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Abstract

A methodology that carries experimental uncertainties into model predictions is
studied and applied to a multidimensional population balance model for granulation
processes. This complex model contains 27 parameters. A portion of them such as
material constants can be measured or estimated, whereas some of the model param-
eters need to be established through granulation experiments and subsequent fitting
to the model. As uncertainties are associated with every measurement, these are used
in the presented methodology for the computation of uncertainties in the model pre-
dictions. This allows one to assess the quality of a model and to identify outliers in
the experimental observations. As the evaluation of the complex model framework
is computationally expensive, the granulation process is approximated with response
surfaces in the studied example, allowing the quick computation of the model re-
sponse in the optimisation procedure. Using eight sets of experimental observations,
model-specific rate constants for particle coalescence, compaction, breakage, and re-
action are calculated. Additionally, uncertainties of these parameters are estimated,
allowing for the calculation of the model prediction and its uncertainty. Whereas the
a priori uncertainties are relatively large, the uncertainties are significantly reduced
by the method proposed. In addition to this, a possible mismatch between the model
and the experimental observations is identified, giving hints for further investigations.
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1 Introduction

Mathematical models are widely used in chemical engineering to describe the state of sys-
tems and the changes that occur due to various processes acting in the systems. The set
of equations in such a model framework very often contains system-specific parameters
that are not known a priori. The estimation of these parameters is known as the inverse
problem and is encountered for all kinds of models. Amongst the more complex model
equations are population balance equations—integro-differential equations describing the
evolution of a population of individual entities such as particles, bubbles or even biologi-
cal cells [25]. Population balances are applied to many processes, examples being extrac-
tion [36] and granulation [5, 7]. Granulation is a widely used process which transforms
particles into bigger entities and thereby improves their properties [19]. However, in the
modelling of granulation processes the inverse problem is often unavoidable. Therefore
experiments have to be carried out in order to identify these unknown model parameters,
e. g. coalescence rate constants. Such parameter estimation is normally done through fit-
ting to the model [2, 27]. Once these model parameters are determined, the model can be
employed for the study of the system under consideration. For instance, one may want to
investigate the sensitivity of the process with respect to certain process conditions and/or
model parameters, as is common practice for a wide range of models in chemical engi-
neering [32]. In order to study the sensitivity of coagulation processes, which also occur
in granulation, Monte Carlo techniques offer an attractive way forward [17, 34, 35].

When experimental observations are made, there are always uncertainties associated with
them. This means, the value stated for an observation is the most likely one to occur,
but at the same time it can also take other values (within the level of confidence). If this
experimental observation is used for the estimation of a model parameter when solving
the inverse problem, the experimental uncertainty should result in some kind of uncer-
tainty in the model parameter. In order to study such process behaviour with uncertain
model parameters, Monte Carlo simulations present a feasible way. This technique is for
instance used by Phenix et al. [23], modelling the oxidation kinetics in supercritical water.
As such, ranges for several model parameters are defined, and combinations of parame-
ter values are drawn according to the distributions of the parameters. For each of these
several thousand sets, the model equations (ODEs) are solved. From the results (= model
predictions) statistics can be derived providing mean values of the model predictions and
the associated uncertainties. In order to study the sensitivities of the model predictions
with respect to the model parameter uncertainties, a polynomial chaos expansion may
be added to the framework [26]. Therefore each uncertain parameter is expressed by
random variables from a known probability density, so that the model solution can be
decomposed, revealing the influence of the uncertainties in the model parameters on the
uncertainty in the model solution. However, the drawback of the Monte Carlo simulations
still persists, namely the computational costs arising from the large number of simulations
that have to be performed. In order to counteract the need for a large number of model
evaluations, tabulation techniques may be employed [21]. Model solutions for selected
parameter combinations are stored in an appropriate way, so that the model prediction for
the parameter combination in question can be obtained from interpolation between the
tabulated solutions.
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Figure 1: Outline of the problem and the employed methodology

The ultimate aim of any model development is the arrival of a robust, reliable and precise
framework applicable to a variety of problems and conditions. This means the parameters
for such framework should be estimated as accurately as necessary, so that the uncertainty
in any model prediction is small. In a first step one may predefine the uncertainties of the
model parameters in order to study the uncertainty in the model predictions [23, 26].
These a priori uncertainties of the model parameters mark the range in which the hitherto
unknown values for the model parameters of question will fall. These ranges have to be
estimated by the user.

The purpose of this paper is to show how experimental uncertainties can be used for
the refinement and reduction of the uncertainty intervals of the model parameters, and
the model prediction for the modelling of multidimensional granulation problems. In the
employed methodology the experimental observations are exploited for the derivation of
the values of the model parameters and their uncertainties, allowing predictions with the
refined model (Figure 1). A simple polynomial chaos expansion in the model parameters
is introduced, so that the unknown values of the model parameters and their uncertainties
can be estimated using a standard least-square routine. In this, the model response is pro-
vided by response surfaces, so that the model evaluation becomes computationally cheap.
As such, we follow the approach proposed by Sheen et al. [29]. The application of the
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methodology is demonstrated for an example from wet granulation for which the inverse
problem is solved. The unknown model parameters are rate constants for various transfor-
mations being incorporated in the model, namely for coalescence, compaction, breakage,
and chemical reaction. As such, the influence of the used experimental observations on
the parameter estimation is studied by different selections of experimental sets. These sets
differ not only in time, but also in the process conditions, i. e., variations in the impeller
speed. As a result of this, different sets of model parameters and their uncertainties can
be extracted, so that for each of them, model predictions can be derived. This methodol-
ogy allows for comparison between the different scenarios. In addition to this, it has the
potential that the quality of a model can be assessed and outliers in the experiments can
be identified, thereby suggesting future steps, such as model refinement, to be taken in
addressing the problem.

