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Abstract

The novel droplet drying model introduced by the authors in a previous paper
is extended to droplets drying in the presence of a surface shell. The model now
incorporates shell thickening, along with a description of wet and dry shell dry-
ing. Structural properties of the shell are included in the model and influence the
predicted dried particle morphology. Comparisons between model predictions and
experimental data from the literature are presented for two systems of interest: de-
tergent crutcher mix and colloidal silica. These simulations demonstrate the model
is capable of predicting dried particle morphology together with other properties of
interest such as moisture profiles and moments of the solids particle size distribution.

1



Contents

1 Introduction 3

2 Model Review 5

2.1 Discrete Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Continuous Phase Equations . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Droplets Drying with a Rigid Shell 8

3.1 Shell Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Shell Thickening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Physics of Shell Thickening . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Implementation of Shell Thickening in the Present Model . . . . 11

3.3 Dry Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Shell Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Wet Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Shell Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.4 Wet Shell to Dry Shell Switch . . . . . . . . . . . . . . . . . . . 18

4 Implementation 19

5 Results 19

5.1 Drying a Droplet of Detergent Slurry . . . . . . . . . . . . . . . . . . . . 20

5.2 Drying a Droplet Containing Colloidal Silica . . . . . . . . . . . . . . . 28

6 Conclusion 34

A Summary of Model Equations and Boundary Conditions 37

A.1 Prior to Shell Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2 Thickening Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.3 Wet Shell Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.4 Dry Shell Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



1 Introduction

Spray drying is the operation of choice for the production of many commercial products
ranging from high value pharmaceuticals to bulk commodities such as dried milk, [35].
Wherever spray drying is used, the operating parameters must be chosen to obtain the
desired properties in the final product. For example, when producing detergents it is
essential that the finished powder has the correct dissolution rate, requiring the control
of physical properties such as density and porosity, [14]. Predicting such properties still
presents considerable difficulties to modellers.

The droplet drying sub-model is the key to obtaining final powder properties from spray
dryer simulations, [32]. The simplest models are limited to predicting the bulk moisture
content of droplets as they dry. Such models may be based on the idea of a characteristic
drying curve, [29, 33] or a reaction-engineering approach, [7–9]. Such models have the
advantage of being computationally cheap when implemented within computational fluid
dynamics (CFD) codes, but provide limited information about the drying droplets. More
complicated descriptions based upon the diffusion equation give a spatially resolved mois-
ture fraction, [15, 22], but are still unable to capture the process of solid particle formation.
Because droplet drying and particle formation occur simultaneously within a spray dry-
ing tower, the drying mechanism and resultant kinetics are strongly inter-dependent on the
evolving particle microstructure, [26]. To accurately describe the drying of slurry droplets
it is therefore necessary that the drying model is capable of describing the formation of
solid particles, as well as giving the bulk moisture content.

Several models capable of describing evolving particle morphology exist in the literature,
varying in complexity. Whitaker [59] sets out a comprehensive framework for modelling
the drying of porous media including a detailed description of solid, vapour and multi-
component continuous phases. A number of authors have applied such methodologies to
model physical systems, [e.g. 17, 31, 42], but, in general, such a detailed approach is un-
feasible, requiring excessive computational time and determination of multiple unknown
physical parameters. Consequently, there exist a wealth of simpler models to track the
morphological development of drying droplets.

A large variety of morphologies are observed when drying droplets to solid particles, [55,
56], and some of these possibilities are illustrated in Figure 1. Identical droplets can dry
to small, dense, solid particles or large inflated shells depending on their drying history.
Alternatively, two particles subjected to identical drying conditions but with different ini-
tial compositions might form particles with markedly different morphologies. Capturing
this diversity of possibilities is a challenge when constructing models for single droplet
drying; most of the simplified models in the literature are only capable of simulating the
production of one particle type.

The most common way to handle particle formation is by a receding-interface, or shrink-
ing core type approach [10, 13, 28, 37]. Such models assume ideal shrinkage initially
until a pre-specified critical moisture content is attained. Thereupon, evaporation is said
to occur at a clearly defined receding front, separating a wet central core from a dry outer
crust with constant properties.

Models with a dry crust are capable of tracking the formation of a dry particle, as well as
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Figure 1: Schematic showing some of the different particle morphologies that may result when
drying droplets containing dissolved or suspended solids. The highlighted portions
show the wet and dry shell drying mechanisms discussed in this paper and the particle
morphologies that result. Examples of droplets drying to both a solid particle and a
hollow shell are presented in Section 5.

predicting its final size. However, by design they always predict the formation of a solid
particle, (Figure 1). A wider range of particle morphologies can be predicted by drying
models including a bubble. Such a model was first introduced by Sano and Keey [44] and
applied to an evaporating coal slurry by Lee and Law [34]. Etzel et al. [18] later used a
similar model to simulate the drying of skim-milk slurries. In contrast to the receding-
interface approaches, models with a bubble generally require that the continuous phase
continues to wet all the solids throughout drying. A more recent variant on this theme was
presented by Seydel et al. [48], whose model included a population balance to describe
the solid particles.

In Handscomb et al. [24], a new model was presented for simulating the drying of slurry
droplets consisting of an ideal binary solution containing suspended solids. These solids
were handled using a population balance approach, enabling the modelling of particle
nucleation and growth from the solution. The paper outlined the core model up until the
point of the formation of a solid surface shell. However, to enable prediction of final
dried particle properties, it is clearly necessary to simulate beyond this point. The aim
of this paper is therefore to take up from this point and give details of the new drying
model after shell formation. Both ‘wet’ and ‘dry’ shells are considered; both descriptions
are appropriately formulated for incorporation within the new droplet drying framework.
For the first time, switching between these drying modes is allowed, as well as — under
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Figure 2: Schematic showing: (a) the model system; and (b) drying to form a hollow shell.

certain conditions — continued droplet shrinkage after shell formation. Comparisons
with experimental observations from the literature are presented as a means of model
validation.

2 Model Review

The present paper considers the drying of droplets consisting of an ideal binary solution
containing suspended solids. Following the convention established by Handscomb et al.
[24], the solvent, solute and solid will henceforth be labelled A, B and D respectively.

It is assumed that the droplets maintain spherical symmetry throughout their drying his-
tory, thus reducing all equations in the final model to a single spatial dimension. Further,
the Bı̂ot number is assumed low enough to justify the assumption of a spatially uniform
droplet temperature throughout the drying process. The new model contains a centrally
located bubble and an explicit shell region, as illustrated in Figure 2a. One possible
droplet drying history capable of being predicted by the new drying model is illustrated
in Figure 2b.

2.1 Discrete Phase

The discrete solid phase is modelled by a population of spherical particles, characterised
by their diameter, L and radial position within the drying droplet, r. The particle number
density, N (L, r, t) evolves in time according to the population balance equation,

∂

∂t
N +

∂

∂L
(GN) +

1

r2

∂

∂r

(
r2v(d)

r N
)
− 1

r2

∂

∂r

(
r2D

∂N

∂r

)
= 0 , (1)
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where the evolution in physical space may occur through a convective or diffusive process.
Particle growth occurs at a rate G, which is assumed to be independent of crystal size.
Nucleation of particles of size Lmin is accommodated through an appropriate boundary
condition on the internal coordinate. It is postulated that, once a rigid shell has formed
around the droplet, the solid particles are no longer free to move at all within the shell
region, i.e., within a rigid shell, particle growth is the sole mechanism operating.

Rather than solving the whole population balance equation, (1), the model evolves the
first four integer moments of the internal coordinate, defined by

ma (r, t) =

∫ ∞

Lmin

LaN (r, L, t) dL , a ∈ {0, 1, 2, 3} . (2)

The evolution of the third moment, m3, is related to that of the solids volume fraction, ε,
by

∂ε

∂t
=
π

6

∫ ∞

Lmin

L3∂N

∂t
dL =

π

6

∂m3

∂t
. (3)

Integrating (1), invoking standard regularity conditions, gives the general moment evolu-
tion equation,

∂ma

∂t
= La

minṄ0 + aGma−1 +
1

r2

∂

∂r

(
r2D

∂ma

∂r

)
, (4)

where Ṅ0 is the particle nucleation rate per unit volume.

It is assumed that the solid particles do not leave the droplet. This is captured in the
population balance by means of a birth term, giving the external boundary condition as

∂N

∂r

∣∣∣∣
r=R

= − ṁ′′

Dρ0
A

N . (5)

Symmetry at the centre gives a zero gradient boundary condition at the internal edge of
the domain.

