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Abstract

In this paper based on a stochastic chemistry approximation for the chem-
ical source term in the PDF transport equation, further optimizations and
approximation have been implemented. The motivation of this approach is to
speed up the algorithm. The algorithm presented was applied to a PSR model.
Moreover, numerical performance of this new algorithm was investigated in
a more complex system. The non-premixed combustion of an n-heptane fuel
stream injected into hot air was chosen as a test case. The numerical error
caused by the splitting procedure was studied. From this study a suitable time
step was chosen to benchmark the new stochastic chemistry approximation
against the standard deterministic DASSL. It was found that, depending on
the required accuracy, the new stochastic approach clearly outperforms the
deterministic method for the case studied.
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1. Introduction

Turbulent combustion is ubiquitous in today’s technology. For example, gas tur-
bines, diesel engines and spark-ignition engines make use of it. An important prob-
lem of combustion technology in general is its detrimental impact on the environment
through unwanted emissions of combustion products and by-products. Industry em-
ploys numerical modelling of these processes to achieve a better understanding in
order to reduce combustion emissions. Although good progress in the development
of such numerical models has been made over the last decades there are still open
problems. One modelling approach that has been proved to be quite successful is
based on the probability density (PDF) transport equation of the physical quantities
of interest [13, 2]. The numerical method for solving the PDF transport equation
employs a Monte Carlo technique combined with an operator splitting approach.
The Monte Carlo technique is based on a stochastic particle-mesh method. The nu-
merical accuracy of this method has been thoroughly investigated in [16]. However,
using Monte Carlo method, the computational cost for the chemistry step is very
high. In the chemistry step the chemical species and the temperature are advanced
in time which means for each stochastic particle a system of ordinary differential
equations (ODE) has to be solved numerically. This system of ODE is usually stiff
and special solvers are required to obtain the numerical solution [3, 4, 5]. For large
chemical models the number of chemical species can be quite large and the compu-
tational time required to solve the system of ODE for each particle is prohibitive.
Only in very special cases can full chemistry models be used. For example, if sta-
tistical spatial homogeneity is assumed, even large chemical mechanisms, which are
necessary to predict the formation and oxidation of soot, can be dealt with [1]). If
the full PDF equation has to be solved then it is necessary to reduce the number of
scalar quantities. There are different strategies to do this. For instance, sometimes it
is sufficient to model combustion by one or a set of global reaction expressions [9]. In
many cases a reduced chemical mechanism can be used. These chemical mechanisms
are obtained from detailed chemical mechanisms by choosing steady state species
and invoking the partial equilibrium assumptions [12]. They are either integrated
directly or, in most cases, they are tabulated. The reduction procedure usually leads
to numerically very expensive expressions and real computational speed advantage
is only achieved if a tabulation procedure is used [2]. A similar strategy is to reduce
the number of scalar variables by using the ILDM technique [10]. Here the fast
and slow variables of the chemical reaction system are identified by an eigenvalue
decomposition of the linearized chemical source term. From this analysis a table
can be constructed that allows one to compute all fast quantities as functions of the
slow variables [11, 14]. More recently Pope has developed a tabulation strategy [14]
which uses skeleton mechanisms and does not introduce limits on time scales. In this
technique the table is created along with the simulation. The precision is controlled
using the eigenvalues of the chemical source term. Most of the techniques described
above have been combined with a neural network to speed up data retrieval and
reduce storage requirements. However, all different tabulation procedures have in
common that they are restricted to a quite small number of independent variables.
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The limit is mainly due to two reasons. One reason is that the memory that is
required grows non-linearly with the number of variables. Second, the data retrieval
can become time consuming and not very accurate.