2 Theory

2.1 Uncertainty analysis

In order to estimate the unknown value of a model parameter using an optimisation pro-
cedure, an experimental observation is needed. This experimental observation ηexp is
characterised by two parameters, the measured value ηexp

0 and its uncertainty σexp, so that
the experimental observation can be written as,

ηexp = ηexp
0 ± σexp . (1)

Secondly, a model response η will be required for the model parameter estimation. This
model response is the process model evaluated for a given set of model parameters, x,

x = (x1, . . . , xK) , (2)

so that
η = η(x) . (3)

Due to the experimental uncertainty σexp there will be more than one set x∗ that will lead
to a match between the experimental observation ηexp and the model response η. This
means the uncertainty in the experimental observation σexp causes the uncertainty in the
choice of the model parameters. Hence some uncertainty must be allowed in the model
itself and this is introduced through the model parameters. Therefore a model parameter
x is represented as

x = x0 + c ξ , (4)

with x0 as the base value, a uncertainty factor c and the random variable ξ. Expressing the
model parameter x by eq. (4) is the simplest form of a polynomial chaos expansion [38].
As result of this representation, x becomes a random variable itself. The random variable
ξ shall be standard normally distributed. The model response η can now be rewritten as,

η(x) = η(x0, c, ξ) . (5)
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Due to the dependency on ξ the model response becomes also a random variable. How-
ever, the model prediction should be represented by just one value and its associated
uncertainty. Taking the expectation of the model response and the variance respectively
leads to the model prediction, µ,

µ(x0, c) = E [η(x0, c, ξ)] , (6)

and the model uncertainty σ,

σ(x0, c) =
√

Var (η(x0, c, ξ)) . (7)

Often processes are described by differential equations, so it is the case for granulation.
The temporal evolution of the particles may be modelled using population balance equa-
tions, which themselves are integro-differential equations. The problem that arises is that
the evaluation of these equations is often computationally expensive. In order to over-
come this difficulty, an approximation of the process behaviour by response surfaces is
proposed. This approach can be followed because the ranges for the unknown parameters
x are roughly known.

2.2 Model approximation by response surfaces

Response surfaces are simple models that approximate the behaviour of a system within
predefined boundaries [18]. A system is defined by a set of points that are either ob-
servations from an experiment or responses from a model. As such, these points are
distinguished from each other by different process conditions and/or choice of model pa-
rameters. These so called design variables are normally expressed in a normalised way,
so that none of them carries any physical dimension, and hence they are called coded vari-
ables. In the present case the model parameters x are the design variables, and for further
consideration it is assumed that they are coded variables.

The simplest response surface is linear in nature. This means the model response η(x)
can be approximated by,

η(x) = β0 +
K∑

k=1

βk xk , (8)

with β0 and βk (k = 1, . . . , K) being the parameters of the response surface. The response
surface parameters β0 and βk are obtained by fitting the surface to the set of points of the
system of interest. Before this can be done, the variables that distinguish the observations
of the system need to be transformed into coded variables, which are dimensionless. Thus,
the parameters β0 and βk (k = 1, . . . , K) have the same dimension as the response η(x).
After introduction of eq. (4) into eq. (8) the model response takes following form

η(x0, c, ξ) = β0 +
K∑

k=1

βk · (x0,k + ck ξk) . (9)
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The mean value µ and the uncertainty σ are obtained after taking the expectation and the
variance respectively,

µ(x0) = E [η (x0, c, ξ)] = β0 +
K∑

k=1

βk x0,k , (10)

σ(c) =
√

Var (η(x0, c, ξ)) =

√√√√ K∑
k=1

β2
k c

2
k . (11)

This means the most likely model solutions fall within the interval

η(x) = µ(x0)± σ(c) , (12)

= β0 +
K∑

k=1

βk x0,k ±

√√√√ K∑
k=1

β2
k c

2
k . (13)

A short explanation of how to derive the mean and the uncertainty is given in appendix A.
The task that remains is to find the optimal values of x0 and c using an appropriate ob-
jective function.

2.3 Objective function

Before formulating any objective function, we have a quick look how the problem presents
itself to us. Any system—in the current study a granulation process—can be described
by experimental observations. In the case of granulation this can be information about
the particles such as the amount of oversize or undersize. However, the system can also
be described by a model. In this, the process is characterised by state variables and gov-
erning equations. The overall aim of the modelling work is to come up with a robust and
precise model that allows predictions for various kinds of cases. Hence, the model param-
eters and their uncertainties shall be estimated using a set of experimental observations
(cf. Figure 1). In the current situation it is assumed that some prior knowledge about the
ranges of the parameters x and their uncertainties c exists.

