(p) =
τ

N
(16)

With a specified time step ∆t, the number of particles to be replaced (Nin) in this
time step is given by

Nin =
N∆t

τ
(16)

according to

∆t = Nindtω = Nin
τ

N
. (16)

Equation (3.3.2) is equivalent to Eq. (3.3), implemented to calculate the number of
particles to be replaced (Nin) in a single time step (∆t). Thus algorithm 2 can be
explained by considering a deterministic waiting time parameter of a corresponding
stochastic process.
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3.3.3 Algorithm 3

In this section, algorithm 3 is derived on the basis of the analytical solution of
the MDF describing the inflow-outflow event. The analytical solution of the split
Cauchy problem, as stated in Eq. (24), is given by,

F(ψ, t) = (1 − A)Fin(ψ) + AF0(ψ) (16)

where, A = e−
(t−t0)

τ . Representing the analytical solution as a measure:∫
F(ψ, t)ϕ(ψ)dψ =

∫
(1 − A)Fin(ψ)ϕ(ψ)dψ +

∫
AF0(ψ)ϕ(ψ)dψ

An approximation to this measure valued solution can be obtained by approximating
the initial and the inflow distributions independently. Approximating the solution
with an equi-weighted particle ensemble for Fin and F0 distributions, Nin particles
are used to form the inlet distribution and N0 particles for the initial distribution.

Fin(ψ) ≈
Nin∑
n=1

1

Nin

δ
ψ

(n)
in

F0(ψ) ≈
N0∑
n=1

1

N0

δ
ψ

(n)
0

.

Therefore,

F(ψ, t) ≈ (1 − A)
1

Nin

Nin∑
n=1

δ
ψ

(n)
in

+
A

N0

N0∑
n=1

δ
ψ

(n)
0

.

Thus, the approximation includes N = Nin+N0 particles. An equi-weighted particle
ensemble is constructed with N particles. For the single approximations of F0 and
Fin, the number of particles are obtained as,

N0(t) = N × A(t) (13)

Nin(t) = N × (1 − A(t)) (14)

F(ψ, t) ≈ 1

N

N0∑
n=1

δ
ψ

(n)
0

+
1

N

Nin∑
n=1

δ
ψ

(n)
in

Therefore, ∫
F(ψ, t)ϕ(ψ)dψ ≈ 1

N

N0∑
n=1

ϕ(ψ
(n)
0 ) +

1

N

Nin∑
n=1

ϕ(ψ
(n)
in )

Time marching: The particle representation of the analytical solution is used to
construct a numerical scheme. A representative time step t −→ t+∆t is considered
for demonstration: At time t the total number of particles is N . With the time step
∆t, the particles at time t decay according to the relation

N0(t + ∆t) = A(t + ∆t) × N (12)
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Therefore, the number of inflow particles Nin is given by

Nin(t + ∆t) = N − N0(t + ∆t) (12)

In every time step, Nin = N
[
1 − e

−∆t
τ

]
particles are replaced from the particle

ensemble of size N , according to uniform distribution.

At this point we discuss three different ways in which the algorithm 3 can be imple-
mented in the Monte Carlo particle algorithm with time splitting.

3.3.4 Implementation of algorithm 3 in the time splitting algorithm

Given a time step ∆t, algorithm 3 gives the exact number of inflow particles Nin. The
three different ways of implementing the inflow-outflow step are described below;

1. In a time step ∆t, Nin distinct particles are chosen from the ensemble according
to uniform distribution and replaced by the inflow particles.

2. n particles are chosen (allowing non-distinct particles to be chosen) in a time
step ∆t according to uniform distribution, and replaced with the inflow parti-
cles.

n is given by:

n =
−∆t

τ

ln
[
1 − 1

N

] (12)

Proof: The size of the particle ensemble is N . n indices are chosen according
to uniform distribution U [1, N ]. Let Xi where i = 1, 2, . . . , n be the random
variable that denotes the particle index. If Yn,N is the random variable which
represents the number of distinct Xi values, then we can choose the expectation
of Y to be equal to the required number of inflow particles, Nin, as given by
algorithm 3. The expectation is obtained as follows:

The probability of j distinct indices to occur in n is;

p(n, j) = P (YN = j) = p(n − 1, j) × j

N
+ p(n − 1, j − 1) × N − (j − 1)