All of the methods described above have in common that for each stochastic particle
they attempt to solve the chemistry in a deterministic way. This means that the
trajectory of a stochastic particle evolves deterministically according to the chem-
ical source term. Other processes like mixing are normally solved in such a way
that their trajectories are intrinsically stochastic. This applies to all particle inter-
action models, e.g. the CURL model just to name one representative of this model
class. Consequently, although we compute the trajectories of each particle deter-
ministically we do not make use of it because we are really interested in the PDF
as a whole or functionals of the PDF such as the mean and variance. In order to
include many species as variables for the PDF transport equation to describe emis-
sions appropriately, we want to introduce a new and alternative method to compute
the chemical source term in the PDF transport equation. In our former work an
improved stochastic approximation was developed [8], and it was employed to re-
place the deterministic chemistry step in premixed system using PaSPFR model
[7]. However, there is no optimization used fully in these two papers. The aim
of this paper is twofold. Firstly, based on the stochastic approximation, further
optimizations and approximations were implemented to speed up the algorithm,
without influencing the precision. To achieve this the stochastic reactor model PSR
which contains only the operation for chemical reaction is used. We studied the
premixed combustion of n-heptane using a detailed chemical mechanism with 106
chemical species and 808 reversible reactions. Secondly, the numerical performance
studying the non-premixed combustion system was investigated. For this purpose
the stochastic reactor model PaSPFR which contains operations for mixing and
chemical reaction was used. In a first step the error caused by the operator splitting
was investigated using deterministic chemistry. This has two purposes, one is to
ensure the error caused by the operator splitting is smaller than the error caused
by the stochastic particle approximation, and another is to choose the maximum
splitting time step in order to achieve a fair comparison between the stochastic and
deterministic solution method. Then the new approximation of the chemistry was
compared with the deterministic chemistry step which was computed using DASSL
[3].

2. The algorithm

We state a Monte Carlo algorithm to obtain a solution for the PaSPFR model given
by the following PDF equation,

∂

∂t
f(t, ψ)−

S+1∑

k=1

∂

∂ψk

([
Rk(ψ) + C Mk(f(t, ψ), ψ)

]
f(t, ψ)

)
= 0 , (2.1)
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where t ≥ 0 , with initial condition

f(0, ψ) = f0(ψ) . (2.2)

The components of the vector ψ correspond to the mass fractions Y1, . . . , YS of
several chemical species and to temperature T . The terms Mk represent the mixing
mechanism of the system. We use the well known IEM or LMSE model (see [6]).
The terms Rk describe the chemical source terms given by the detailed reaction
mechanism with I elementary chemical reactions,

(να,1, . . . , να,S) ←→ (ν∗α,1, . . . , ν
∗
α,S) , α = 1, . . . , I . (2.3)

The stoichiometric coefficients να,i and ν∗α,i of the species i in reaction α are non-
negative integer values.

In order to generate trajectories of the stochastic process, one introduces a system
of weighted particles

(w(i), Ψ(i)(t)) i = 1, . . . , N (2.4)

where

N∑
i=1

w(i) = 1 . (2.5)

Its time evolution is determined by

d

dt
Ψ

(i)
k (t) = −Rk(Ψ

(i)(t))− C

[
Ψ

(i)
k (t)−

N∑
j=1

w(j)Ψ
(j)
k (t)

]
, (2.6)

where k = 1, . . . , S+1 , and Ψ(i)(0) , i = 1, . . . , N , are independent random variables
and distributed according to f0 . In general the system (2.6) is high-dimensional.
Therefore, a splitting approach on a time interval [s, s + ∆t] is applied, in order
to decouple the effects of reaction and mixing. The reaction step is

d

dt
Ψ̃

(i)
k (t) = −Rk(Ψ̃

(i)(t)) , t ≥ s , Ψ̃
(i)
k (s) = Ψ

(i)
k (s) , (2.7)

and the mixing step is

Ψ(i)(s + ∆t) = (2.8)

e−C∆t Ψ̃(i)(s + ∆t) +
[
1− e−C∆t

] N∑
j=1

w(j)Ψ̃(j)(s + ∆t) .

This leads to the following algorithm.

0. Determine the state of the system of particles (2.4) at time 0 according to the
initial density f0 .
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1. Given the state of the system at time s , each particle is moved according to
the reaction step (2.7).