This means the aim of the optimisation is twofold. On the one hand optimal values for
the model parameters x0 need to be found, i. e., the model predictions should be as close
as possible to the experimental observation. On the other hand we wish to find the uncer-
tainty of the parameters, i. e., reduce the a priori uncertainty, exploiting the uncertainty
of the experimental observations. This is achieved by minimising the difference between
the uncertainties of the experiment and model prediction. Hence the objective function Φ
takes following form,

Φ(x0, c) =
N∑

i=1

(
[ηexp

i − µi(x0)]
2

+ [σexp
i − σi(c)]

2
)

(14)

with i = 1, . . . , N being the index and N the number of the experimental observations.
Other objective functions are conceivable, but beyond the scope of the current study. The
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optimum (x∗
0, c

∗) originates from,

(x∗
0, c

∗) = argmin
x0, c

{Φ(x0, c)} . (15)

The optimisation procedure is subject to some constraints. The variables x0 can only take
values within the prior defined range,

x0,k,low ≤ x0,k ≤ x0,k,up (k = 1, . . . , K) . (16)

The uncertainty parameters c cannot become negative. In addition to this, they are bound
by the a priori estimates c(0),

0 ≤ c ≤ c(0) . (17)

3 Application to multidimensional granulation modelling

The methodology outlined above is applied to an example from granulation modelling.

3.1 The granulation process and its modelling

Broadly speaking, granulation is the clustering of small particles into bigger entities, com-
monly called granules. These bigger particles have enhanced properties in comparison to
a simple mixture of all the small particles. Beneficial properties of granules are for in-
stance a gain in safety, transport properties and application properties. In terms of safety,
the formation of granules is meant to reduce the dustiness of the particle handling process,
and therefore also reduces the risk of dust explosions, as well as the exposure of human
beings and the environment to dust. Granulation “freezes” the composition of particles
within the granules, so that problems like segregation during transport of particle mix-
tures can be eradicated. With respect to the application properties dissolution behaviour
and controlled release are on the forefront, being crucial properties in many industries
ranging from pharmaceuticals to food and detergent products.

Over the years various types of equipment have been being used for granulation processes.
The type of equipment used for the process basically determines which shear rates are
acting on the particles [31]. Drum granulation is seen as the most gentle treatment of the
particles and is for instance used for the granulation of fertilizers and ores [1, 37]. The
particles experience higher shear rates when the process is carried out in a fluidised bed.
This kind of equipment is used for a wide range of products such as detergents [4] and
pharmaceuticals [3]. For the production of dense granules, high-shear granulation is the
preferred method [20]. Depending on the application, granulation processes are carried
out in batch and in continuous mode [33].

Systematic studies of granulation processes have been carried out for decades. Sand was
the preferred material in early experimental studies [8, 9, 22]. These experimental studies
were soon followed by works modelling the process [15, 16]. The growth of the particles
is described by an early form of population balances and over the years the concept be-
came well established [7, 12, 28]. With this tool, the particle ensemble is described on a
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Table 1: Unknown process parameters and their equivalent coded counterparts

rate constant for model variable coded variable

coalescence K̂0 x1

compaction kporred x2

breakage k̂att x3

reaction kreac x4

per-particle basis, e. g. by the particle diameter. However, for wet granulation processes
with particles consisting of more than one component these one-dimensional population
balances are not sufficient enough to model the process [13]. In order to describe the par-
ticles in more detail, multidimensional descriptions are used [5, 10, 11, 24]. But besides
from the details of the particle description, it is of major importance to capture, in any
model, the transformations that are happening during the granulation. Wet granulation
processes are considered to be governed by three subprocesses: Wetting and nucleation,
coalescence and consolidation, and breakage and attrition [14].

The granulation of sugar pareils with water-polyethylene(PEG)-mixtures in a bench scale
high shear mixer has been studied experimentally by [30]. This process was carried out
under different conditions, i. e. a combination of different impeller speeds and binder com-
positions, with the outcome of the process being monitored for different process times.
The water-PEG-ratio of the binder was 50/50, 70/30, and 90/10 wt%/wt% respectively and
the mixer was operated at impeller speeds of 600, 900, and 1200 rpm. From a modelling
point of view this process and these experimental investigations are interesting because of
the varying process conditions. In addition to this, the setup requires a multidimensional
particle description. This has been done in a previous study [6], representing the particles
by a five-dimensional particle description accounting for two solids, two liquids and the
pore volume of the granules. Such a detailed particle description is deemed necessary
due to the various transformations being considered in the framework. Apart from co-
alescence and compaction, the particles can also undergo breakage. In addition to this,
migration of liquid (penetration) and reaction within the granules is also allowed in the
model. In order to compare the model with the experimental findings from [30], four
process parameters (in this case kinetic constants) need to be established through fitting
of the model to the experiments. As it can be computationally expensive to obtain model
predictions from a full model, the process behaviour is approximated by linear response
surfaces being functions of the four unknown process parameters. These parameters are
rate constants for subprocesses, namely for coalescence, compaction, breakage and reac-
tion and were already selected for an optimisation procedure in previous study [6] due to
their eminence for the process. They appear as uncoded variables in the full granulation
model and as coded variables in its approximation, i. e. the response surfaces. The naming
of the variables in both models is given in Table 1. The mass of agglomerates was chosen
as experimental observation and hence as criterion in the optimisation. Agglomerates are
granules that exceed a certain size and were obtained from screening in the experiments.
Further details of the full multidimensional population balance model and of the applied
response surface methodology alongside a list with the parameters of the response sur-
faces can be found in [6]. In order to perform the estimation of the model uncertainty as
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outlined above, the uncertainties associated with the experimental observations need to be
known. As they are not available for the current data, they have to be estimated.