N
(12)

Now, expectation is given by

E(YN,n = j) =
n∑

j=1

j × p(n, j)
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=
n∑

j=1

jp(n − 1, j)
j

N
+

n∑
j=1

jp(n − 1, j − 1)
(N − (j − 1))

N

=
n∑

j=1

jp(n − 1, j)
j

N
+

n∑
j́=2

jp(n − 1, j́ − 1)
(N − (j́ − 1))

N

=
n−1∑
j=1

jp(n − 1, j)
j

N
+

n−1∑
j=1

(j + 1)p(n − 1, j)
(N − j)

N

=
n−1∑
j=1

[
j2

N
+

(j + 1)(N − j)

N

]
p(n − 1, j)

=
n−1∑
j=1

p(n − 1, j) +
n−1∑
j=1

(
N − 1

N

)
jp(n − 1, j)

= 1 +

(
N − 1

N

) n−1∑
j=1

jp(n − 1, j)

Therefore,

En = 1 +
(N − 1)

N
En−1

The solution is of the form

En = N − cxn

Thus,

N − cxn = 1 +
(N − 1)

N
(N − cxn−1)

x = N−1
N

or 0. Using, n = 0, E0 = 0. Therefore N = c.

Thus,

En = N

[
1 −

(
N − 1

N

)n]
(3)

Substituting the expectation as Nin

Nin = N

[
1 −

(
N − 1

N

)n]
(3)

Therefore,

n =
−∆t

τ

ln
[
1 − 1

N

] (3)
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As N −→ ∞, neglecting the higher order terms the equation becomes

n = N
∆t

τ
(3)

The expression for n resembles the number of inflow particles as calculated by
algorithm 2, in Eq. (3.3.2)

3. Consider a representative time step t −→ t+∆t. At time t, the ensemble con-
sists of Nin - Fin distributed particles and N0 - F0 distributed particles. With
a time step ∆t, the particle ensemble N representing FN is down-sampled
to size N − Nin, by choosing equivalent number of F0 and Fin distributed
particles from the ensemble at time t, according to uniform distribution. Nin

particles are added, thus retaining the size of the ensemble to N .

The three methods mentioned above are compared in terms of the CPU time con-
sumed by each. At a value of ∆t

τ
< 1, very few particles are exchanged in a time

step. Hence, the CPU times consumed by methods 1 and 2 are same, whereas that
consumed by method 3 is more by a factor of two. In the condition ∆t

τ
> 1, methods

2 and 3 are faster than the method 1 by a factor of three. In this paper, method 1
is implemented.

3.3.5 Comparison of algorithm 2 with algorithm 3

In the case of algorithm 3, the number of particles exchanged (Nin), in a single time
step ∆t, is given by:

Nin = N − Ne(−∆t
τ

) (3)

Expanding the exponential term using Taylor series expansion:

Nin = N −
{

N − N

(
∆t

τ

)
+ N ×O

[(
∆t

τ

)2
]}

= N

(
∆t

τ

)
+ O

[(
∆t

τ

)2
]

(3)

The first term on the right hand side of Equation (3) represents the number of
particles exchanged in the case of algorithm 2. For the ratio (∆t

τ
) << 1, the higher

order terms in the above equation become less significant; thus, the algorithm 2 is
a special case of algorithm 3. The algorithm 2 fails for the condition ∆t > τ , as
the number of particles to be replaced in a time step is greater than the number of
particles in the ensemble.

The following section includes the numerical experiments carried out to study the
convergence of the Monte Carlo particle method.
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4 Convergence studies

For the Monte Carlo particle algorithm employed, there are three numerical param-
eters, the number of particles N , the number of independent simulation trials L and
the splitting time step ∆t that are the main sources of numerical error. In this sec-
tion we investigate the convergence of the Monte Carlo particle method with respect
to these numerical parameters. First, we introduce some definitions and notations
used in the numerical procedures.

