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Abstract

A novel modeling approach is applied to investigate the use of hydrogen-rich gas
(HRG) for controlling the combustion process in a Homogenous-Charge Compression-
Ignition (HCCI) engine. A detailed-chemistry stochastic reactor model is coupled
with a one-dimensional gas dynamics model to account for the full engine cycle.
The integrated model simulates the steady-state and transient operation of a single-
cylinder HCCI engine. A previously developed tabulation scheme is utilized to speed
up the detailed-chemistry simulations, which, though computationally cheap com-
pared to many other approaches, are impractical for simulations involving a large
number of cycles. A control strategy based on HRG addition is implemented using a
closed-loop controller built within the gas dynamics model. Simulations conducted
at different speeds and with varying loads indicate that the HRG can be effectively
used to control the combustion phasing, and hence expand the operating range of the
HCCI engine.
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1 Introduction

The Homogeneous-charge compression-ignition (HCCI) combustion concept exhibits very
attractive emissions and fuel economy characteristics. This makes it a potential alternative
to current combustion modes used in internal combustion engines. Successful application
of this concept, however, is still dependent on finding an effective strategy for controlling
HCCI combustion mode over a wide range of operating conditions.

Many HCCI control strategies based on a dual fuel approach have been suggested and
investigated in recent years. A common problem in these strategies is the need for estab-
lishing new infrastructures to supply two different fuels. For this reason, there has been a
tendency to search for a dual fuel system that only needs one primary fuel to be supplied
to the engine, and the secondary fuel is produced on-board by reforming part of the pri-
mary fuel. A good example of this is the case where a primary hydrocarbon fuel (such
as gasoline) is used to produce hydrogen-rich gases (HRG) on-board the engine. These
gases are then introduced to the engine as necessary in order to control the combustion of
the primary fuel [9, 14, 16, 18, 20, 26].

The main constituent in these reformed gases is hydrogen. Other constituents include
carbon monoxide, carbon dioxide and traces of light hydrocarbon gases. Typical reformer
gases may have up to 80% H2 on a volumetric basis. If needed, hydrogen purity can
be enhanced further through additional processing of the reformed gases (for example to
suit a fuel cell based auxiliary power unit, which may require higher hydrogen purity).
The HRG can be introduced into the engine cylinder along with the intake charge or with
re-circulated exhaust gases, or injected directly into the cylinder. The latter case requires
a dedicated injection system but it allows for a fast-response (cycle-to-cycle) combustion
control.

Recent experimental work by Hosseini and Checkel [7, 8] showed that adding reformer
gas to low octane and high octane primary reference fuels caused the combustion timing
to retard, and consequently, the maximum combustion pressure and pressure rise rate
(PRR) to decrease. Modeling work by Kongsereeparp and Checkel [10] showed the same
trend when adding reformer gas to n-heptane. They observed that addition of reformer
gas delays the onset of the first stage ignition and hence delays the start of combustion
and decreases the rate of heat release.

However, an opposite effect was observed when HRG is added to natural gas fuelled
engines [7, 8, 10, 25]. Here, the addition of hydrogen caused the start of combustion
to advance rather than retard. This opposite effect was attributed to the difference in
combustion characteristics between natural gas, n-heptane and primary reference fuels.
The effect of HRG is dominantly thermodynamic in the case of the single-stage ignition
natural gas. It was shown that addition of reformed gas alters the ratio of specific heats and
increases the pre-combustion temperature causing the combustion to start earlier. In the
case of two-stage ignition fuels, the effects are dominated by chemical kinetics. Addition
of HRG delays the onset of the first stage ignition and hence delays the start of combustion
and decreases the rate of heat release [10].

The existence of carbon monoxide was found to have a noticeable influence on the effect
of hydrogen on combustion [15, 17, 19, 21, 22] [. For example, Sato et al. [15] found that
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adding only hydrogen to methane caused the ignition timing to advance while adding CO
caused it to retard. When a mixture of these gases is added however, the ignition timing
advanced but at a slower rate than in the pure hydrogen case.