3.2 Estimation of experimental uncertainties

In order to demonstrate the application of the methodology, the unknown experimental
uncertainties are estimated. Because the emphasis is on the method rather than on the
details of the example, the chosen approach should be sufficient enough for demonstration
purposes.

The experimental uncertainty σexp
i (of the ith observation) can originate from various

sources. Despite the accuracy that an experimenter applies to an experiment, a small
error is always introduced in every step of the experiment. For instance there will be
an error weighing the raw materials and the product. Also during the process there will
be deviation, e. g. in timing the process and therefore duration of mixing. As all these
sources of uncertainty cannot be quantified, a relative uncertainty ςexp

rel is used instead.
The uncertainty σexp

i for the ith observation is computed by

σexp
i = ςexp

rel η
exp
i (i = 1, . . . , N) . (18)

3.3 Further details of the optimisation procedure

As mentioned above, initial conditions and constraints have to be defined for the optimi-
sation. The experimental design was set up in a previous study [6], so that the lower and
upper limit for the coded variables become,

x0,k,low = −1 , (19)
x0,k,up = 1 (k = 1, . . . , 4) . (20)

The centre of the experimental design is chosen as initial point for the model parameters,

x
(0)
0 = 0 . (21)

In addition to this, the uncertainty factors c have also initial values. We recall eq. (4),

xk = x0,k + ck ξk , (4)

which becomes with the initial condition for x0

xk = ck ξk . (22)

Remembering that the random variable ξk is standard normally distributed, we can use the
similarity with the experimental uncertainties. Hence, xk ∈ [−1 1] is interpreted as one
σ confidence interval of ξk, so that

c
(0)
k = 1 . (23)

x
(0)
0 and c(0) are called the unoptimised solution. The optimisation itself was carried out

in Matlab using the function fmincon.
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Table 2: Mass of agglomerates (in grams) in experiments (binder composition water/PEG
of 50/50 wt%/wt%)

impeller speed [rpm] time [s]
10 20 40 80

900 2.35 1.05 0.95 0.60
1200 1.60 0.80 0.50 0.40

Table 3: Numbering scheme for experimental observations (binder composition wa-
ter/PEG of 50/50 wt%/wt%)

impeller speed time [s]
10 20 40 80

900 1 2 3 4
1200 5 6 7 8

3.4 Results

In the previous study [6] 13 experimental observations were used in order to obtain the
values for the four unknown process parameters (x1, . . . , x4 or K̂0, kporred, k̂att, and kreac

respectively), applying an optimisation procedure. These estimates were then used in fur-
ther simulations in order to test and demonstrate the model’s capability. However, the
purpose of the current example is to show what the consequences of using the outlined
methodology for uncertainty estimation are when applied to a wet-granulation model. As
such, the influence of the choice of the experimental sets being used in the procedure is
studied with respect to the obtained model parameters and their uncertainties, and subse-
quently for the model predictions and their uncertainties.

Only for the experimental data with a binder composition of water/PEG of 50/50 wt%/wt%
measurements for different process times are available. Table 2 lists the mass of agglom-
erates measured in the experiments. In a first step the data for the impeller speed of
900 rpm shall be used. In a second step, the observations from processes with an impeller
speed of 1200 rpm are taken into consideration. In order to allow easy reference to the
experimental cases/observations, a numbering scheme is applied (Table 3). As uncertain-
ties for the experimental observations are not available, the relative uncertainty for every
experimental observation is assumed to be ςexp

rel = 0.3.

We start off using set 1, i. e. one experimental observation, in order to specify the four
unknown model parameters. Applying the outlined procedure results in a set of these
parameters. This set can then be used for the computation of the model prediction of
the mean value and its uncertainty using eqs. (10) and (11). In Figure 2(a) these data
are plotted along with the experimental observation and the a priori estimate (unopti-
mised case). The latter is the initial guess for the model solution. The model prediction
for the mass of agglomerates in this case is between 5 and 6 g, but at the same time the
uncertainty is rather large. After optimisation the model prediction for the mass of ag-
glomerates becomes smaller and identical with the experimental observation of 2.35 g. In
addition to this, an uncertainty for the model prediction can be calculated, that is signifi-
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Figure 2: Mass of agglomerates in the unoptimised and optimised model, and experiment
(impeller speed of 900 rpm)
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Figure 3: Standardised uncertainties for model predictions with optimised parameters—
Set 1–4 of experimental observations successively included in optimisation pro-
cedure