The estimation of an interval, which will include the parameter being estimated, with
known degree of uncertainty is advantageous as compared to point estimation [1, 12].
The confidence intervals for the expectation of a random variable are determined
and statistical and systematic errors are evaluated as follows:

Consider a functional, F , which represents, say the scalar mass fraction,

F =

∫
ϕ(ψ)F(ψ; t)dψ

where ϕ is a test function. The functional is approximated (asN −→ ∞) by the
random variable,

ξN(t) =

∫
ϕ(ψ)

1

N

N∑
i=1

δψ(i)(dψ) =
1

N

N∑
i=1

ϕ(ψ(i)).

The expectation and the random fluctuations of the estimator are estimated by gen-
erating L independent particle ensembles. The corresponding values of the random
variable are denoted as ξN,1(t), . . . , ξN,L(t). The empirical mean value is given by:

ηN,L
1 (t) =

1

L

L∑
n=1

ξN,n(t).

The variance of the random variable is estimated by the empirical variance

ηN,L
2 (t) =

1

L

L∑
n=1

[ξN,n(t)]
2 − [ηN,L

1 (t)]
2

The empirical mean is used to approximate the macroscopic quantity (mass frac-
tion). The confidence interval for the expectation of the random variable is given
by

Ip =

[
ηN,L

1 (t) − ap

√
ηN,L

2 (t)

L
, ηN,L

1 (t) + ap

√
ηN,L

2 (t)

L

]

The approximation as given in Eq. (4) leads to an error

ε(N,L)(t) = |η1
(N,L)(t) − F (t)|
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with two components, statistical error and systematic error. Throughout the paper,
confidence level p = 0.999 and ap = 3.29 is used. With the evolution in time t such
that ti = i∆t, the measure for the statistical error is :

cstats = max


ap

√
ηN,L

2 (ti)

L


 . (-1)

Thus, statistical error scales as N−1/2 and L−1/2, in agreement with Xu and Pope
[19]. The maximum value of the absolute difference between empirical moment and
analytical moment is ctot which is used as a measure for systematic error. In the
following sections, we investigate separately the influence of the number of particles
and the size of the time splitting step on the error.

4.1 Analysis of error with respect to time splitting

To study the effect of time splitting on the error, we split the analytical solutions
for the moments of the MDF for the three events (inflow-outflow, reaction and
mixing). Thus the error is independent of N . We compare the moments obtained
from the split analytical solution with those from the non-split analytical solutions.
For example, with a representative time step ∆t = t − t0, the second moment is
given by:

Inflow-outflow

m2(t) = min
2 + (m2(t0) − min

2 )e−(∆t
τ

) (-1)

Reaction
m2(t) = m2(t0)e

−2(∆t
τr

) (-1)

Mixing

m2(t) = m2(t0)e
−2(

Cφ
2

)( ∆t
τm

) + m1(t0)
2

(
1 − e−2(

Cφ
2

)( ∆t
τm

)

)
(-1)

The values for the various numerical parameters that are used in the simulations are
as follows: The mixing model constant Cφ = 2 [17]. The inflow condition, as given in
Eq. (6), is set at ψin = 0.9. The strongest interactions between fluid mechanics and
chemical kinetics are expected to occur when the characteristic times for the three
events are of the same order of magnitude. Two distinct Damkohler numbers can
be defined Dares = τ

τr
and Damix = τm

τr
. We choose the values of the characteristic

times such that the two Damkohler numbers approach unity. The residence time is
τ = 3.0s, whereas the characteristic time for mixing is τm = 2.0s, and the rate of
the reaction is k = 1s−1. For a linear reaction A −→ B, the reaction characteristic
time τr = 1

k
.

We define a dimensionless time step ∆t∗, where

∆t∗event =
time step

characteristic time of an event
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Figure 1: Total error for moment 2, with respect to the dimensionless time steps
for reaction and inflow-outflow events (inflow: delta distribution).

Considering the case for inflow-outflow + reaction, Figure 1 depicts the error with
respect to the dimensionless time steps for inflow-outflow and reaction events. With
decrease in the dimensionless splitting time step, the error decreases. To study the
order of convergence we consider the case, inflow-outflow+mixing+reaction. ∆t∗ is
set according to the relation,

∆t∗ =
∆t

min(τ, τr, τm)
.
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Figure 2: Order of convergence with respect to ∆t∗, for moment 2 (inflow as delta
distribution)

21



Figure 2 shows the error convergence with respect to the dimensionless time step
(∆t∗). The error scales as ∆t∗.