These reported effects in general indicate that hydrogen or HRG can be potentially used to
control the combustion phasing in the HCCI engine. It is clear, though, that these effects
are fuel specific and not universal. The purpose of this paper is to examine this potential,
using a novel fast detailed-chemistry full-cycle model and utilizing a closed-loop control
approach, for an HCCI engine fuelled with primary reference fuels.

Closed-loop control was used in several studies before to investigate a variety of potential
control strategies. A closed-loop control strategy based on the octane number to control
combustion phasing was implemented by Olsson et al. [13]. Variable compression ratio
and fast thermal management were also investigated using the same approach by Haralds-
son et al. [5, 6]. These three studies were conducted on an actual HCCI engine. A simple
engine combustion model coupled with a closed-loop controller was used by Chang et al.
[4] to investigate the potential of residual gas fraction to control the combustion timing.

The coupling of detailed chemistry and closed-loop control in the current model provides
an advanced tool to investigate HCCI steady-state and transient operation over multiple
cycles. This, however, comes at a price. Because of the high computational cost, exten-
sive real-time simulations become very time consuming. To overcome this, a tabulation
scheme was implemented to replace the real-time computations with pre-processed model
results.

2 Model Set-Up

This study utilizes a full-cycle model to simulate steady-state and transient operation of a
single-cylinder HCCI engine fuelled with primary reference fuels (mixtures of iso-octane
and normal-heptane). The combustion rate and timing are controlled by varying the ratio
of HRG to the base fuel.

The engine model was built using the GT-Power platform, a one-dimensional gas dynam-
ics code capable of representing flow and heat transfer in internal combustion engines.
GT-Power also contains advanced capabilities for engine operation analysis and control
at both steady-state and transient conditions.

2.1 Stochastic Reactor Model

A stochastic reactor model (SRM) is coupled with the GT-Power model to account for the
closed-volume portion of the engine cycle. This SRM is based on the probability density
function (PDF) approach and has been used and validated in many previous studies [1–
3, 11]. The SRM accounts for detailed chemical kinetics associated with combustion, as
well as physical interactions such as turbulent mixing and heat transfer between the fluids
and surrounding walls.

The SRM uses a ”particle” method where the physical system is represented by an en-
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semble of notional particles that carry no spatial information. While the volume, density,
and pressure in the cylinder are considered as global variables in the model and calcu-
lated using conventional ways, the temperature and composition evolve independently in
each particle according to a probability density function (PDF). This evolution is affected
by the variation in global variables, chemical reactions between different species within
the particle, and turbulent mixing with other particles. Also, some particles, chosen from
the ensemble according to a uniform distribution, are subjected to heat transfer with the
surrounding walls. The model uses Woschni’s heat transfer coefficient to account for the
convective heat transfer and assumes a uniform temperature value across all surrounding
walls (head, cylinder and piston). The mixing in the model occurs between particles based
on proximity in temperature and composition. This method of mixing is called Euclidian
Minimum Spanning Tree (EMST) and described in detail in [24].

2.1.1 Calculation of Global Variables

The instantaneous volume, V (t), is calculated from the engine geometry and crank posi-
tion as follows:

V (t) = Vc +
π

4
B2(l + a− a cos θ −

√
l2 − a2 cos2 θ) (1)

where Vc is the clearance volume, B is the cylinder bore, l is the connecting rod length,
a is the crank radius, and θ is the crank angle. The mean instantaneous density, ρ(t), is
defined as follows:

〈ρ(t)〉 =
m

V (t)
(2)

where m is the total fluid mass. The pressure, P (t), is calculated using the equation of
state as follows:

P (t) = 〈ρ(t)〉R〈T (t)〉
〈M〉

(3)

Where R is the gas constant, T (t) is the temperature and M is the molecular weight.