cantly smaller than the one for the unoptimised case. In fact, it takes the same value as the
experimental uncertainty, as it should be expected since we are using one data point (cf.
objective function eq. (14)). The entire procedure can now be repeated bringing in more
experimental observations for the same process conditions, but different process times.
The incorporation of set 2 to 4 in the optimisation leads to model predictions shown in
Figures 2(b)–2(d). In all cases the experimental observations are matched by the model
very well. Also the uncertainties of the model predictions using the optimised param-
eters are significantly smaller compared to the a priori estimates. From this, it can be
concluded that the model is appropriate in predicting the process outcome, provided the
model parameters are chosen correctly.

One objective of the current study is the estimation of the uncertainty in the model pa-
rameters, and hence of the uncertainty in the model prediction. As these uncertainties are
derived by using the experimental uncertainties, it is worthwhile to look how the uncer-
tainties of the model predictions for a particular scenario are dependent upon the number
of sets being used for the estimation of the uncertainties of the model parameters. There-
fore a standardised uncertainty is defined as,

standardised uncertainty =
uncertainty of model prediction

experimental uncertainty
. (24)

For the cases just considered (set 1–4) this property is plotted in Figure 3(a). This plot
confirms the first impression of Figure 2 that the uncertainties do not change extensively
between the different steps of the optimisation procedure. Turning to the standardised
uncertainty of set 1, it can be observed that this is unity when just the experimental obser-
vation of set 1 is used for the estimation of the uncertainty of the model parameters and
subsequently the model prediction. However, when set 2 is brought into consideration, a
new set of uncertainty factors is derived leading to a smaller standardised uncertainty of
the model prediction for set 1. In contrast to this, the same uncertainty factors yield for
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set 2 a standardised uncertainty larger than unity. As a further set is brought into the pro-
cedure, a reduction in the uncertainty of the model prediction for set 1 can be observed,
whereas it stays nearly constant at 90 % of the first value when all four sets are used for
the estimation of the uncertainty factors. In contrast to this, the standardised uncertainties
for the other three sets are always bigger than unity. For instance, the uncertainty in the
model prediction for set 2 is nearly 30 % bigger than the experimental uncertainty. In or-
der to understand why the standardised uncertainty can be bigger and smaller than unity,
one has to recall how the uncertainty factors c are derived. In the optimisation we try to
minimise the difference between the experimental uncertainty and the uncertainty of the
model prediction for each set, and thereby extracting a common set of uncertainty factors
c that are used for the computation of the model uncertainty σi for every scenario i,

σi(c) =

√√√√ K∑
k=1

β2
k,i c

2
k . (25)

with βk,i being the kth parameter of the ith response surface. As such, the parameters βk,i

can be considered as weights with respect to the different uncertainty factors. Due to the
structure of eq. (25) and the fact that a common set of uncertainty factors c is used for
the computation of each σi, the parameters βk,i of the ith scenario determine whether the
standardised uncertainty becomes smaller or bigger than unity.

In the current example the sets 1 to 4 are included in ascending order in the procedure
leading to the estimation of the model parameters and their uncertainties based on four
observations when all sets are included. The same situation can be created by performing
the procedure with a different start set, e. g. set 4, and subsequently include the other sets
in descending order. The resulting trends for the standardised uncertainties are plotted in
Figure 3(b). The final points in Figure 3(a) and 3(b) are identical. However, without set 1
included in the procedure when using the sets in descending order (Figure 3(b)) the trends
for the standardised uncertainties of the included sets are fairly close to unity, suggesting
that the inclusion of set 1 in the procedure has a major effect on the estimation of the
uncertainty factors. Nevertheless, using sets 1 to 4 in estimating the model parameters
and their uncertainties demonstrates clearly that the proposed methodology works, which
is built around exploiting the experimental uncertainties. As these are a centerpiece in
estimating the uncertainties of the model prediction, it is on the one hand desirable to
make sure that they are well deduced, and on the other hand one should aim to bring in
more observations (incl. uncertainties) in order to broaden the basis for the estimation of
the unknown parameters. Thereby it should be easier to identify outliers.

So far, only experimental observations from processes with the same process conditions
but different times were included in the considerations. However, the influence of the im-
peller speed as a process condition is reflected in the granulation model, so that a common
set of model parameters, i. e. rate constants, for different process conditions (in the current
study the impeller speed) shall be established. Therefore the first set of the experiments
with an impeller speed of 1200 rpm (set 5) is included in the optimisation procedure.
The resulting set of optimised parameters leads to the model predictions in Figures 4(b)
and 4(c). For an impeller speed of 900 rpm the model predictions in Figure 4(b) are still
quite close to the experimental observations, although not as close as in the fit with just
four sets (Figure 4(a)). However, the agreement between the experimental observation
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(a) 900 rpm, set 1–4 in optimisation routine
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(b) 900 rpm, set 1–5 in optimisation routine
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(c) 1200 rpm, set 1–5 in optimisation routine
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(d) 900 rpm, set 1–6 in optimisation routine
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(e) 1200 rpm, set 1–6 in optimisation routine