2. Given the system Ψ̃(1)(s + ∆t), . . . , Ψ̃(N)(s + ∆t) , each particle is moved ac-
cording to mixing step (2.8).

3. If time exceeds termination time then STOP. Otherwise go to Step 1 .

2.1. The chemistry step

The chemistry step (2.7) is usually solved by integrating the system of ODE for
each particle numerically to obtain the trajectories for each particle. The new
approach in this paper is to approximate the trajectory by a stochastic process.
For this purpose each particle is represented in the form

Ψ =
(
N

(n)
1 (t), . . . , N

(n)
S (t), T (n)(t)

)
,

where N
(n)
j (t) ≥ 0 denotes the approximate mole number (Unit = mole) of species

j = 1, . . . , S , and T (n)(t) > 0 denotes the approximate temperature at time t . The
number of sub-particles

n =
S∑

j=1

N
(n)
j (0)

plays the role of an approximation parameter. The right choice of this approximation
parameter is a priori not clear and needs to be determined in numerical studies.

Step 0

The initial state of the system is determined as

N
(n)
j (0) = nXj(s) , j = 1, . . . , S , T (n)(0) = T (s) ,

according to the initial conditions of the differential equation (2.7).

Step 1

Given the state x at time t , the process remains there for a random waiting time
τ such that

Prob(τ ≥ u) = exp(−uπ(x)) , u ≥ 0 ,

where

π(x) =
I∑

α=1

|Qα,f (x)−Qα,r(x)| ,

and Qα,f and Qα,r are, respectively, the forward and reverse reaction rates of reaction
α. The procedure stops when time t + τ exceeds the splitting step ∆t .
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Step 2

At the moment t + τ , a particular reaction is chosen according to the reaction
probabilities

Pα(x) =
|Qα,f (x)−Qα,r(x)|

π(x)
, α = 1, . . . , I .

Step 3

Finally, the process jumps into the state

Jα(x) =

{
Jα,f (x) , if Qα,f (x) ≥ Qα,r(x) ,
Jα,r(x) , otherwise ,

where

Jα,f (x) = (x1 − να,1 + ν∗α,1, . . . , xS − να,S + ν∗α,S, xS+1 + ∆Tα,f (x))

and

Jα,r(x) = (x1 − ν∗α,1 + να,1, . . . , xS − ν∗α,S + να,S, xS+1 + ∆Tα,r(x)) ,

The temperature step is defined as

∆Tα,f (x) = −
∑S

k=1 Hk(xS+1) [ν∗α,k − να,k]∑S
k=1 Cpk(xS+1) xk

,

∆Tα,r(x) = −
∑S

k=1 Hk(xS+1) [να,k − ν∗α,k]∑S
k=1 Cpk(xS+1) xk

.

where

Cp - specific heat
H - enthalpy

Then the procedure returns to Step 1.

2.2. Approximations and optimizations

By analyzing the CPU time distribution, it is shown that more than 90% of the
CPU time is required for updating Pα (in table 1). So it is crucial to approximate
or optimize these procedures to save the CPU time without influencing precision.

According to the chemistry approximation, Qii is calculated by

Qii = γ(x)1−∑S
j=1 νii,j Mα(x) kii(xS+1)︸ ︷︷ ︸

reaction rate constant

S∏
j=1

νii,j−1∏
i=0

(xj − i)+

︸ ︷︷ ︸
product

,

ii = 1, ..., 2I (2.9)

7



Table 1: the original CPU Time Distribution.

Procedure CPU Time(%)

Update k,Cp and H 56
Update products 16

Update reaction rates 27
others 1

Mii(x) =





∑S
k=1 Bii,k

xk

γ(x)
, if third body reaction with some species ,

p
R xS+1

, if third body reaction with all species ,

1 , otherwise ,

and

γ(x) =
R xS+1

p

S∑
j=1

xj .

So Qii = 0 if xj < νii,j. Furthermore, there is only one reaction performed ev-
ery event. Based on these theories four optimized and approximate methods are
implemented.

Optimization 1

Only the products of those reactions whose educts of species are changed should be
updated.