2.1.2 Calculation of Local Variables

As mentioned above, the variables which evolve locally in each particle are the composi-
tion, represented by mass fractions of existing chemical species, and the temperature. If
the species mass fractions are denoted by Y1, . . . , YS , where S is the number of chemical
species, and the temperature is denoted by T , then a vector ψ which represents both the
composition and the temperature can be written as:

ψj = (ψ1, . . . , ψS, ψS+1) = (Y1, . . . , YS, T ) (4)

5



These quantities are treated as random variables and their probability density function
(PDF), denoted by f , is calculated accordingly. Once the PDF is known, mean quantities
can be calculated by:

〈ψj(t)〉 =

∫
ψjf(ψ; t)dψ (5)

Since the density is varying with time, it is of convenience to use the mass density function
(MDF), defined as F(ψ; t) = %(ψ, t)f(ψ; t), instead. Knowing that the integral of the
probability density function (PDF) is equal to unity (i.e.

∫
f(ψ; t)dψ = 1), the integral of

the mass density function will be equal to the density at any particular time, or:∫
F(ψ; t)dψ = 〈%〉(t). (6)

The time evolution of the mass density function (MDF) is calculated as follows:

∂

∂t
F(ψ; t) =−

S+1∑
j=1

∂

∂ψj

[
Gj(ψ)F(ψ; t)

]
︸ ︷︷ ︸

Chemical kinetics term

+
S+1∑
j=1

∂

∂ψj

[
F(ψ; t)

∫
K(ψ;x)F(x; t)dx

]
︸ ︷︷ ︸

Turbulent mixing term

− V̇
V
F(ψ; t)︸ ︷︷ ︸

Volume change

− 1

h

[
U(ψS+1 + h)F(ψ1, . . . , ψS, ψS+1 + h; t)− U(ψS+1)F(ψ; t)

]︸ ︷︷ ︸
Convective heat transfer

(7)

The function G(ψ) in the chemical kinetics term collectively represents the effects of
chemical reactions and volume change, and is defined as follows:

Gj(ψ) =
Mjω̇j

ρ
, j = 1, . . . , S

GS+1(ψ) = − 1

cV ρ

S+1∑
i=1

eiMiω̇i −
p

cVm

dV

dt
,

(8)

Here,Mj denotes the molar mass, ωj the molar production rate, and ei the specific internal
energy of the ith species. ρ denotes the mass density, cV the specific heat capacity at
constant volume, m the total mass, and V the instantaneous cylinder volume.

The turbulent mixing term uses a mixing method in which particles to be mixed are chosen
based on proximity in composition and temperature. K in this term collectively represents
the mixing function.

The function U(T ) in the convective heat transfer term is defined as follows:

U(T ) = − hgA

cVm
(T − TW ), (9)
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where hg is the Woschni’s heat transfer coefficient, A is the heat transfer area, and TW is
the cylinder wall temperature. The wall temperature is assumed to be uniform across all
surrounding walls (i.e. internal walls of the cylinder, piston, and head).

The above PDF equation is solved using a Monte Carlo stochastic particle method. Tem-
perature and mass fractions are calculated for each particle and then the mean values are
calculated using the following approximation to Equation (5):

〈ψj〉(t) =
1

Npar

Npar∑
i=1

ψ
(i)
j (t) (10)

where Npar is the number of stochastic particles considered in the model. More detailed
description of the SRM equations and solution methodology can be found in [1–3, 11].

The SRM uses a detailed PRF chemical kinetic mechanism which contains 157 species
and 1552 reactions. In order to avoid the huge computational expense associated with
detailed-chemistry multi-cycle simulations, a tabulation technique was developed and im-
plemented [12]. The technique uses the full SRM to pre-tabulate major quantities (such
as ignition timing, cumulative heat release, maximum pressure rise rate, and emissions)
as functions of operating variables (such as equivalence ratio, octane number, hydrogen
ratio, and inlet temperature). A fast scheme is then used to retrieve and interpolate the
pre-tabulated data, eliminating the need for the computationally-expensive SRM calcula-
tions.