2.2 Continuous Phase Equations

The continuous phase is described by a single equation derived from the volume averaged
differential mass balance for the solute and assuming Fickian diffusion for the transport
term. Written in terms of the intrinsic volume average of the solute mass fraction taken
with respect to the continuous phase, 〈ωB〉(c), the equation is

∂

∂t

[
(1− ε) ρ(c)〈ωB〉(c)

]

+
1

r2

∂

∂r


r2 (1− ε) v(c)

r ρ(c)〈ωB〉(c)

︸ ︷︷ ︸
advection

− r2Deffρ
(c) ∂

∂r

[
(1− ε) 〈ωB〉(c)

]
︸ ︷︷ ︸

diffusion


− r′′B = 0 .

(6)
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Deff is an effective diffusion coefficient usually obtained from experiments and, in general,
a function of the local moisture content. r′′B is the volume averaged interfacial production
rate of the solute resulting from the crystallisation process. Assuming no volume change
on crystallisation, this is easily obtained from the moments of the discrete phase using (4).

The advective velocity, v(c)
r , in (6) arises as a result of the density difference between the

solute and solvent. Considering volume conservation of the continuous phase therefore
allows the following expression to be derived

v(c)
r = Deff

(
1

ΛB + 〈ωB〉(c)

∂〈ωB〉(c)

∂r
− 1

1− ε
∂ε

∂r

)
, (7)

where ΛB is a dimensionless ratio of material densities,

ΛB =
ρ0

B

ρ0
A − ρ0

B

. (8)

It is assumed that the solute does not leave the droplet at any time, i.e., the solute mass flux
following the receding interface is zero. The external boundary condition on the solute
equation is therefore

∂〈ωB〉(c)

∂r

∣∣∣∣
r=R

=
〈ωB〉(c)ṁ′′

ρ(c)Deff

, (9)

where ṁ′′, the solvent mass flux from the droplet surface, is related to the rate of shrinkage
by

dR

dt
= −ṁ

′′

ρ0
A

. (10)

The total rate of solvent evaporation from the droplet, ṁvap is given by

ṁvap = 4πR2ṁ′′ = 2πρ̄D̄A,airR Sh∗ ln (1 +Bm) , (11)

where ρ̄ is the density of the surrounding gas and D̄A,air is the binary diffusion coefficient
of the gas and water vapour. Sh∗ is the Sherwood number modified to take account of high
mass transport rates from the droplet and Bm is the Spalding mass transfer number, [4,
51]. The algorithm suggested by Abramzon and Sirignano [1] is used to calculate ṁvap,
together with the heat penetrating into the drying droplet. From this — and the assumption
of no internal temperature gradients — the droplet temperature is evolved.

3 Droplets Drying with a Rigid Shell

The model summarised in the previous section dealt with the simulation of droplets drying
prior to the formation of a rigid shell, [24]. In this paper, the model is extended to simulate
drying in the presence of a crust and, in conjunction with this, a centrally located bubble
is introduced.
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Figure 3: Schematic illustrating the process of shell thickening: (a) initially the droplet is ho-
mogenous and drying proceeds ideally; (b) a shell forms when the maximum packing
fraction, εcrit, is reached at the surface of the droplet; (c) the solid particles continue
to redistribute — and the droplet continues to shrink — until a critical shell thickness,
Tcrit, is attained.

3.1 Shell Formation

Initially the suspended solids are assumed to be uniformly distributed within the droplet
as illustrated in Figure 3a. As the droplet drys the solid particles are drawn inwards
by surface tension forces, causing the solids volume fraction at the receding surface to
increase. In the new droplet drying model, a shell is deemed to have formed once the
volume fraction of particles at the droplet surface rises above a certain critical value, εcrit,
(Figure 3b). A number of authors [e.g. 6, 37] have discussed how the solids particle-size
distribution may be used to predict the maximum packing fraction and it is imagined that
the information from the population balance could be used to inform the point at which
shell formation is deemed to occur. However, for the systems simulated in this paper, εcrit

is taken to be a pre-defined parameter.

Most models in the literature, [e.g. 16, 29, 48], assume the droplet ceases shrinking as
soon as a shell is formed. In reality contraction may continue beyond this point and will
only cease when the structural strength of the shell is sufficient to withstand the collapsing
forces acting on the droplet arising from continued evaporation, [58]. In many situations
it is unlikely that the initial shell — which may be only a few particles thick — will
possess sufficient strength. To deal with such situations, the present droplet drying model
has provision for a shell thickening regime lying between the initial appearance of a shell
and the formation of rigid crust. This thickening regime allows for continued shrinkage
of the droplet whilst the shell grows to a critical shell thickness, Tcrit, which represents the
balance of structural and capillary forces, (Figure 3c).

Once it has formed, the presence of a rigid shell fixes the volume of the drying droplet.
Further removal of moisture must lead to an expanding vapour-saturated space somewhere
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mogenous and drying proceeds ideally; (b) a shell forms when the maximum packing
fraction, εcrit, is reached at the surface of the droplet; (c) the solid particles continue
to redistribute — and the droplet continues to shrink — until a critical shell thickness,
Tcrit, is attained.

3.1 Shell Formation

Initially the suspended solids are assumed to be uniformly distributed within the droplet
as illustrated in Figure 3a. As the droplet drys the solid particles are drawn inwards
by surface tension forces, causing the solids volume fraction at the receding surface to
increase. In the new droplet drying model, a shell is deemed to have formed once the
volume fraction of particles at the droplet surface rises above a certain critical value, εcrit,
(Figure 3b). A number of authors [e.g. 6, 36] have discussed how the solids particle-size
distribution may be used to predict the maximum packing fraction and it is imagined that
the information from the population balance could be used to inform the point at which
shell formation is deemed to occur. However, for the systems simulated in this paper, εcrit

is taken to be a pre-defined parameter.

Most models in the literature, [e.g. 16, 28, 47], assume the droplet ceases shrinking as
soon as a shell is formed. In reality contraction may continue beyond this point and will
only cease when the structural strength of the shell is sufficient to withstand the collapsing
forces acting on the droplet arising from continued evaporation, [57]. In many situations
it is unlikely that the initial shell — which may be only a few particles thick — will
possess sufficient strength. To deal with such situations, the present droplet drying model
has provision for a shell thickening regime lying between the initial appearance of a shell
and the formation of rigid crust. This thickening regime allows for continued shrinkage
of the droplet whilst the shell grows to a critical shell thickness, Tcrit, which represents the
balance of structural and capillary forces, (Figure 3c).

Once it has formed, the presence of a rigid shell fixes the volume of the drying droplet.
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Further removal of moisture must lead to an expanding vapour-saturated space somewhere
within the droplet. Several workers have investigated the detailed modelling of moisture
transport through porous media containing a gas phase, [19, 49, 52], but two limiting
cases may be identified [34]. In the dry shell model, the vapour space is in the shell itself
and an evaporative front recedes through the droplet. In contrast, the wet shell model
assumes that the shell region is, at all times, wetted by the continuous phase; the vapour
now lies in a single, centrally-located, bubble. This paper demonstrates the application
of both of these limiting models within the new droplet drying framework and presents a
comparison with experimental results for both.

3.2 Shell Thickening

3.2.1 Physics of Shell Thickening

The deformation of the shell during the thickening regime is driven by capillary forces
between the suspended particles, [54]. As the continuous phase recedes into the droplet,
menisci form between the particles at the surface. These menisci support a pressure drop
of

∆P =
2γ

rM

, (12)

where γ is the surface tension and rM is the radius of curvature of the meniscus. The
pressure gradient within the droplet resulting from this capillary pressure leads to transport
of the continuous phase towards the outer surface. At the same time, the tension from
these menisci drives the particles past each other towards the centre through repeated
mini-buckling events. These two processes occur simultaneously and — provided the
capillary forces are strong enough — can lead to continued droplet shrinkage after the
formation of a surface shell.

At the point of shell formation, the shell thickness, Tmin, is set equal to the diameter of
the smallest of the suspended particles, (Figure 3b). The continuous phase is assumed
to continue wetting the surface particles during the thickening regime, which means that
evaporation proceeds at the external surface of the droplet. Consequently, the external ra-
dius of the particle continues to decrease according to (10). Assuming the volume fraction
of solids in the thickening shell remains at the critical value, εcrit, the inner boundary of
this shell at r = S (t) = R− T must move inwards according to

dS

dt
=

(
ε|S+

ε|S+ − ε|S−

)(
R

S

)2
dR

dt
, ε|S+ 6= ε|S− , (13)

until it achieves some critical thickness, Tcrit, (Figure 3c).