Having investigated the influence of the non-dimensional time step on the error, the
effect of N on the error is studied by employing the Monte Carlo particle method
with time splitting algorithm.

4.2 Analysis of error with respect to the number of particles

We implement the particle algorithm with time splitting. Statistical and system-
atic errors are calculated, and the order of convergence with respect to number of
particles, N , is investigated in this section.

First we illustrate the comparison of the evolution of moments obtained numerically
and analytically for a Cauchy problem describing inflow-outflow+mixing+reaction
events. Figure 3(a) and Figure 3(b) depict the evolution of the first, second and
third moments for the two different inflow conditions. For the values of N and ∆t
chosen, the numerical and analytical solutions for the moments show good agreement
for both the inflow cases. To study the convergence with respect to N we consider
two Cauchy problems; one describing the inflow-outflow event and the other for
inflow+reaction+mixing events.
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(a) Inflow as delta distribution
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Figure 3: Evolution of moments (N = 104, ∆t = 0.001, k = 1s−1, τ = 3.0s, τm =
2.0s)
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4.2.1 Inflow-Outflow

L independent runs (trials) of the particle ensemble are carried out to construct con-
fidence bands with width cstats. The product L × N = 200000 is kept constant, in
order to maintain the confidence bands roughly the same width for different calcula-
tions. The measured quantities (empirical moments) depend upon the dimensionless
time step, ∆t∗, number of particles, N , and the number of trials, L. In this par-
ticular case, since it is a single event with a fixed characteristic time, τ , there is no
error due to the dimensionless splitting time step ∆t∗. With ∆t∗ > 1, algorithm 3
is implemented, as algorithm 2 can be implemented only up to ∆t∗ = 1. We study
the order of convergence with respect to N , with ∆t∗ = 4/3.

Inflow as uniform distribution: The order of convergence is studied in the regime
where the systematic error is greater than the statistical error. The error with
respect to the number of particles N is displayed in Table 1.

Table 1: Computational study for varying N (moment 1, inflow as uniform distri-
bution)

Algorithm 1 Algorithm 3
N ctot × 104 cstats × 104 ctot × 104 cstats × 104

26 115.970 4.805 115.575 4.760
50 60.232 4.876 60.293 4.900
100 29.990 4.898 30.083 4.900
200 10.589 4.988 15.035 5.000
400 7.589 5.007 7.520 4.860
800 4.541 5.101 3.954 4.670
1600 3.045 4.966 2.307 5.000
3200 1.237 4.771 2.030 4.192
6400 1.050 5.500 1.400 5.000

With increase in the value of N , the systematic error reduces and the statistical
error bounds of the numerical solution encompass the analytical solution. Figure 4
shows the order of convergence for moment 1, for algorithm 1 and algorithm 3, with
the inflow as delta distribution. The error bars denote the statistical error. Figure
4 suggests convergence of order N−1 for both the algorithms.

Inflow as delta distribution: With the inflow as delta distribution, Figure 5 gives
the systematic and statistical errors with respect to N . As observed for inflow as a
uniform distribution the results suggest an order N−1 in this case as well.
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Figure 4: Order of convergence for Table 1
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Figure 5: Order of convergence for inflow-outflow (inflow: delta distribution)

4.2.2 Inflow-Outflow + Mixing + Reaction

Here we consider inflow-outflow, mixing and reaction events with two subcases:
one where all three characteristic times are of the same order of magnitude, and
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Table 2: Computational study for varying N (moment 2, inflow as uniform distri-
bution)

Algorithm 1 Algorithm 2
N ctot × 104 cstats × 104 ctot × 104 cstats × 104

26 11.400 3.600 383.250 0.00008
50 6.000 3.710 383.250 0.00008
98 3.600 3.760 383.250 0.00008
196 3.549 3.770 383.250 0.00008
390 3.061 3.800 383.250 0.00008
782 2.980 3.900 383.250 0.00008
1562 2.990 3.980 383.250 0.00008
3126 2.756 4.000 3.139 3.100
6250 2.766 4.200 3.107 3.105
12500 2.758 4.220 3.000 3.200

the second, where the characteristic time for inflow-outflow is much lower than the
characteristic times for mixing and reaction.