The GT-Power model simulates the open-volume portion of the cycle and passes the
closed-volume initial conditions to the SRM at the IVC point. From there, the SRM
marches through the closed-volume period in pre-defined time steps until the EVO point,
accounting for the compression, ignition, combustion and expansion processes in the en-
gine cycle.

2.2 Modelled Engine

Figure 1 shows a schematic of the HCCI experimental setup used by the engine group
at Sandia National Laboratories. The engine used in this setup is a six-cylinder medium-
duty diesel engine converted to a single-cylinder HCCI engine. The five remaining cylin-
ders were deactivated but kept for dynamic balancing of engine rotation. The engine is
equipped with two different fuelling systems, a direct injection system and a pre-mixed
fuelling system. A detailed description of the setup, which has been used extensively to
study HCCI combustion, is given in [23]. The engine’s main specifications are given in
Table 1.

A GT-Power model of this engine was developed and calibrated. The developed model
accounts only for the active cylinder and part of the intake and exhaust systems, and only
considers the fully pre-mixed fuelling option (Figure 2).
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Table 1: Specifications of the single-cylinder HCCI engine modeled in the current study
[23].

Parameter Value
Cylinder displacement (liters) 0.981
Bore x Stroke (mm) 102 x 120
Connecting rod length (mm) 192
Compression ratio 13.81
Number of valves 4
IVO (CA relative to firing TDC) 357
IVC (CA relative to firing TDC) -155
EVO (CA relative to firing TDC) 120
EVC (CA relative to firing TDC) -352

2.3 Model Calibration

The intake pressure in the actual engine is maintained at a time-average of 1 bar by ad-
justing the air flow rate to the engine. Instantaneous pressure at the instant of intake valve
opening (IVC) changes slightly depending on the engine speed. In the model, the pressure
at the IVC changes from about 0.98 to 1.01 bar over the speed range from 600 to 2400
rpm. As in the actual engine, the exhaust pressure in the model maintained a value of 1
bar at all conditions.

In contrast to the pressure, the temperature at IVC varies significantly with engine speed.
Figure 3 compares the temperature variations in the current GT-Power model with those
predicted by a model developed by Sandia for the same engine [23]. The temperature
readings in this case are taken 10o CA after the bottom dead centre (BDC) during the
compression stroke, which corresponds to 15o CA before the IVC. The temperature at
this instant in the cycle increases by about 20oC as the engine speed increases from 600 to
1800 rpm. The effect of equivalence ratio on the temperature at IVC is much weaker than
that of the speed and accounts only for few degrees over the whole range of equivalence
ratio.

The developed GT-Power model was validated against experimental data obtained directly
from Sandia or from data they published in the literature. Figure 4 shows the model
results of cylinder pressure trace versus experimental results in motored operation at 1200
rpm. Exhaust temperatures at various speeds in motored operation are also compared in
Figure 5.

Performance of the coupled GT-Power/SRM model at fired operation was also validated
against a set of experimental data obtained from Sandia. Figure 6 compares the cylinder
pressure trace as predicted by the model to experimental results at equivalence ratio of
Φ=0.44 and engine speed of 1200 rpm. Both the engine and the model use a fuel com-
prised of iso-octane and normal-heptane only. The shown fit was obtained with a model
octane number of 62 as opposed to 83 in the experiment.

The results show that the model does not predict the low temperature reactions properly.
This and the discrepancy in octane number can be mainly attributed to the deficiency in
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rpm. 

 

Figure 5: Exhaust temperature versus engine speed 
as predicted by the GT-Power model compared to 
experimental readings at motored operation. 
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Figure 5: Exhaust temperature versus engine speed as predicted by the GT-Power model
compared to experimental readings at motored operation.