In order to say when the droplet stops shrinking, it is necessary to determine when the
thickening shell becomes structurally capable of supporting itself. As stated above, the
continued deformation of the shell is hypothesised to occur through a series of mini-
buckling events driven by the capillary pressure of the receding continuous phase. Timo-
shenko [53] showed that a spherical shell of radius R and thickness T will buckle when
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Figure 4: Schematic demonstrating how the process of shell thickening can be likened to the
growth of a filter cake: (a) Prior to shell formation; (b) the point of shell formation
corresponds with the appearance of a filter cake one particle thick; (c) the filter cake
thickness, T continues to increase as the shell grows. The volumetric flow through
the filter cake is simply related to the mass flux from the droplet, ṁ′′, and results in a
pseudo-pressure acting on the shell, Pe.

subjected to a uniform external pressure, Pbuck, given by

Pbuck =

(
T

R− T

)2
2E√

3 (1− ν2)
, (14)

where E is the Young’s modulus of the material and ν is its Poisson’s ratio. It is hy-
pothesised that the newly formed shell will continue to experience buckling events —
and therefore continue to thicken — so long as the capillary pressure is greater than the
buckling pressure, Pbuck.

To determine the capillary pressure, the movement of the continuous phase through the
shell is likened to filtration through a porous filter with the same thickness as the growing
crust [38]. The pressure drop across the shell will be equal to the pressure drop across the
air–continuous phase interface, given by (12). This analogy is illustrated schematically in
Figure 4.

Assuming the filter to be incompressible, Darcy’s law may be used to obtain the pressure
drop across the growing shell required to produce a given fluid flow,

κ
∆P

µT
=
dR

dt
=
ṁ′′

ρ0
A

, (15)

where κ is the permeability of the shell. Here the fluid flow has been expressed in terms
of the mass flux of solvent from the particle, ṁ′′, which is simply related to the rate of
shrinkage by (10). The permeability is estimated using the Carmen-Kozeny relation, [11],

κ =
1

180

(1− ε)3

ε2
L2 . (16)

In the above expression, L is the diameter of the solid particles — assumed spherical —
making up the porous medium. In the current model, the first moment of the population
balance, m1, is used as this represents the local average solid particle size.

10



The pressure drop across the shell, equal to the pressure drop across the air–continuous
phase interface, can be thought of as exerting an external pseudo-pressure, Pe, on the
thickening shell. The shell will continue to thicken so long as this pseudo-pressure is
greater than the pressure required to cause buckling of the shell. That is, whilst

(2R− T )2

T
ṁ′′ >

ρ0
A

µ

8Eκ√
3 (1− ν2)

, (17)

where the terms on the right of the inequality are approximately constant for a given
system. This gives a way of calculating the extent of shell thickening without needing to
specify a maximum thickness in advance of the simulation. In turn, this determines the
droplet size at which shrinkage ceases. The drying conditions affect the evaporative flux,
ṁ′′, and will thus directly influence the final particle size.

3.2.2 Implementation of Shell Thickening in the Present Model

The continuous phase continues to wet the shell during the thickening regime and conse-
quently the equation which describes the behaviour of this phase, (6), is unchanged. In
contrast, the solids within the thickening shell now behave differently.

In the thickening regime, the solute boundary condition at the external droplet surface, (9),
remains unchanged. However, the appropriate boundary conditions to be implemented
at the internal surface of the thickening shell are more complicated. Considering the
superficial solute flux at r = S gives

n
(c)
Br

∣∣∣
r=S

= (1− ε) 〈nBr〉(c)
∣∣
r=S

= (1− ε) v(c)
r ρ(c)〈ωB〉(c) −Deffρ

(c) ∂

∂r

[
(1− ε) 〈ωB〉(c)

]

(18a)

= (1− ε) 〈nBr〉(c)
∣∣
r=S(t)

+ ρ(c) (1− ε) 〈ωB〉(c)dS

dt
,

(18b)

which, on substituting for v(c)
r from (7) may be rearranged to give

∂〈ωB〉(c)

∂r
= − ρ0

A

Deffρ(c)

[
〈ωB〉(c)dS

dt
+
〈nBr〉(c)

∣∣
r=S(t)

ρ(c)

]
. (19)

Note that the intrinsic solute mass fraction and, consequently, the continuous phase den-
sity must the same either side of the inner shell wall at r = S. Further, the solute mass
flux across the growing shell boundary must be continuous, that is, we require both

〈ωB〉(c)
∣∣
r=S+ = 〈ωB〉(c)

∣∣
r=S− (20a)

and

n
(c)
Br

∣∣∣
r=S−(t)

= n
(c)
Br

∣∣∣
r=S+(t)

⇒ 〈nBr〉(c)
∣∣
r=S+(t)

=

(
1− ε−
1− ε+

)
〈nBr〉(c)

∣∣
r=S−(t)

. (20b)

11



In these last two equations, S− = S − δr represents a radial location just inside the
thickening shell, and S+ = S + δr a location just outside.

Equation (19) may now be evaluated at both S− and S+ which, on substitution into (20b),
can then be rearranged to give a relationship between the solute mass fraction gradients
on either side of the growing shell interface,

∂〈ωB〉(c)

∂r

∣∣∣∣
r=S−

=
D+

eff

D−eff

(
1− ε+

1− ε−
)
∂〈ωB〉(c)

∂r

∣∣∣∣
r=S+

− ρ0
A〈ωB〉(c)

D−effρ
(c)

(
ε− − ε+

1− ε−
)
dS

dt
. (21)

This, along with (20a), gives the required two boundary conditions for the solute equation
at the shell interface.

During the thickening regime, the particles in the shell are rearranging themselves as the
crust deforms. The model allows for continued solids growth during this period, but does
not seek to model the precise nature of the spatial rearrangement. Rather it is assumed that
the solid particles are no longer free to diffuse but are subjected to an imposed velocity,

v(d)
r =

(
R

r

)2
dR

dt
(22)

arising from the deforming shell. Equation (1) therefore reduces to

∂

∂t
N +

∂

∂L
(GN) +

(
R

r

)2
dR

dt

∂N

∂r
= 0 , (23)

in the thickening shell. The appropriate boundary conditions on this equation are those of
zero spatial gradient at both ends.

3.3 Dry Shell Model

3.3.1 Model Description

The dry shell model is, in its simplest form, a classical shrinking core type analysis
whereby a central core of wetted material contracts as moisture evaporates from a re-
ceding interface, [2, 10]. The dry shell is defined to be the region beyond this wetted core.
As suggested by Figure 1, droplets drying via this dry shell route might be expected to
form solid particles or, at high temperatures, they might shatter. Although the initiation
of shell formation may be signalled by some critical solids volume fraction at the droplet
surface, it is noted that the dry shell model does not explicitly place a requirement on the
solids volume fraction within the growing shell region. The porosity of dry shell particles
might therefore be expected to vary — perhaps considerably — with position. In contrast
to several previous implementations which assumed constant dry crust properties, [e.g.
10, 13], porosity variations in the dry shell are tracked in the present model.

In the present implementation of the dry shell model, the shell is assumed to be com-
pletely dry, that is, there is no solvent or solute remaining in the crust region. Further, it is
assumed that there is no vapour in the wet core and, consequently, the continuous phase
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Figure 5: Illustration of a droplet of radius, R drying through a dry shell with internal radius, S.
The shell region is completely dry, containing no solvent or solute. The wet core remains
free of vapour and thus the continuous phase remains funicular throughout drying.

remains funicular throughout drying, [31]. This is illustrated schematically in Figure 5.
Within the wet core, the equations to be solved for the solute mass fraction and the mo-
ments of the population balance are the same as outlined in Section 2. As demonstrated
in the example below, continuing to solve these equations in the wet region allows the
properties of the growing dry crust to be predicted.

3.3.2 Shell Growth

The dry shell is assumed to grow according to

dS

dt
= −

(
R

S

)2
ṁ′′

ρ0
A (1− ε|S)

, (24)

where the solids volume fraction is evaluated at the receding interface, r = S. The
ratio of radii accounts for the fact that ṁ′′ still refers to the evaporative solvent flux at
the external surface of the droplet. The presence of a dry shell adds an additional mass
transfer resistance, [28], characterised in this model by an effective diffusion coefficient of
the solvent vapour through the dried shell region, Deff . This may be related to the binary
diffusion coefficient of water in air, D̄A,air, via

Deff =
(1− ε) D̄A,air

σ
, (25)

where σ is the tortuosity of the porous shell, [12]. The additional resistance provided by
the dried shell acts in series with the existing external mass transfer resistance, (11), to
give a revised expression for the mass flux of moisture from the drying droplet

ṁvap = 4πR2ṁ′′ = 2πρ̄D̄A,airR

[
D̄A,air

Deff

(
S −R

2S

)
+

1

Sh∗

]−1

ln (1 +Bm) . (26)
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Figure 5: Illustration of a droplet of radius, R drying through a dry shell with internal radius, S.
The shell region is completely dry, containing no solvent or solute. The wet core remains
free of vapour and thus the continuous phase remains funicular throughout drying.

remains funicular throughout drying, [30]. This is illustrated schematically in Figure 5.
Within the wet core, the equations to be solved for the solute mass fraction and the mo-
ments of the population balance are the same as outlined in Section 2. As demonstrated
in the example below, continuing to solve these equations in the wet region allows the
properties of the growing dry crust to be predicted.