∃νii,j × να,j > 0, j = 1...s

{
prodnew : unknown, when prodold > 0
prodnew = 0, when prodold = 0

∃νii,j × ν∗α,j > 0, j = 1...s

{
prodnew > 0, when prodold > 0
prodnew: unknown, when prodold = 0

∃νii,j × να,j > 0 and νii,j × ν∗α,j > 0, j = 1...s {prodnew: unknown

otherwise prodnew = prodold

Where

α - the reaction which is performed
ii - the ii-th reaction, representing every forward and reverse reaction
prodnew - the product of reaction ii after reaction α is performed
prodold - the product of reaction ii before reaction α is performed

Moreover ,the product will be calculated only if xj ≥ νii,j.
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Optimization 2

The reaction rate will be calculated, only if the product is greater than zero.

Qii

{
= 0, when product = 0
> 0, when product > 0

Optimization 3

The reaction rate constant will be updated, only if the product is greater than zero.

Approximation

Because only one reaction is performed every event, temperature is changed slightly,
and a number of physical properties, such as specific heat, enthalpy, volume, pressure
and reaction rate constant, do not change significantly. And hence the values of
Cp, H, V, k are updated only if temperature difference exceeds a given ∆T .

Through these strategies the CPU time to update Pα will be decreased intensively.
Therefore, the algorithm can be speeded up.

3. A computational study

In this section we study the algorithm given above and compare the performance of
the new stochastic chemistry approximation with the standard deterministic chem-
istry approximation. The deterministic chemistry approximation is obtained by
using the code DASSL [3].

3.1. Choice of approximations

Before assessing the above algorithm the premixed combustion of n-heptane in hot
air is studied. In Table 2 the flow rate and the composition of the two streams are
given. At time =0s all other concentrations are zero and the temperature is 1500K.
The pressure is constant at p = 1.0133× 105Pa. The residence time is chosen to be
0.0002s to ensure that under the current condition full consumption of oxygen can
take place. A comparison result of the different approximations is given in Figure
1. In this figure, Ctot stands for the mean of temperature error [K].

From the Figure 1 it is shown that all strategies work very well and in general the
temperature errors get big as ∆T increases. When ∆T is equal to 10 in the condition
of the number of particles=1.0 × 104 and ∆T is equal to 1 in the condition of the
number of particles=1.0× 105, the new algorithm is about 20 times faster than the
original one, without influencing precision.
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Table 2: Premixed combustion of n-heptane. Initial concentrations.

Fuel Air
ṅ1 ṅ2

2 mol/min 52 mol/min

X(nC7H16) 1 0
X(N2) 0 0.7900
X(O2) 0 0.2100
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Figure 1: Comparison of CPU Time [s] and Ctot [K] of (a) repetition=1000, the
number of particles=1.0×104 and (b) repetition=100, the number of particles=1.0×
105

The new CPU Time Distribution is given in Table 3 when ∆T is equal to 10 and
the number of particles is equal to 1.0× 104. Comparing Table 1 with Table 3, we
can see that the ratio of other procedures increases, and this mean the three most
time-consumed procedures have saved the CPU Time.

The comparison of CPU time among different algorithms is given in Table 4. The
new algorithm with optimizations and approximations is about 20 times faster than
the original chemistry approximation. Consequently, it is proved that the new algo-
rithm is efficient.

3.2. PaSPFR

In this part the non-premixed combustion of n-heptane in hot air is studied. We
consider a fuel stream consisting of n-heptane, which is injected into hot air similar
to the configuration described in [15]. The data of flow rate and composition of the
two streams are as same as those data which are given in table 2, and in table 5 ∆T
is given.
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Table 3: the Optimized CPU Time Distribution.

Procedure CPU Time(%)

Update k,Cp and H 11.4
Update products 71.3

Update reaction rates 5.9
others 11.4

Table 4: the CPU Time of Different Algorithms.