For the first subcase, the characteristic times for these events are set as given in
Section 4.2.1. The product N × L = 750000 is kept fixed. From the error study
in section 4.1, the error obtained at ∆t∗ = 0.001 is comparable to the statistical
fluctuations obtained in the particle method and hence ∆t∗ is fixed at 0.001 . As
described earlier, at such low values of ∆t∗, algorithms 2 and 3 are identical. We
investigate the error with respect to the number of particles, N , for algorithm 1 and
algorithm 2. Table 2 shows the systematic and statistical errors with respect to N
for the second moment, with inflow condition as a uniform distribution.
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Figure 6: Order of convergence for Table 2

Figure 6 shows the systematic error with respect to N , for inflow as uniform distri-
bution. For the case of algorithm 2, the number of inflow particles to be replaced,
Nin, is calculated according to Equation (3.3.2). As algorithm 2 considers a mean
waiting time parameter of the stochastic process, it requires a certain minimum
number of particles, N , in order to let at least one particle be replaced and thus
allow the inflow-outflow event to occur. Therefore at the value of ∆t∗ implemented,
it needs approximately N = 3000, so that the inflow-outflow event occurs. However
for algorithm 1, with L trials, the inflow-outflow event can occur at a lower value
of N , as depicted in Figure 6(a). Similar results are obtained for second and third
moments for both the conditions of inflow.

Thus, algorithm 1, based on a stochastic jump process can be implemented at low
values of N , at the expense of a greater number of repetitions.

For the second subcase, the characteristic time for mixing is set to τm = 5000, and
that for the reaction is τr = 5000. The residence time is 3.0, and the dimensionless
time step ∆t∗ = ∆t

τ
= 4

3
. With ∆t∗ > 1, algorithm 1 and algorithm 3 are compared.

Table 3 gives the systematic and statistical errors for the first moment with inflow
as delta distribution. As shown in Figure 7, the order of convergence obtained with
both the algorithms is the same, thus the systematic error scales as N−1.
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Table 3: Computational study for varying N (moment 2, inflow as delta distribu-
tion)

Algorithm 1 Algorithm 3
N ctot × 104 cstats × 104 ctot × 104 cstats × 104

50 25.000 8.000 41.232 5.003
100 14.000 8.200 20.783 4.990
200 9.590 8.000 9.542 4.990
400 6.970 8.000 6.997 5.000
800 6.400 8.200 5.689 5.100
1600 5.000 8.000 5.000 5.300
3200 4.600 8.000 4.600 3.100
6400 4.510 8.200 4.500 5.220
12800 4.500 8.000 4.500 5.300
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Figure 7: Order of convergence for Table 3

Similar results are obtained for the second and third moments for both the inflow
conditions. With ∆t∗ > 1, even small number of particles (say100 − 200) are suf-
ficient to let the inflow-outflow event occur, contrary to the earlier subcase where
∆t∗ = 0.001 (Figure 6). The CPU time is proportional to the non-dimensional
time splitting step. Adopting algorithm 3 enables the use of larger time steps as
compared to algorithm 2, thus saving computational expense in terms of CPU time.
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5 Combustion of kerosene

In this section, the PaSR model is applied to a practical combustion case: premixed
kerosene-air combustion.
Case study : A premixed kerosene-air stream flows into a reactor at a high flow rate
(small residence time, τ = τ1). With very small residence time, the kerosene-air
mixture fails to ignite. After the steady state is reached, the flow rate of the inflow
stream is reduced resulting in a large enough residence time (τ = τ2) and ignition
of the kerosene-air mixture.

5.1 Implementation of PaSR model

In the first part the time step can be set greater than τ1, as shown in Section
4.2.2. Hence the inflow-outflow event is modelled by implementing algorithm 3. In
addition the inflow-outflow event is modelled using algorithm 2, and the CPU times
consumed by each algorithm are compared. In the second part the ratio of ∆t

τ2
should

be chosen to be much less than unity, as described in Section 4.2.2. At a low value
of ∆t

τ2
, algorithms 2 and 3 are identical. The combustion chemistry is modelled by a

reaction mechanism comprising of 57 chemical species and 273 chemical reactions [3].
The initial conditions for the concentrations are: Xn−C12H26 = 6.624 × 10−3, XO2 =
2.086 × 10−1 and XN2 = 7.848 × 10−1 with the concentration of the remaining 54
species being zero. The inflow stream has the same composition as mentioned above.
The chemical kinetics are computed with the Chemkin-III [9] package and the stiff
chemical kinetics are solved using the Senkin package [14]. The air/fuel ratio = 25.4
and the pressure is kept constant at 1.5133×106Pa. The other numerical parameters
are given in Table 4.