3.3.2 Shell Growth

The dry shell is assumed to grow according to

dS

dt
= −

(
R

S

)2
ṁ′′

ρ0
A (1− ε|S)

, (24)

where the solids volume fraction is evaluated at the receding interface, r = S. The
ratio of radii accounts for the fact that ṁ′′ still refers to the evaporative solvent flux at
the external surface of the droplet. The presence of a dry shell adds an additional mass
transfer resistance, [27], characterised in this model by an effective diffusion coefficient of
the solvent vapour through the dried shell region, Deff . This may be related to the binary
diffusion coefficient of water in air, D̄A,air, via

Deff =
(1− ε) D̄A,air

σ
, (25)

where σ is the tortuosity of the porous shell, [12]. The additional resistance provided by
the dried shell acts in series with the existing external mass transfer resistance, (11), to
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give a revised expression for the mass flux of moisture from the drying droplet

ṁvap = 4πR2ṁ′′ = 2πρ̄D̄A,airR

[
D̄A,air

Deff

(
S −R

2S

)
+

1

Sh∗

]−1

ln (1 +Bm) . (26)

Note that this reduces to (11) when S = R.

If the temperature of the drying air is above the boiling point of the continuous phase
then boiling might occur. This is easily incorporated within the dry shell framework.
Assuming that all energy supplied to the droplet in the boiling regime is used to vaporise
the continuous phase, (26) is modified to read

ṁvap = 4πR2ṁ′′ =
Q

∆Hvap
, (27)

where Q is the heat penetrating into the droplet and ∆Hvap is the latent heat of vapor-
isation of the continuous phase. The dry shell growth rate in the boiling regime is still
obtained from (24) with ṁ′′ now given by (27).

3.3.3 Boundary Conditions

The symmetry boundary conditions in the centre of the droplet remain unchanged once
a dry shell has formed. However, the external boundary conditions, now at r = S (t),
require modification. The solute boundary condition at this outer edge of the wet central
core becomes

∂〈ωB〉(c)

∂r

∣∣∣∣
r=S

=
〈ωB〉(c)ṁ′′

ρ(c)Deff (1− ε|S)
, (28)

where ṁ′′ is given by (26). Comparison with (9) shows that the only difference from
the external solute boundary condition prior to shell formation is the inclusion of the
(1− ε|S)−1 term. The outer boundary condition on the moment system is now

∂N

∂r

∣∣∣∣
r=R

= 0 , (29)

as no solids are allowed to enter or leave the dried region. This completes the description
of the dry shell model.

3.4 Wet Shell Model

3.4.1 Model Description

The key assumption of the wet shell model is that the solids in the shell region remain
wetted by the continuous phase and, consequently, the evaporative front remains at the
droplet surface. As discussed above, continued solvent evaporation from an unshrinking
droplet requires the presence of a growing vapour space. In the wet shell model, this takes
the form of a single, centrally located bubble, as illustrated in Figure 6.
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Figure 6: Illustration of a droplet of radius, R drying through a wet shell with internal radius, S.
The solid particles in the wet shell remain wetted by the continuous phase and a central
bubble grows as evaporation proceeds.

6 demonstrates how the droplet is divided into the core and wet shell regions, separated
by the internal edge of the growing shell at r = S.

Volume conservation requires that the rate of growth of the central bubble must be related
to the evaporative moisture flux according to

db

dt
=
R2

b2

ṁ′′

ρ0
A

, b > 0 . (30)

From this expression, it is clear that a seed bubble of finite size is required to avoid an
infinite initial growth rate. Physically, this is likely to be an air bubble present in the
feed material or introduced during spraying. The central bubble is filled with vapour
saturated drying air, not pure solvent vapour. That is, the partial pressure of solvent in the
bubble will be in equilibrium with that in the adjacent droplet. As the bubble grows, it is
assumed that the mass of solvent in the bubble remains small compared to the amount in
the surrounding droplet. Consequently, the moisture flux to the bubble is negligible and
has no effect on the surrounding concentration gradients.

During the thickening period, the shell undergoes mini-buckling events due to the stresses
resulting from capillary pressure. As is clear from (12), this pressure will be greatest in
the narrowest pores. Indeed, it is well known that larger pores will preferentially drain
whilst the narrower pores stay filled with liquid, Keey [30], Scherer [46]. The draining of
these wider pores during the thickening period provides a route through which drying air
can enter the central bubble which grows in the wet shell regime.

The growing bubble is modelled as imposing an outward advective velocity on the droplet.
The bulk continuous-phase velocity, (7), is modified to read

v(c)
r = Deff

(
1

ΛB + 〈ωB〉(c)

∂〈ωB〉(c)

∂r
− 1

1− ε
∂ε

∂r

)
+
b2

r2

db

dt
, (31)

where the final term is the additional advective component due to the bubble. With this
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Figure 6: Illustration of a droplet of radius, R drying through a wet shell with internal radius, S.
The solid particles in the wet shell remain wetted by the continuous phase and a central
bubble grows as evaporation proceeds.

As the continuous phase wets all the solid particles in this model, the shell itself cannot
be identified in terms of a dry region as was done in the dry shell model. Instead the
shell is defined as the region which has a solids volume fraction higher than some critical
value. This value is normally taken to be the same as the critical solids volume fraction
triggering shell formation, εcrit, although it is noted that this need not be the case. Figure
6 demonstrates how the droplet is divided into the core and wet shell regions, separated
by the internal edge of the growing shell at r = S.

Volume conservation requires that the rate of growth of the central bubble must be related
to the evaporative moisture flux according to

db

dt
=
R2

b2

ṁ′′

ρ0
A

, b > 0 . (30)

From this expression, it is clear that a seed bubble of finite size is required to avoid an
infinite initial growth rate. Physically, this is likely to be an air bubble present in the
feed material or introduced during spraying. The central bubble is filled with vapour
saturated drying air, not pure solvent vapour. That is, the partial pressure of solvent in the
bubble will be in equilibrium with that in the adjacent droplet. As the bubble grows, it is
assumed that the mass of solvent in the bubble remains small compared to the amount in
the surrounding droplet. Consequently, the moisture flux to the bubble is negligible and
has no effect on the surrounding concentration gradients.

During the thickening period, the shell undergoes mini-buckling events due to the stresses
resulting from capillary pressure. As is clear from (12), this pressure will be greatest in
the narrowest pores. Indeed, it is well known that larger pores will preferentially drain
whilst the narrower pores stay filled with liquid, Keey [29], Scherer [45]. The draining of
these wider pores during the thickening period provides a route through which drying air
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can enter the central bubble which grows in the wet shell regime.

The growing bubble is modelled as imposing an outward advective velocity on the droplet.
The bulk continuous-phase velocity, (7), is modified to read

v(c)
r = Deff

(
1

ΛB + 〈ωB〉(c)

∂〈ωB〉(c)

∂r
− 1

1− ε
∂ε

∂r

)
+
b2

r2

db

dt
, (31)

where the final term is the additional advective component due to the bubble. With this
modification to v(c)

r , the continuous phase equation, (6), can be applied without further
alteration in both the shell and core regions.

The evolution equation for the population of solid particles, (1), has the same additional
advective component as a result of the growing bubble. The equation describing the solids
in the core region is therefore now

∂

∂t
N +

∂

∂L
(GN) +

b2

r2

db

dt

∂N

∂r
− 1

r2

∂

∂r

(
r2D

∂N

∂r

)
= 0 . (32)

Within the shell region, the solid particles are no longer free to move at all. The population
only evolves due to crystallisation from the continuous phase and (1) reduces to

∂

∂t
N +

∂

∂L
(GN) = 0 . (33)

Nucleation of new particles within the wet shell is possible, but this is thermodynamically
unlikely in a region which, by definition, already has a high volume fraction of solids.
Nucleation has therefore neglected.