Algorithm CPU Time(s)

Original Chemistry Approximation 27
With Optimizations 9.6

With Optimizations and Approximations 1.2

At time t = 0s all other concentrations are zero. The overall mixture is slightly rich.
The pressure is constant at p = 1.0133 × 105PA . The temperature is uniformly
distributed in the interval [290, 310]K in the fuel stream, and uniformly distributed
in the interval [1000, 1400]K in the hot oxidiser stream. In Figure 2(a) the particle
count for the empirical marginal PDF of temperature is displayed. Note that cold
particles and hot particles carry different weights to represent the different mass
flow of the two streams appropriately without having to use a very large particle
number. The magnitude of the temperature fluctuations can be considered to be
realistic for non-premixed turbulent combustion.

The residence time is chosen to be 0.01s to ensure that under the current condition
full consumption of oxygen can take place. The turbulent mixing time is set to the
value τ = 4.0× 10−4s which ensures that mixing significantly influences combustion
of n-heptane. If there was no chemical reaction present the empirical standard
deviation of temperature would decay to less than 25K as displayed in Figure 2(b).

For the current simulations the following numerical parameters are fixed to be L = 30
(number of repetition ), N = 100 (number of particles). We chose L = 30 to get an

Table 5: The number of sub-particles and ∆T.

number of sub-particles ∆T(K)

1.0× 103 10
5.0× 103 10
1.0× 104 10
5.0× 104 2
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impression of the magnitude of the fluctuations introduced by the particle system
while at the same time keeping the overall CPU time manageable. The initial
conditions are approximated by 50 particles of weight w(i) = 2.36 × 10−3, i =
1, ..., 50 , for the fuel stream, and 50 particles of weight w(i) = 1.764 × 10−2, i =
51, ..., 100 , for the hot air stream.
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Figure 2: (a) A particle count of the empirical marginal PDF of temperature at time
t = 0s. The cold particles carry the weight 2.36 × 10−3 and the hot particles have
the weight 1.764 × 10−2. (b) Decay of the standard deviation for the non-reacting
case at a turbulent mixing time τ = 4.0× 10−3s for the simulation time interval.

Although typical for non-premixed turbulent combustion, in this example, we de-
liberately did not consider fluctuations in the chemical species to isolate the effects
of the temperature fluctuations.

3.2.1. The splitting error

We first study the splitting error using the deterministic chemistry approximation
DASSL. To this end we performed a calculation with very small time steps to obtain
a precise solution for comparison. Then we consider the deviation of solutions ob-
tained by bigger time steps from that precise solution. Also the two error tolerances
in DASSL, RTOL and ATOL, were varied in order to maximize the computational
speed. The following values were used throughout this study: RTOL= 1.0×10−8 and
ATOL= 1.0× 10−20.

For this error analysis the empirical mean temperature was studied. The error in
Table 6 is the difference of the mean temperature at the end of the simulation time
interval at time t = 0.01s for the run with a small reference time step ∆tref =
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1.5625 × 10−4 and the empirical mean temperature obtained from runs with ∆t =
2n∆tref n = 2, 3, 4. The reference time step was chosen small enough such that a
even smaller time step would reduce the error by less than 5K. It was also found
that the computational time grows linearly with the number of splitting steps.

Table 6: Splitting error of the temperature at time t = 0.01s.

∆t [s] error

2.5× 10−3 1249.5
1.25× 10−3 417.40
6.25× 10−4 26.500

The aim of this investigation is to make the splitting error smaller than the statistical
error, which gives some measure of the fluctuations. The corresponding curves for
the temperature are displayed in Figure 3(a) and the OH mass fraction is displayed
in Figure 3(b).
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Figure 3: Time evolution of the empirical mean of (a) temperature and (b) OH mass
fraction with confidence bounds for thirty repetitions.

From the above study we chose the time step ∆t = 4.0 × 10−4. Note that, for
transient simulations, we also need to have sufficiently many output points.