Figure 4: Mass of agglomerates in the unoptimised and optimised model, and experiment
for setups with different impeller speed
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and the model prediction for set 5 (1200 rpm, 10 s) is not satisfying (Figure 4(c)). The
agreement between model prediction and experimental observation would have been ac-
ceptable, if the experimental observation were to lie within the uncertainty bounds of the
model prediction, which is clearly not the case for set 5. As it is the aim to find one set of
model parameters that is applicable for all scenarios, the question comes up as to whether
this can be found by including all sets in the methodology. The inclusion of a bigger
number of sets, i. e. set 6, 7, and 8, results in parameter sets that lead to the model predic-
tions shown in Figure 4(d)–4(i). The model predictions for the cases with an impeller
speed of 900 rpm are only altered marginally due to the inclusion of more experimental
observations in the procedure (Figure 4(d), 4(f), and 4(h)). Reasonable agreement can be
observed for the scenarios with an impeller speed of 1200 rpm, except for set 5, i. e. the
experimental observations lie within the uncertainty bounds of the model predictions. But
obviously there is a problem with set 5 and its model prediction after applying the op-
timisation procedure in which a new set of model parameters is found and the a priori
model uncertainties are reduced to the present level. The mismatch between model pre-
diction and experimental observation can originate from two sources. On the one hand
there might be a problem with the experimental observation. This may have a very simple
cause as for instance a misread number. Also one might want to check the experimental
error of the observation. In the current case there is no information about this error, and so
a value was assumed for it. Nevertheless, the value could be wrong, and one might have
to think about its value again. However, if it is assumed that the experimental observation
including the experimental error is correct as such, one should think about repeating the
experiment, although this may not be appropriate or even possible. On the other hand, the
problems might originate from the model chosen for the system of interest. This means
it is inappropriate for a particular case. One has to remember that initially, limits for the
choice of the unknown model parameters are introduced. Assuming that the “right” model
parameter set lies within these ranges, one has to turn to the model itself. This means one
has to revisit the assumptions and formulation of the model in order to capture a bigger set
of problems, but keeping the required precision and robustness. With response surfaces
being used as approximation for the full model, a source for errors is introduced in the
system description. This means the response surface might not fully capture the features
of the complex population balance model, and as result of this it contributes to the mis-
match between model prediction and experiment observation. However, it is beyond the
scope of the current study to revisit and refine the used models.

As we have identified a mismatch between the model prediction and the experimental
observation for set 5, one may think about excluding this case from the procedure com-
pletely in order to investigate the behaviour of the remaining system. Of course, there is
debate whether any data should ever be rejected, but in order to see what influence the
exclusion of set 5 has on the entire methodology, it is done in this example. The model
predictions for the model parameter set resulting from the procedure run with seven data
sets are plotted in Figure 5. The difference between the predictions using parameter sets
with and without set 5 are not huge. For the 900 rpm cases the match between experimen-
tal observations and model predictions and their uncertainties becomes better again (Fig-
ure 5(a) and 5(c)). Marginal changes can be observed for the 1200 rpm case (Figure 5(b)
and 5(d)). The model predictions become slightly smaller than before. It is interesting
to note that the experimental observation for set 6 (1200 rpm, 20 s) lies at the boundary
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(d) 900 rpm, set 1–6 in optimisation routine
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(e) 1200 rpm, set 1–6 in optimisation routine
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(f) 900 rpm, set 1–7 in optimisation routine
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(g) 1200 rpm, set 1–7 in optimisation routine
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(h) 900 rpm, set 1–8 in optimisation routine
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(i) 1200 rpm, set 1–8 in optimisation routine

Figure 4: Mass of agglomerates in the unoptimised and optimised model, and experiment
for setups with different impeller speed (cont.)
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(a) 900 rpm, set 1–8 in optimisation routine
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(b) 1200 rpm, set 1–8 in optimisation routine
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(c) 900 rpm, set 1–4 and 6–8 in optimisation rou-
tine
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Figure 5: Mass of agglomerates in the unoptimised and optimised model, and experiment
for rate constants estimated from all sets, but set 5 (1200 rpm, 10s)
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Figure 6: Standardised uncertainties for model predictions with optimised parameters—
Set 1–8 of experimental observations successively included in optimisation pro-
cedure

of the uncertainty interval of the model prediction using the new set of model parameters
(Figure 5(d)). This data point could potentially be a candidate for another review.

When using sets 1 to 4 for the estimation of the unknown model parameters and their
uncertainties, some interesting trends for the evolution of the uncertainties of the model
predictions can be observed as the number of sets in the procedure is increased. For the
current case these uncertainties stabilise as sets 5 to 8 are included in the optimisation
procedure (Figure 6(a)). However, when set 5 is brought into the procedure, the uncer-
tainties of sets 1 and 2 increase. If set 5 is excluded from the optimisation procedure,
such an increase in the standardised uncertainty does not occur (Figure 6(b)). This result
highlights once more how the choice of the experimental basis has a direct impact on the
values of the model parameters and hence on the model prediction and its uncertainty.