3.4.2 Shell Growth

The shell grows as a result of solid particles depositing on the inside wall at r = S−.
From (32) it is seen that the particle number density flux in the space of the external
coordinate is given by

Ṅr =
b2

r2

db

dt
N − D

∂N

∂r
. (34)

If the advective flux of solids is assumed to dominate the deposition process, then

Ṅr ≈
b2

r2

db

dt
N , (35)

and so, following the growing shell interface at r = S(t), it is possible to write

N−
b2

S2

db

dt
=
(
N− −N+

) dS
dt

. (36)

Here N− and N+ represent the particle number density at S− and S+ respectively. Rear-
ranged, this gives the shell growth rate as

dS

dt
= − b

2

S2

db

dt

N−

(N+ −N−)
. (37)
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Note that this expression implies that the gradient of the particle number density is zero
at the shell interface, i.e.,

∂N

∂r

∣∣∣∣
r=S−

= 0 . (38)

This might be viewed as unrealistic as the growing boundary also acts as a sink for dif-
fusing solid particles. This effect can be captured through the incorporation of a sink
diffusion term [25, 60]. Assuming that the rate of sink diffusion may be modelled by the
simple model

Ṅsink = ksinkN , (39)

which, included in (35) gives a new solids flux to the growing wall,

Ṅr =
b2

S2

db

dt
N + ksinkN . (40)

The wet shell growth rate is then modified to read

dS

dt
=

−N−
N+ −N−

(
b2

S2

db

dt
+ ksink

)
, (41)

which, in terms of the moments, (4), is

dS

dt
=

−m−a
m+

a −m−a

(
b2

S2

db

dt
+ ksink

)
. (42)

3.4.3 Boundary Conditions

From the definition of the wet shell region, it is clear that the appropriate boundary con-
dition for the solids volume fraction at r = S+ is

ε+ = εcrit . (43a)

Rearranging (42) then gives the boundary conditions for the remaining moments

m+
a = m−a

[
1−

(
b2

S2

db

dt
+ ksink

)(
dS

dt

)−1
]
, a ∈ {0, 1, 2} , (43b)

and the shell growth rate is

dS

dt
=

−ε−
εcrit − ε−

(
b2

S2

db

dt
+ ksink

)
. (44)

The solute boundary condition at the external droplet surface remains unchanged, i.e.,
equation (9) is still used. The appropriate boundary conditions to be implemented at the
internal surface of the wet shell are similar to those in the thickening shell, as discussed
in Section 3.2. Due to the modification to v(c)

r , (19) becomes

∂〈ωB〉(c)

∂r
= − ρ0

A

Deffρ(c)


〈ωB〉(c)

(
dS

dt
− b2

S2

db

dt

)

︸ ︷︷ ︸
vs

+
〈nBr〉(c)

∣∣
r=S(t)

ρ(c)


 , (45)
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which, on imposing continuity of the solute mass flux across the growing shell and rear-
ranging as above gives the boundary condition

∂〈ωB〉(c)

∂r

∣∣∣∣
r=S−

=
D+

eff

D−eff

(
1− ε+

1− ε−
)
∂〈ωB〉(c)

∂r

∣∣∣∣
r=S+

− ρ0
A〈ωB〉(c)

D−effρ
(c)

(
ε− − ε+

1− ε−
)
vs . (46a)

Further, solute mass fraction continuity across this shell edge at r = S gives the second
boundary condition,

〈ωB〉(c)− = 〈ωB〉(c)+ . (46b)

A zero gradient boundary condition is applied to all equations at the bubble interface at
r = b.

3.4.4 Wet Shell to Dry Shell Switch

From the formulation of the wet shell model it is clear that, at some point, the expanding
bubble will meet the retreating inner wet shell surface. At this point, the bubble can
expand no further and further moisture removal necessitates drying of the shell itself.
The new model executes a switch from wet shell to dry shell drying when b = S. The
equations implemented after this switch are those introduced in Section 3.3. The model
is therefore capable of simulating the drying of the shell region following bubble growth.
An example of this behaviour is presented in Section 5.2.

4 Implementation

The model as described consists of a set of advection-diffusion equations coupled to ordi-
nary differential equations describing the particle size and temperature. These were solved
using the standard NAG Fortran D03PFF library routine, [40], which implements an al-
gorithm developed by Pennington and Berzins [41] when supplied with a user-defined
switching-upwind numerical flux function. Details of the numerical implementation will
appear in a separate paper.

The physical extent of the droplet changes during drying due to both shrinkage and, al-
though not discussed in this paper, bubble growth. In the thickening regime or after for-
mation of a wet shell, an additional coordinate system is introduced to cover this outer
region. The extent of this second coordinate system also varies with time. To handle the
resulting moving boundary problem, the following coordinate transformation is applied
to all equations,

z =
r − rL

rR − rL
;

∂

∂r
=

1

rR − rL

∂

∂z
, (47)

where, [rL, rR] = [b, S] for the internal coordinate system and [rL, rR] = [S,R] for the
shell region. This transformation has the effect of non-dimensionalising the spatial coor-
dinate and fixing both internal and shell domains on the interval z ∈ [0, 1], as illustrated
in Figure 7. Time derivatives in the z coordinate systems are related to those in the r
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coordinate system by

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
z

− 1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂

∂z
. (48)

The transformation is seen to add a virtual flux to all the partial differential equations in
the model. A full listing of the model equations after applying this transformation is given
in Appendix A.

Rb S

r z

0 1

Figure 7: Illustration of the coordinate transformation applied to a drying droplet with a shell
region. After transforming, the core and shell regions are both fixed on the interval
z ∈ [0, 1].

Droplet drying in the presence of a dry shell does not require a second coordinate system.
The dry shell is free of the continuous phase and the particle number density is no longer
free to evolve in either its internal or external coordinate. Instead, the properties of the
dry shell are stored as the interface recedes and, from this, shell-region profiles can be
reconstructed by spline interpolation if required.

5 Results

Two physical systems are simulated using the new model and the results obtained com-
pared with experimental data from the literature. Both examples presented focus on as-
pects of the model relating to shell formation and the subsequent drying behaviour. A
thorough description of the population balance aspects of the model can be found in an
earlier paper, [25].

5.1 Drying a Droplet of Detergent Slurry

The first test case is the simulation of a droplet of detergent slurry drying. Such ‘crutcher
mix’ is typically a complex mixture of over 30 components, with precise formulations be-
ing closely guarded commercial secrets, [14]. Griffith et al. [22] have recently conducted
a series of experiments investigating the drying of a generic crutcher mix formulation,
the composition of which is shown in Table 1. Griffith et al. report that the droplets they
observed showed no shrinkage during drying which indicates that this system might be a
suitable choice to demonstrate the dry-shell model.

Griffith et al. [21] report that the model crutcher mix consists of two phases — continuous
and discrete — above 50◦C, but splits into three distinct phases below this temperature.
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Figure 7: Illustration of the coordinate transformation applied to a drying droplet with a shell
region. After transforming, the core and shell regions are both fixed on the interval
z ∈ [0, 1].

Droplet drying in the presence of a dry shell does not require a second coordinate system.
The dry shell is free of the continuous phase and the particle number density is no longer
free to evolve in either its internal or external coordinate. Instead, the properties of the
dry shell are stored as the interface recedes and, from this, shell-region profiles can be
reconstructed by spline interpolation if required.

5 Results

Two physical systems are simulated using the new model and the results obtained com-
pared with experimental data from the literature. Both examples presented focus on as-
pects of the model relating to shell formation and the subsequent drying behaviour. A
thorough description of the population balance aspects of the model can be found in an
earlier paper, [24].
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Figure 8: (a) Initial composition of the crutcher mix droplets as measured by Griffith et al. [21];

and (b) simplified description of the crutcher mix used to model the system in this paper.

5.1 Drying a Droplet of Detergent Slurry

The first test case is the simulation of a droplet of detergent slurry drying. Such ‘crutcher
mix’ is typically a complex mixture of over 30 components, with precise formulations be-
ing closely guarded commercial secrets, [14]. Griffith et al. [22] have recently conducted
a series of experiments investigating the drying of a generic crutcher mix formulation,
the composition of which is shown in Table 1. Griffith et al. report that the droplets they
observed showed no shrinkage during drying which indicates that this system might be a
suitable choice to demonstrate the dry-shell model.

Table 1: The composition of the detergent slurry investigated by Griffith et al. [22].