Table 4: Numerical parameters for part one and part two

Quantity part one part two

τ 1 × 10−2µs 4 × 10−3s
Tinflow 2000K 1000K
T (0) 1200K 2000K
τm 1 × 10−4s 1 × 10−4s

5.2 Results of the modelling study

In part one, no ignition occurs. The temperature evolution is shown in Figure 8.
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Figure 8: Comparison of the temperature evolution obtained with algorithm 2 and
algorithm 3

The non-dimensional time step ∆t∗ = ∆t
τ

is 0.2 for algorithm 2 and 2.0 for algo-
rithm 2. The CPU time consumed by algorithm 2 is an order of magnitude greater
than that consumed by algorithm 3.

In part two, the ignition occurs and the temperature increases rapidly and then
settles down to a steady state at 2200K as shown in Figure 9(a). Figure 9(b)
depicts the NOX and CO emissions from the combustion in part two.
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Figure 9: Temperature profile and emissions: N = 1000 and 1 × 10−5s

29



2160

2180

2200

2220

2240

2260

2280

0.01 0.012 0.014 0.016 0.018 0.02

∆t = 1 x 10-5 s

∆t = 5 x 10-6 s

N = 1000

T
em

p
er

at
u

re
(K

)

t (s)

(a) varying ∆t

2150

2200

2250

2300

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018

N = 500
N = 1000

T
em

p
er

at
u

re
(K

)

t (s)

∆t = 1 x 10-5 s

(b) varying N

Figure 10: Steady state

Convergence with respect to N and ∆t was studied for two time regimes; steady
state (as shown in Figure 10) and transient state (Figure 11). The convergence
study for the steady state regime indicated that the parameters N = 1000 and
∆t = 5 × 10−6s, gave a 0.1% error.
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Figure 11: Transient state
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The ignition delay as given by the PaSR simulation depends upon the size of the
time step. In the transient state, ∆t = 1.15 × 10−6s and N = 7000 were sufficient
to yield an error of 1%.

6 Conclusion

In this paper we presented a detailed numerical investigation of the partially stirred
reactor (PaSR) model. The need for such a numerical study was motivated by the
dearth of analytical solutions for the PDF based methods, and by the problems
mentioned in the literature regarding the size of time step in a Monte Carlo particle
method with time splitting algorithm, applied to PaSR.

Analytical solutions were developed for the first four moments of the mass den-
sity function (MDF) obtained from the PaSR model. On the basis of the analyt-
ical solutions developed an inflow-outflow algorithm was derived (algorithm 3). It
was demonstrated that the algorithm mentioned in the literature (algorithm 2) is
a special case (for the condition ∆t

τ
< 1) of the more general algorithm 3. An

inflow-outflow algorithm (algorithm 1) based on a stochastic jump approach was
also presented. Algorithm 2 was explained by considering a deterministic parameter
of the waiting time in the algorithm 1.

The analytical solutions for the moments were split according to first order splitting
and the splitting error scales as ∆t∗(ratio of time step to the characteristic time of
an event). On implementing the Monte Carlo particle method with time splitting,
the convergence studies suggest that the systematic error is inversely proportional
to the number of particles, N .

The three inflow-outflow algorithms were implemented in the Monte Carlo particle
method. As compared to algorithms 2 and 3, the algorithm 1 requires a fewer
particles N , but at the expense of L simulation trials. From the model reaction
A −→ B and the combustion of kerosene studies, it can be concluded that the
non dimensionless time step ∆t∗ must be less than unity when the characteristic
times for inflow-outflow, reaction and mixing are of comparable order of magnitude.
However, with the residence time very small compared to the characteristic times
for reaction and mixing, algorithm 3 can be employed with the condition ∆t

τ
> 1

and is an order of magnitude faster than algorithm 2, thus saving the computational
expense.
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