 

Figure 6: Model validation of fired operation at an 
engine speed of 1200 rpm and equivalence ratio (Φ) 
of 0.44. 

The developed GT-Power model was validated against 
experimental data obtained directly from Sandia or from 
data they published in the literature. Figure 4 shows the 
model results of cylinder pressure trace versus 
experimental results in motored operation at 1200 rpm. 
Exhaust temperatures at various speeds in motored 
operation are also compared in Figure 5. 

Performance of the coupled GT-Power/SRM model at 

fired operation was also validated against a set of 
experimental data obtained from Sandia. Figure 6 
compares the cylinder pressure trace as predicted by the 
model to experimental results at equivalence ratio of 
Φ=0.44 and engine speed of 1200 rpm. Both the engine 
and the model use a fuel comprised of iso-octane and 
normal-heptane only. The shown fit was obtained with a 
model octane number of 62 as opposed to 83 in the 
experiment. 

The results show that the model does not predict the low 
temperature reactions properly. This and the 
discrepancy in octane number can be mainly attributed 
to the deficiency in the chemical kinetic mechanisms 
employed in the model. Also, the fact that the SRM in 
the current setup does not account for residual gases 
(i.e. gases left out from previous cycle) is another 
possible source of these discrepancies. Residual gases 
usually contain traces of active species that enhance low 
temperature reactions and hence affect ignition timing 
and pressure rise rate. Using a lower octane number fuel 
(which contains more normal-heptane) compensates for 
the lack of these active species. 

CONTROLLER - The strategy is implemented using a 
PID-based closed-loop controller which adjusts the 
combustion phasing by varying the ratio of HRG to the 
base fuel.  Figure 7 shows the GT-Power map for this 
PID controller. 

 

Figure 7: A GT-Power map of the PID-based combustion phasing controller. The 
controller varies the HRG ratio to adjust the CA50 and keeps the pressure rise rate 

within acceptable range.
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Figure 6: Model validation of fired operation at an engine speed of 1200 rpm and equiv-
alence ratio (Φ) of 0.44.
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Figure 7: A GT-Power map of the PID-based combustion phasing controller. The con-
troller varies the HRG ratio to adjust the CA50 and keeps the pressure rise rate
within acceptable range.

the chemical kinetic mechanisms employed in the model. Also, the fact that the SRM in
the current setup does not account for residual gases (i.e. gases left out from previous
cycle) is another possible source of these discrepancies. Residual gases usually contain
traces of active species that enhance low temperature reactions and hence affect ignition
timing and pressure rise rate. Using a lower octane number fuel (which contains more
normal-heptane) compensates for the lack of these active species.

2.4 Controller

The strategy is implemented using a PID-based closed-loop controller which adjusts the
combustion phasing by varying the ratio of HRG to the base fuel. Figure 7 shows the
GT-Power map for this PID controller.

The combustion phasing reference point considered here is CA50, the crank angle at
which 50% of heat has been released. The CA50 is calculated by the SRM upon the end
of each cycle and passed to the PID controller which uses it to determine the necessary
change in HRG ratio. This change is implemented by the SRM in the following cycle.
The SRM also passes pressure rise rate (PRR) information to the controller to indicate
whether the cycle is operating in the normal, knocking, or misfiring region. High PRR
indicate that the cycle is operating at or beyond the knocking boundary of the operating
window, and low values indicate that the cycle is operating at or beyond the misfiring
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boundary. Based on the PRR information, the controller makes adjustments to keep the
next cycle within the normal region. A PRR threshold of 20 bar/ms is used to mark the
misfire limit, and 80 bar/ms to mark the knock limit. This range corresponds to about 2-7
bar/degree at 1200 rpm. The upper limit was adopted based on information obtained from
Sandia, and the lower limit was selected based on analysis of our simulations.