It is clear from Figure 3 that the empirical means fluctuate strongly for different
realizations of the initial conditions. The confidence bounds obtained from thirty
repetitions give an impression of the magnitude of fluctuations in temperature and
OH mass fraction. These fluctuations motivate the use of the stochastic chemistry
approximation.
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3.2.2. Comparison of stochastic and deterministic chemistry

We have researched the example of non-premixed combustion. Results for the algo-
rithm with deterministic chemistry and with the stochastic chemistry approximation
are presented in Figure 4. Four important quantities are displayed, the empirical
mean of temperature (Figure 4(a)), OH mass fraction (Figure 4(b)), n-heptane mass
fraction (Figure 4(c)), and methane mass fraction (Figure 4(d)). The stochastic
chemistry approximation for the parameter n = 5.0 × 104, n = 104, n = 5.0 × 103,
and n = 103 are shown along with the deterministic chemistry approximation. It is
observed that for increasing n the stochastic chemistry result approaches the deter-
ministic chemistry result. On the basis of the magnitude of fluctuations shown in
Figure 2(b) one can consider the result for n = 1.0× 104 to be sufficiently accurate.
For n = 5.0 × 103 the most important characteristics of the ignition are captured
but especially for temperature the difference between stochastic and deterministic
approximation is still too large. The approximation of all other displayed quantities
are still in the confidence bounds of the deterministic chemistry. For even smaller
n the stochastic chemistry does not capture the ignition at all. This observation
is in accordance with the findings in [8]. An explanation for this is that the low
concentrations of radicals can not be represented with so few particles. Therefore,
there are no active chain branching reactions which would drive ignition.

A comparison of the CPU-time for the different methods is given in Table 7. Other
three deterministic chemistry approximations of different tolerance are calculated,
lower precision DASSL 1, lower precision DASSL 2 and lowest precision DASSL 3.
For lowest precision DASSL 3, it is not able to increase RTOL and ATOL anymore.
These results show that with n = 104 the algorithm with stochastic chemistry is
about 170 times faster than the algorithm with deterministic chemistry, while it
provides a comparable accuracy. Even if compared with lowest precision DASSL,
it is still about 24 times faster. In the case where a lower number of sub-particles
(n = 5. × 103) is sufficient, the algorithm with stochastic chemistry reaches a gain
factor of more than 300 . In general one can say (see [8]) the computational time
of the stochastic method is proportional to the number of reaction events taking
place which in turn is proportional to the number of sub-particles if the stochastic
particle system is close to the converged solution. Consequently, we would expect
the quotient of computational time and number of particles to be roughly constant.

4. Conclusion

In this paper based on a stochastic chemistry approximation for the chemical source
term in the PDF transport equation, further optimizations and approximation have
been implemented. The motivation of this approach is to speed up the algorithm.
The algorithm presented was applied to a PSR model. Moreover, numerical per-
formance of this new algorithm was investigated in a more complex system. The
non-premixed combustion of an n-heptane fuel stream injected into hot air was
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Figure 4: The deterministic chemistry is compared with the stochastic chemistry for
three different approximation parameters. The time evolution of the empirical mean
of the following quantities is displayed: (a) temperature. (b) OH mass fraction. (c)
n-heptane mass fraction. (d) methane mass fraction.
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Table 7: Comparison of computational time of deterministic chemistry and stochas-
tic chemistry approximation.

CPU time
method CPU time [s] of speed factor speed factor 2

single run [s]

DASSL 434, 759 14, 492 1
DASSL 1 111, 263 3, 709 3.9
DASSL 2 61, 618 2, 054 7.0
DASSL 3 60, 082 2, 003 7.2 1
5.0× 104 11, 280 376 38.5 5.3
1.0× 104 2, 506 84 173.5 24.0
5.0× 103 1, 298 43 335 46.3
1.0× 103 223 7.4 1, 950 269.4

DASSL: RTOL= 1.0× 10−8 and ATOL= 1.0× 10−20

DASSL 1: RTOL= 1.0× 10−3 and ATOL= 1.0× 10−9

DASSL 2: RTOL= 1.0× 10−2 and ATOL= 1.0× 10−5

DASSL 3: RTOL= 0.0 and ATOL= 8.8× 10−2

chosen as a test case. The numerical error caused by the splitting procedure was
studied. From this study a suitable time step was chosen to benchmark the new
stochastic chemistry approximation against the standard deterministic DASSL. It
was found that, depending on the required accuracy, the new stochastic approach
clearly outperforms the deterministic method for the case studied.
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