Component Initial Mass Fraction
LAS 0.09
Water 0.29

Acusol Polymer 0.03
Sodium Sulphate 0.35

Sodium Aluminosilicate 0.24

The description of the system needs to be further simplified before the the present model
can be used. Griffith et al. report that the continuous ‘phase’ actually comprised individual
neat and lye phases which were rich in LAS and sodium sulphate respectively. This is
illustrated in Figure 8a. To simulate this system within the present framework, the lye
phase was modelled as an aqueous sodium sulphate solution. Similarly, the small amount
of sodium sulphate in the neat phase is ignored and this is considered to be a LAS–water
binary. This further simplified system is illustrated Figure 8b.
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In terms of the present model, the solid phase, D, comprises the zeolite — sodium alu-
minosilicate — and some crystallised sodium sulphate and the water in the system is the
solvent, A. The LAS and dissolved sodium sulphate must be described as component B.
For the remainder of this section, these two components will collectively be referred to
as the ‘solute’. However, since only sodium sulphate crystallises to form new solid, it is
important to track the mass fraction of the combined solute that is Na2SO4, i.e.,

ξ =
mass of Sodium Sulphate

mass of Sodium Sulphate + mass of LAS
. (49)

Because of the simplifying assumptions made above, ξ also represents the mass fraction of
the solute in the lye phase. Assuming that this fraction is uniform throughout the droplet
allows ξ to be simply calculated from the initial masses and knowledge of the mass of
Na2SO4 that has crystallised during the drying period. This assumption is justifiable as the
rate of moisture removal is slow when drying at Tgas = 60◦C. For the droplets observed
by Griffith et al. [22], ξ (t = 0) = 0.56.

NMR results obtained by Griffith et al. [21] demonstrate that when drying crutcher mix,
water is initially lost from the lye phase. Assuming that the ratio of LAS to water in the
neat phase remains unchanged until the lye phase has dried allows the mass concentration
of sodium sulphate in the lye phase, ω(c)

Na , to be determined from ξ:

ω
(c)
Na =

ξ〈ωB〉(c)

1− 1.43〈ωB〉(c) (1− ξ) . (50)

Initially, ω(c)
Na = 0.31, which is the saturated mass fraction at 60◦C, [58]. This is to be

expected as the aqueous and crystallised sodium sulphate are initially in equilibrium. As
the drying proceeds sodium sulphate crystallises out of solution. In the absence of any
data relating to the model crutcher mix system, the kinetics used to describe this pro-
cess are those for direct crystallisation to the solid in a sodium sulphate—water mixture.
Rosenblatt et al. [43] give the following expression,

dL

dt
= 1.484× 107 exp

(
−13.7× 103

RT

)
(Ci − Ceqm)1.5 , (51)

which corresponds to the linear growth rate, G, in the population balance equation (1).
Ci and Ceqm are the local and saturated sodium sulphate concentrations respectively in
kmol m−3.

As demonstrated in Handscomb et al. [24], the moment system describing the solid phase, (4),
allows nucleation of new particles to be modelled. However, the presence of a consider-
able amount of crystallised sodium sulphate at the outset of drying in the current system
makes nucleation of new crystals thermodynamically unlikely. Therefore, the nucleation
rate, Ṅ0, is set to zero in this simulation.

The solids contained in the crutcher mix droplets are relatively large — typically 10 µm in
diameter — and, consequently, are relatively immobile. The single, non-size dependent,
solids diffusion coefficient was used D = 10−15 m2s−1.
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Figure 9: Water sorption isotherm for crutcher mix. The line shows the sorption isotherm, (53),
obtained by fitting to the experimental points obtained by Bayly [3].

Griffith et al. [22] determined an effective diffusion coefficient appropriate for modelling
the movement of water in crutcher mix,

Deff = exp

(
−27.5 + 174.5u

1 + 8.5u

)
, (52)

which, as expected, is a strong function of the dry mass basis moisture content, u. The
sorption isotherm is required to determine the rate of moisture evaporation to the bulk, (11).
This was obtained by fitting a standard sorption isotherm to measurements on the crutcher
mix obtained by Bayly [3]. The resulting isotherm is

HR =
pA

psat
= f (ωA)

[
0.8ωA

1 + 11ωA

]
+ (1− f (ωA))

[
0.05 + exp

(
ωA − 3.92

0.15

)]
, (53)

where
f (ωA) =

1

2
[1− tanh (100π (ωA − 0.25))] (54)

is a blending function required to join the different functional forms fitted at high and low
moisture contents. The isotherm is plotted in Figure 9.

A crutcher mix droplet with an initial diameter of 1.5 mm was simulated drying in dehu-
midified air at 60◦C with a relative velocity of 1.68 ms−1. Figure 10 shows the simulated
moisture mass fraction compared with experimental measurements of a droplet drying
under these conditions from Griffith [20]. The simulated moisture content matches the
experimental results very well, although the errors associated with the data were not re-
ported.
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Figure 10: Simulated evolution of the moisture mass fraction in a crutcher mix droplet (line) com-
pared with experimentally measured values from Griffith [20], (points).

The use of NMR techniques to follow the droplet drying by Griffith [20] allows for further
validation of the current model. Figure 11 shows a comparison between experimentally
measured moisture profiles and those extracted from the simulation after applying an Abel
transform, [5]. The NMR data returns intensity readings in arbitrary units. Therefore,
assuming an initially homogeneous spherical particle, an appropriate scaling factor was
determined and applied to all the simulated profiles. It is clear that the experimental
droplet wasn’t a perfect sphere, but the error associated with this approximation is small.

The model fit to the measured profiles is fair. The intensity maxima at the centre of
the droplet are very well predicted for the 10 and 20 minute profiles, but the predicted
profile at 30 minutes does not match the data so well. Between 20 and 40 minutes, the
experimental data shows faster drying than predicted by the model as is demonstrated by
the observation that the 30 minutes data coincides with the 40 minutes predicted profile.
It is possible that this discrepancy is a result of the experimental data which appears to
show particularly fast drying between 20 and 40 minutes. However it could also be that
the dry shell assumption used in the model is not entirely compatible with this system.

Figure 11 clearly shows the influence of the dry shell assumption in the model results.
A dry shell contains no moisture and consequently no NMR signal would be observed
from such a region. The simulated profiles reflect this, showing the diameter of the wet
core shrinking with time. Such an effect is, however, not clear in the experimental data,
suggesting that an extension to the dry shell approach may be required for this system.
One idea is to allow for a ‘damp shell’, whereby the a certain fraction of the pore-volume
in the shell remains filled by the continuous phase. Work on such an extension to the
model is currently in progress.
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Figure 11: Simulated moisture profiles in a drying detergent droplet (lines) compared with exper-
imental observations (markers) from Griffith [20]. Measured and simulated profiles
are displayed at 10 minute intervals.

The new droplet drying model gives additional information about the drying droplet. For
example, Figure 12 shows the time evolution of the individual component masses. The
mass of solids increases as sodium sulphate crystalises out of solution. This is also re-
flected in the decreasing solute mass, which tends to a constant value equal to the mass of
LAS in the system.

Figure 13 shows the position of the receding dry shell interface as drying proceeds. As
demonstrated by (26), the growing dry shell acts as a resistance to further moisture evap-
oration. In the simulation, the tortuosity of the shell is taken as σ = 10, which is repre-
sentative of the values measured by Griffith et al. [21].

Figure 14 shows the solids volume fraction profiles through the drying history. Initially,
the crutcher mix droplet is homogeneous with a uniform solids volume fraction of 0.36.
As the solid particles are relatively immobile, the surface solids volume fraction quickly
reaches 0.65, and shell formation is triggered almost immediately. The rigid shell prevents
further shrinkage of the droplet, but the solids volume fraction behind this initial shell
is still quite low. The dry shell is therefore predicted to have a loosely packed region
immediately behind the external skin. As more water is removed, crystallisation causes
the solids volume fraction to rise, as is reflected in later profiles. This in turn causes the
packing of the dry shell to increase once more.

At around 40 minutes, all of the sodium sulphate has crystallised out of solution. This
corresponds with the removal of all the water from the lye phase. At this point, there is no
further mechanism within the model to increase the solids volume fraction and the dried
particle is therefore predicted to have a loosely packed centre. In practice, some of the
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Figure 12: Simulated evolution of total droplet mass together with the mass of each of the three
components in the model droplet.
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Figure 13: Simulated time evolution of the dry shell interface during the drying of a droplet of
crutcher mix.
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Figure 14: Simulated solids volume fraction, ε, profiles at 10 minute intervals during the drying
of a crutcher mix droplet.

LAS will solidify as water is removed from the neat phase, but it still seems likely that the
centre of the dried particles will be less dense than their outer regions.

Tracking the sodium sulphate mass fraction in the solute, ξ, allows profiles of the concen-
tration of sodium sulphate in the lye phase to be reconstructed. Figure 15 shows some
such profiles plotted at 10 minute intervals through the drying of a crutcher mix droplet.
It is seen that the concentration stays relatively constant around 30wt% until around 40
minutes. At this point it falls quickly to zero across the entire droplet. As discussed above,
this leads to the cessation of solid crystallisation at the same point in the drying history.
The observation of a relatively constant sodium sulphate concentration agrees with ex-
perimental results for similar systems. Griffith [20] used 23Na and 1H NMR to observe
the drying of a vial of crutcher mix over an extended period. 23Na NMR could track the
amount of sodium sulphate in solution as the vial dried. This was found to decrease in
step with the free water content, indicating its concentration was approximately constant.
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Figure 15: Simulated lye phase sodium sulphate concentration profiles at 10 minute intervals dur-
ing the drying of a crutcher mix droplet.