3 Results

Simulations of transient load conditions were carried out at three different speeds: 1200,
1500, and 1800 rpm. The base fuel used in these simulations has an octane number
of 40 (this number, of course, will correspond to a higher octane number in the actual
experiment, given the lower reactivity exhibited by the chemical model). The applied
HRG is composed mainly of hydrogen with only a small volumetric portion of carbon
monoxide (about 2.3% CO on volume basis and 25% on mass basis). The temperature of
the intake air was 55oC (328 K). A fixed combustion phasing angle (CA50) of 8 degrees
after TDC was used in all simulation runs.

Figure 8 shows the simulation results for 1200 rpm. Equivalence ratio was increased (in
steps of 0.01) from 0.3 to 0.52. The equivalence ratio here accounts for the added HRG
as well as the base fuel. With no control in place, CA50 continued to advance with the
increase in load, causing the pressure rise rate to increase. The knock limit was soon
reached.

With the controller activated, the combustion phasing was effectively stabilized around
the target angle during most of the run, and most importantly, the pressure rise rate was
kept within the acceptable range. This extended the HCCI operation to the whole run. At
the maximum load in this run, the HRG ratio was about 14

Similar effects were observed at 1500 and 1800 rpm engine speeds (Figure 9 and Figure
10, respectively). The HRG addition was quite effective in maintaining the combustion
phasing and pressure rise rate even at high speed, high load conditions. Unstable operation
of the controller is observed towards the end of the 1800 rpm run. The controller doesn’t
seem capable of adjusting the CA50 at these conditions to the chosen target value. This
may have resulted from the rapid pressure rise rate at these conditions, or may simply
indicate improper controller tuning.

The results from these simulations also indicate that HRG control is not suitable for very
low loads. At these conditions, the engine is already operating at or close to the misfire
limit with a very low pressure rise rate. A combustion enhancement strategy, such as
intake temperature heating, is needed to maintain the operation above the misfire limit.

4 Conclusion

A control strategy for HCCI combustion phasing based on hydrogen-rich gas addition
was presented in this paper. The results were based on a modeling study which utilized
a detailed-chemistry full-cycle model to simulate steady-state and transient operation of
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Figure 8: Combustion phasing control during load increase and at engine speed of 1200
rpm. CA50 is stabilized around the target value, and pressure rise rate is kept
within limits throughout the run.
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Figure 9: Combustion phasing control during load increase and at engine speed of 1500
rpm. The operating range in the non-controlled case is very limited. Addition
of HRG extended the operation to the end of the run.
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Figure 10: Combustion phasing control during load increase and at engine speed of 1800
rpm. CA50 is stabilized around the target value except for the later part of the
run where the operation of the controller becomes unstable.
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a single-cylinder HCCI engine fuelled with primary reference fuels. A tabulation scheme
was implemented to speed-up the computationally expensive detailed-chemistry simu-
lations. Simulations at different operating conditions suggested that moderate ratios of
hydrogen-rich gas can be used effectively to control the combustion phasing in the HCCI
engine, and extend its operating range significantly. However, control based only on
hydrogen-rich gas may not be suitable at very low loads.

5 Acknowledgement

This work was primarily funded by Aramco Overseas Company B.V., contract number
6600014846, under the title ”Modeling of Petrol Fuel Combustion in HCCI”. Partial
funding was also provided by EPSRC under the grant number EP/D068703/1. The authors
would like to thank Magnus Sjöberg and John Dec of Sandia National Laboratories for
providing the experimental data.

6 Definitions, Acronyms and Abbreviations

BDC Bottom dead centre
CA Crank angle
CA50 Crank angle at 50 percent heat release
EVO Exhaust valve opening
HCCI Homogeneous charge compression ignition
HRG Hydrogen-rich gas
IVC Intake valve closure
IVO Intake valve opening
PID Proportional, integral, and differential
PRF Primary reference fuel
PRR Pressure rise rate
rpm Revolutions per minute
SRM Stochastic reactor model
TDC Top dead centre
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