The model predictions for the mass of agglomerates depend on the model parameters
x1, . . . , x4 being obtained from the optimisation. The values of these parameters are de-
pendent on the choice of the process conditions and experimental observations included in
the optimisation procedure (Table 4). When being derived from set 1 to 4 (impeller speed
of 900 rpm), the parameter values differ to some extent significantly between the different
steps. However, when more experimental observations are brought into the consideration
in steps 5 to 8, the solution stabilises around the final values for all eight sets. However,
excluding set 5 in step 9 leads to a parameter set that is remarkably close to the one using
just set 1 to 4 (Table 4, step 4).

A slightly different picture emerges for the uncertainties c of the process parameters (Ta-
ble 5). Using the first four sets for the estimation of the unknown parameters x1, . . . , x4

and their uncertainties means that there is no uncertainty for the rate constant for coa-
lescence and reaction (x1, x4). The uncertainty of the model prediction is due to the
uncertainty in the values of the model parameters for compaction and breakage (c2, c3).
However, as soon as the fifth set (impeller speed of 1200 rpm) is brought into consid-
eration, the uncertainty in the rate constant for breakage (x3) ceases and the model un-
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Table 4: Sets used in the optimisation and the resulting values of the coded model param-
eters (N = active, M = not used)

set
step 1 2 3 4 5 6 7 8 x1 [-] x2 [-] x3 [-] x4 [-]

1 N M M M M M M M -0.5567 -0.6204 0.6468 0.3785
2 N N M M M M M M -0.8539 -0.4848 -0.5678 0.7254
3 N N N M M M M M -0.7440 -1.0000 -0.8954 -1.0000
4 N N N N M M M M -0.6382 -1.0000 -0.5947 0.6425
5 N N N N N M M M -0.8678 -0.2087 -0.4029 1.0000
6 N N N N N N M M -0.6338 -0.7656 -0.4966 1.0000
7 N N N N N N N M -0.5387 -1.0000 -0.5388 1.0000
8 N N N N N N N N -0.5367 -1.0000 -0.5442 1.0000
9 N N N N M N N N -0.6125 -1.0000 -0.5816 0.6891

Table 5: Sets used in the optimisation and the resulting uncertainty factors of the coded
model parameters (N = active, M = not used)

set
step 1 2 3 4 5 6 7 8 c1 [-] c2 [-] c3 [-] c4 [-]

1 N M M M M M M M 0.0641 0.0815 0.9955 0.9999
2 N N M M M M M M 0.0045 0.0018 0.9982 0
3 N N N M M M M M 0.0010 0.3908 0.4747 0
4 N N N N M M M M 0 0.3886 0.4780 0
5 N N N N N M M M 0.0008 0.4848 0 0.0075
6 N N N N N N M M 0 0.4820 0.0030 0
7 N N N N N N N M 0 0.4791 0 0.0014
8 N N N N N N N N 0 0.4803 0 0.0026
9 N N N N M N N N 0 0.4231 0.3499 0.0071
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Table 6: Values for the model parameters and their uncertainties

step K̂0 · 1010 [m3] kporred [s m−1] k̂att · 10−7 [s m−5] kreac · 109 [m s−1]

1 1.22± 0.03 0.238± 0.008 7.3± 2.0 3.4± 1.0
2 1.073± 0.002 0.2515± 0.0002 4.9± 2.0 3.7± 0.0
3 1.1280± 0.0005 0.20± 0.04 4.2± 0.9 2.0± 0.0
4 1.18± 0.00 0.20± 0.04 4.8± 1.0 3.6± 0.0
5 1.0661± 0.0004 0.28± 0.05 5.2± 0.0 4.000± 0.008
6 1.18± 0.00 0.22± 0.05 5.007± 0.006 4.0± 0.0
7 1.23± 0.00 0.20± 0.05 4.9± 0.0 4.000± 0.001
8 1.23± 0.00 0.20± 0.05 4.9± 0.0 4.000± 0.003
9 1.19± 0.00 0.20± 0.04 4.8± 0.7 3.689± 0.007

certainty is basically governed by the uncertainty in the compaction rate constant (x2).
This behaviour does not change when the other three observations (sets 6-8) are used, too.
However, when set 5 is excluded in step 9 (Table 5), the set of uncertainty factors is once
again comparable with the one obtained for sets 1 to 4 only, although the match is not as
good as for the set of model parameters.

One aim of this study is to establish the four unknown rate constants for a wet granu-
lation problem. Therefore, the coded variables x and their uncertainties c have to be
transformed into, up to now, unknown model parameters (with dimensions) for coales-
cence K̂0, compaction kporred, breakage k̂att, and reaction kreac. The optimised values
for these parameters and their uncertainties are summarised in Table 6. The equations of
how to transform the coded variables x and their uncertainties c into the “real” process
parameters can be found in appendix A. A clear dependency of the values of the model
parameters and their uncertainties on the choice of the experimental observations for their
estimation can be observed.