5.2 Drying a Droplet Containing Colloidal Silica

The second test case simulated is the drying of a colloidal silica droplet containing 16 nm
particles suspended in water at an initial mass fraction of 30%. This system was modelled
by Handscomb et al. [24] prior to shell formation and compared with experimental results
from Nešić and Vodnik [39] at two different drying air temperatures. This comparison
demonstrated that the results from the core drying model agreed well with experimental
data. After shell formation, this system demonstrates the application of shell thicken-
ing and subsequent wet shell drying with bubble formation, as discussed in Sections 3.2
and 3.4 respectively.

To simulate this system using the current model the solute mass fraction is initialised to a
very small number, 10−9, thus approximating the pure water continuous phase. Colloidal
silica forms a gel at mass fractions above 40%. Nešić and Vodnik [39] report the solids
diffusion coefficient in this gel phase as

D = exp

(
−28.1 + 282ωD

1 + 15.47ωD

)
, (55)

where ωD is the solids mass fraction. In this example, a size dependent diffusion coef-
ficient is not employed as there is only one particle size throughout. Prior to gel forma-
tion, experimental observations suggest that internal convection currents keep the drying
droplets well mixed. To simulate this, the diffusion coefficient, (55), is set to 10−7 m2s−1

– a relatively large value – at low solids concentrations. This gives the functional form for
the diffusion coefficient shown in Figure 16, where the discontinuity at the point of gel

27



0 0.2 0.4 0.6 0.8 1
10

−14

10
−12

10
−10

10
−8

10
−6

Solid Mass Fraction

S
ol

id
 D

iff
us

io
n 

C
oe

ffi
ci

en
t /

 m
2 s−

1

Figure 16: Plot of the solids diffusion coefficient used to simulate the drying of a colloidal silica
droplet.

formation has been removed through use a hyperbolic tangent blending function similar
to (54).

As explained in Section 3.2.1, the Young’s Modulus and Poisson’s ratio of the colloidal
silica shell are required to determine the buckling pressure. Smith et al. [50] measure
the shear modulus of wet silica gels, from which the Young’s modulus can be calculated,
given knowledge of the Poisson’s ratio, ν. Using ν = 0.2, as was measured by Scherer
[46] for similar silica gels, gives the estimated Young’s modulus for the system as 1 MPa.
This is relatively low, suggesting that the shell should be expected to buckle repeatedly
as the droplet dries leading to considerable thickening. However, the films measured to
obtain this figure were composed of 540 nm particles — considerably larger than those in
the present system. The sensitivity to this quantity is investigated below.

When the growing bubble meets the internal boundary of the wet shell region, the model
switches from the wet to dry shell mode as discussed in Section 3.4.4. The dry shell
tortuosity used in (26) is σ = 10, based on the crust diffusion coefficient reported by Nešić
and Vodnik [39]. When the temperature of the droplet reaches 100◦C, the remaining water
will boil. Given long enough in the dryer, all the remaining water will be vaporised and
the temperature of the dried particle will rise to that of the drying air.

Direct comparisons with the experimental data at Tgas = 101◦C and Tgas = 178◦C are
presented in Figure 17 (a) and (b) respectively. A shell was deemed to have formed once
the solids volume fraction at the surface of the droplet exceeded 0.58, at which point the
shell thickening regime commenced. This figure is chosen by assuming a random packing
of the mono-sized particles, [54].
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At both temperatures, the agreement between the predicted droplet mass and that mea-
sured experimentally is very good. For the droplet drying in air at 101◦C, the droplet
temperature prediction is initially good, but the model under-predicts the rate of the tem-
perature rise following shell formation. This could be due the assumption of a uniform
droplet temperature. It is also not clear whether the reported data relates the the tempera-
ture at the centre or surface of the droplet.

Figure 17 (b) shows the results for a colloidal silica droplet drying in air at 178◦C. As
the air temperature is above the boiling point of water, it is expected that this droplet
will undergo boiling. This is immediately clear from the figure. The switch to dry shell
drying, (§3.4.4), occurs at t = 31.6 s, at which point the droplet temperature begins to
rise rapidly. At t = 36.0 s, when the temperature reaches 178◦C — the boiling point of
water — the boiling regime is said to commence, (§3.3.2). The remaining water in the
droplet is removed by boiling, during which time the temperature remains constant. Once
all the moisture has been removed, at t = 42.8 s, the droplet mass ceases to decrease and
the temperature rises to that of the drying air. The prediction of the droplet temperature
for this example are seen to be in very good agreement with the experimentally observed
values.

Figure 18 shows the evolution of the particle structure for the droplet drying with Tgas =
178◦C. The different drying regimes are clearly visible and it is possible to see the mor-
phology of the droplet at a given time in the drying history. Thickening commences at
t = 23.2 s, after which the wet shell thickens considerably until the pressure required
to cause continued buckling is greater than the pressure drop across the shell. For the
droplet with Tgas = 178◦C, this critical pressure is 9.6 MPa. The small relative pore
size in a shell of 16 nm particles means the surface menisci can support a large pres-
sure drop, (12). Rapid evaporation resulting from drying in air at 178◦C also favours the
formation of a thicker crust, (17). The pressure predicted across the shell at the end of
thickening is broadly inline with maximum stresses in silica films measured by Guo and
Lewis [23].

The shell stops thickening at t = 31.4 s, at which point there is a brief period of wet shell
drying lasting only 0.2 s. During this period the central vapour bubble grows until it meets
the inner shell surface. In this example, the radius of the bubble when it meets the shell is
b = 0.2R, which is relatively small.

As discussed above, dry shell drying commences at t = 31.6 s, with the switch to the
boiling regime at t = 36.0 s. Both these points are clearly identified in Figure 18, where
the different dry shell growth rates in the dry shell and boiling regimes is also visible.

Figure 19 shows the simulated evolution of the solids volume fraction within the droplet
of colloidal silica, drying with Tgas = 178◦C. Profiles are plotted at 5 s intervals. The
profile shown in bold is that at t = 23 s when the solids volume fraction at the surface
reaches 0.58 and the shell forms. After this, the droplet continues to shrink whilst the shell
thickens. The solids volume fraction in this shell region is 0.58 whilst the fraction in the
core region is considerably less. This is clear from the two profiles shown in the thickening
regime. Close examination of these curves also shows that the solids volume fraction in
the core immediately adjacent to the thickening shell is slightly less than that a short
distance further in. This is because the growing shell boundary is modelled as a solids
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Figure 17: Simulated drying of a colloidal silica droplet (lines) compared with experimental re-
sults from Nešić and Vodnik [39] (points) at: (a) Tgas = 101◦C and R0 = 0.972 mm;
and (b) Tgas = 178◦C and R0 = 0.95 mm.

30



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time / s

R
ad

ia
l D

is
ta

nc
e 

/ m
m

Wet
Droplet Core

Wet
Shell

Bubble

Dried
Particle

Boiling
Dry Shell

Thickening

Figure 18: Plot illustrating the predicted morphological evolution of a droplet of colloidal silica
drying in air at 178◦C.

sink, as discussed in Section 3.4.2. At the end of drying, the solids profile is predicted to
be uniform across the particle and is shown by the bold dashed line in Figure 19.

The Young’s modulus of the shell used to produce the figures in this section was E =
1 MPa. However, as mentioned above, the films measured by Smith et al. [50] to obtain
this figure were composed of 540 nm particles — considerably larger than the 16 nm par-
ticles suspended in the droplets simulated here. The sensitivity of the results to the choice
of E was therefore studied. The droplet mass and temperature profiles were found to be
relatively insensitive to the choice of Young’s modulus, with the timing of the wet shell to
dry shell switch varying by less than 1 s as E was varied over three orders of magnitude.
However, as is clear from Figure 20, the magnitude of the Young’s modulus is of fun-
damental importance in determining the dimensions of the final dried particle. Droplets
which form shells with a larger E produce larger particles with narrower shells, as might
be expected. The figure also shows that higher peak pressures are found in droplets form-
ing weaker shells. This is because the such shells continue to deform, leading to thicker
shells capable of supporting a larger pressure drop.