4 Conclusions

A methodology that accounts for the propagation of experimental uncertainties into model
predictions has been presented in this study and demonstrated for an example from high
shear granulation. The process was modelled by a complex population balance frame-
work which contains a myriad of model parameters. Four of these parameters needed to
be established by comparison of model and experiments. As the experimental observa-
tions possess uncertainties, this should be reflected in the model predictions. In order to
deal with this problem, a simple polynomial chaos expansion for the model parameters of
interest was proposed, so that subsequently the expectation and variance of the model pre-
diction could be derived and used in a straightforward optimisation step for the estimation
of the uncertainties in the model parameters.

In the presented example, the process was approximated by linear response surfaces in
order to allow fast computation of the model response in the optimisation procedure. The
unknown model parameters are characteristics for the transformations that are incorpo-

21



rated in the model framework. As such, the rate constants for coalescence, compaction,
breakage and reaction have been estimated by successively including eight sets of exper-
imental observations in the procedure. At the same time the a priori uncertainties of the
parameters and the model predictions have been reduced significantly by the methodol-
ogy. The agreement between the model predictions using the estimated model parameters
and the experimental observations was generally good. However, due to the employed
methodology it was also possible to identify a mismatch between the model prediction
and the experimental observation for one scenario. The reason for this can be twofold.
One reason might be that the experimental observation is not correct, but if it is, the
model lacks some important system description. In addition to this one has to be aware
of the simplifications being might when using the response surfaces. Hence, not all fea-
tures of the complex model might be fully captured. These problems have to be addressed
in further work. Although this example is just demonstrating the methodology, further
application for bigger systems is foreseeable.

Notation

c uncertainty factor [x]
E expectation of the random variable X [X]
K number of model parameters -
K̂0 rate constant for coalescence m3

k̂att rate constant for breakage s m−5

kporred rate constant for compaction s m−1

kreac rate constant for reaction m s−1

M number of random variables -
N number of experimental observations -
Var variance of the random variable X [X2]
X random variable [X]
x model parameter [x]
y uncoded variable [y]
δy uncertainty of y [y]

Greek letters

α arbitrary constant [α]
β parameter of response surface [η]
η model response [η]
ηexp experimental response [ηexp]
µ model prediction [η]
ξ random variable -
σ uncertainty [η]
ςrel relative uncertainty -
Φ objective function [Φ]
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Superscripts

* optimum
(0) initial value
exp experiment

Subscripts

0 base value
i counting variable
k counting variable
low lower limit
up upper limit
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A Useful equations

A.1 Expectation and variance of response surfaces

In order to derive the expectation and variance of the response surfaces, following rules
are used:

E

(
M∑
i=1

αiXi

)
=

M∑
i=1

αiE(Xi) , (26)

Var

(
M∑
i=1

αiXi

)
=

M∑
i=1

α2
i Var (Xi) , (27)

with Xi being i.i.d. and αi a set of constants (i = 1, . . . ,M ). The model response η is a
function of x0, c, and ξ,

η (x0, c, ξ) = β0 +
K∑

k=1

(βk x0,k + βk ck ξk) , (28)
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where ξ are the random variables. The expectation of η becomes then

E [η (x0, c, ξ)] = E

(
β0 +

K∑
k=1

βk x0,k

)
+ E

(
K∑

k=1

βk ck ξk

)
, (29)

= β0 +
K∑

k=1

βk x0,k +
K∑

k=1

βk ck E (ξk) , (30)

and with ξk being standard normally distributed the mean value µ becomes,

µ(x0) = E [η (x0, c, ξ)] = β0 +
K∑

k=1

βk x0,k . (31)

For the variance we obtain,

Var (η (x0, c, ξ)) = Var

(
β0 +

K∑
k=1

βk x0,k

)
+ Var

(
K∑

k=1

βk ck ξk

)
, (32)

=
K∑

k=1

β2
k c

2
k , (33)

and subsequently the uncertainty σ equates to

σ(c) =
√

Var (η (x0, c, ξ)) =

√√√√ K∑
k=1

β2
k c

2
k . (34)

A.2 Transformation of coded into uncoded variables

The transformation of the coded variable x (dimensionless) into the corresponding un-
coded variable y (with dimensions) is of linear nature. The experimental design is bound
by xlow and xup that correspond to the parameters from the physical world ylow and yup

respectively. Hence following relationship arises,

y − ylow

x− ylow

=
yup − ylow

xup − xlow

, (35)

so that the uncoded variable y is expressed by,

y =
yup − ylow

xup − xlow

(x− xlow) + ylow . (36)

With the common case of xlow = −1 and xup = 1 this relationship becomes,

y =
yup − ylow

2
(x+ 1) + ylow . (37)
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The uncertainty of y is denoted by δy. The uncertainty factor c expresses the uncertainty
of the coded variable x. This means, it is equivalent to an ∆x, so that

y(x0 + ∆x) = y(x0) + δy , (38)

and hence

δy = y(x0 + ∆x)− y(x0) . (39)

Inclusion of eq. (37) into eq. (39) leads to,

δy =
yup − ylow

xup − xlow

c . (40)

For xlow = −1 and xup = 1 eq. (40) simplifies to,

δy =
yup − ylow

2
c . (41)
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