6 Conclusion

This paper extended the droplet drying model introduced by Handscomb et al. [24] and
focussed on the simulation of droplets drying in the presence of a outer shell. The new
model allows for a period of shell thickening wherein the droplet can continue to shrink
after a surface shell has formed. The point at which thickening ceases is discussed with
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Figure 19: Simulated solids volume fraction profiles during the drying of a colloidal silica droplet
in air at Tgas = 178◦C. Profiles plotted at 5 s intervals, with the t = 23 s profile at
the point of shell formation highlighted in bold. The final dried particle solids profile
in shown dashed in bold.
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reference to the structural properties of the growing shell.

Once a rigid crust has formed, two drying models were introduced, termed the wet and dry
shell approaches. In the wet shell approach, the solids remain wetted by the continuous
phase throughout and a gas bubble grows in the centre of the particle. This drying route
enables the prediction of hollow dried particles. The dry shell model uses the idea of
a receding interface separating a wet core from a moisture-free crust region. Droplets
that dry purely through this route will be solid, but the dry shell equations may also be
used for droplets drying through the wet shell route once the growing bubble and shell
meet. The physical considerations behind both of these models are considered and their
implementation within the present droplet drying framework is presented.

Two systems have been simulated with the aim of demonstrating the new capabilities
of the model introduced in this paper. The simulation of a crutcher mix droplet shows
that, whilst the present model is clearly a simplification of the real physical system, it is
nevertheless capable of capturing some key features of interest. The agreement with ex-
perimental measurements from the literature is good and the new model gives additional
insight into some of these observations. The model also gives predictions about the ex-
pected morphology of the dried particles. The simulation of a droplet of colloidal silica
in water demonstrates all the post-shell formation features of the new model. Again, the
agreement with experimental data is shown to be good and hollow particles are predicted.

The new drying model introduced by Handscomb et al. [24] and extended in this paper
can be used to simulate a wide range of different droplet drying systems. The model yields
a wealth of information — solute profiles, moments of the solid particle number density,
droplet temperature and size — and, furthermore, is capable of predicting a wider range
of dried particle morphologies than any previous description.

Nomenclature

Greek Characters

ΛB Dimensionless ratio of solvent and solute densities [-]
γ Surface tension [N·m−1]
ε Solids volume fraction [-]
κ Permeability [m2]
µ Viscosity [Pa·s]
ν Poisson’s ratio [-]
ξ Fraction of sodium sulphate in the solute [-]
ρ Bulk density [kg·m−3]
ρ0 Material density [kg·m−3]
σ Tortuosity [-]
ω Mass fraction [-]
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Operators

B
(j)

Superficial volume average of B associated with phase j
〈B〉(j) Intrinsic volume average of B associated with phase j

Roman Characters

Bm Spalding mass transfer number [-]
C Molar concentration [kmol·m−3]
D Solids diffusion coefficient [m2 s−1]
Deff Effective diffusion coefficient [m2 s−1]
D̄A,air Diffusion coefficient of water vapour in the drying gas [m2 s−1]
E Young’s modulus [Pa]
G Linear growth rate [m·s−1]
HR Relative humidity [-]
∆Hvap Latent heat of vaporisation [J·kmol−1K−1]
L Internal coordinate - particle diameter [m]
Lmin Minimum stable crystal size [m]
Ṅ0 Particle nucleation rate per unit volume [# m−3 s−1]
N Number density function [# m−4]
P Pressure [Pa]
Q Heat penetrating into the droplet [J·s−1]
R Radius of the drying droplet [m]
R Gas constant [J·kmol−1K−1]
S Radius of the inner edge of the shell [m]
Sh∗ Modified Sherwood number [-]
T Shell thickness [m]
Td Droplet temperature [K]
V Volume [m3]
b Radius of the central bubble [m]
k Boltzmann constant [J·K−1]
ksink Sink diffusion coefficient [m·s−1]
ma ath integer moment of the internal coordinate [ma−3]
ṁ′′ Mass vapour flux from the droplet [kg·m−2s−1]
ṁvap Total rate of solvent evaporation [kg·s−1]
n Mass flux with respect to a stationary reference frame [kg·m−2s−1]
nr Radial mass flux [kg·m−2s−1]
p Partial presure [Pa]
r Internal coordinate - radial position [m]
r′′ Volume average interfacial production rate [kg·m−2s−1]
rM Radius of curvature [m]
t Time [s]
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u Dry-mass basis moisture fraction [-]
vr Radial velocity [m·s−1]
z Non-dimensionalised spatial coordinate [-]

Superscripts and Subscripts

+ The inner edge of the outer coordinate system
− The outer edge of the inner coordinate system
A Solvent
B Solute
D Solids
L Left-hand end of the domain
R Right-hand end of the domain
buck Buckling conditions
c Continuous phase
crit Critical conditions
d Discrete phase
eqm equilibrium conditions
gas Bulk drying gas conditions
sat saturated conditions

Abbreviations

LAS Linear Alkylbenzene Sulfonate
NMR Nuclear Magnetic Resonance

A Summary of Model Equations and Boundary Condi-
tions

This appendix gives the complete model formulation. The equations are presented in the
form in which they are solved, i.e., following the coordinate transformation discussed in
Section 4. For each drying regime, the number of spatial domains considered is stated,
followed by the equations solved in each. The boundary conditions are then listed and,
finally, the ordinary differential equations describing the evolution of the spatial domains
are given.
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A.1 Prior to Shell Formation

Before the formation of a shell, there is one coordinate system spanning the entire physical
domain, [b, R]. This domain is mapped onto the interval [0, 1] through application of the
transform discussed in Section 4.

The continuous phase equation to be solved is

∂

∂t

[
(1− ε) ρ(c)〈ωB〉(c)

]

+
1

(rR − rL) [rL + z (rR − rL)]2

× ∂

∂z

[
[rL + z (rR − rL)]2 ρ(c)

(
(1− ε) v(c)

r 〈ωB〉(c) − Deff

rR − rL

∂

∂z

[
(1− ε) 〈ωB〉(c)

])]

− 1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂

∂z

[
(1− ε) ρ(c)〈ωB〉(c)

]
+ ρ0

D

∂ε

∂t
= 0 .

(A.1)

where, rL = b and rR = R. The mass-averaged continuous phase velocity is given by

v(c)
r =

Deff

rR − rL

(
1

ΛB + 〈ωB〉(c)

∂〈ωB〉(c)

∂z
− 1

1− ε
∂ε

∂z

)
, (A.2)

where ΛB is a dimensionless ratio of material densities,

ΛB =
ρ0

B

ρ0
A − ρ0

B

, (A.3)

and the continuous phase density, ρ(c), is

ρ(c) =
ρ0

AΛB

〈ωB〉(c) + ΛB

. (A.4)

The equations for the moments of the solids particle number density are

∂ma

∂t
=La

minṄ0 + aGma−1

+
1

(rR − rL) [rL + z (rR − rL)]2
∂

∂z

(
[rL + z (rR − rL)]2

rR − rL
D
∂ma

∂z

)

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ma

∂z
, a ∈ {0, 1, 2}

(A.5)

and the solids volume fraction, ε, is given by

∂ε

∂t
=
π

6
L3

minṄ0 +
π

2
Gm2

+
1

(rR − rL) [rL + z (rR − rL)]2
∂

∂z

(
[rL + z (rR − rL)]2

rR − rL
D
∂ε

∂z

)

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ε

∂z
.

(A.6)
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Zero gradient boundary conditions are applied to all variables at z = 0. At z = 1, the
continuous phase boundary condition is

∂〈ωB〉(c)

∂z

∣∣∣∣
z=1

= (rR − rL)
〈ωB〉(c)ṁ′′

ρ(c)Deff

, (A.7)

and those for the moments and solids volume fraction are

∂ma

∂z

∣∣∣∣
z=1

= − (rR − rL)
ṁ′′

Dρ0
A

ma , a ∈ {0, 1, 2} (A.8)

and
∂ε

∂z

∣∣∣∣
z=1

= − (rR − rL)
ṁ′′

Dρ0
A

ε . (A.9)

The extent of the domain changes according to

db

dt
= 0 , (A.10)

and
dR

dt
= −ṁ

′′

ρ0
A

, (A.11)

where it is assumed that there is no bubble growth prior to shell formation.

A.2 Thickening Regime

In the thickening regime, the physical domain is divided into two regions such that [rL, rR] =
[b, S] for the internal coordinate system and [rL, rR] = [S,R] for the shell region. Both
of these domains are mapped onto the interval [0, 1] when the equations are transformed
into the z coordinate system, (§4). The solute mass fraction, solids volume fraction and
moments in the shell region are denoted 〈ωB〉(c)

shell, εshell and ma,shell respectively. Having
made the appropriate substitutions for the shell region variables, Equation (A.1) is applied
unaltered in both regions. Equations (A.5) and (A.6) are unaltered in the core, but in the
shell the appropriate equations are now

∂ma,shell

∂t
=aGma−1,shell +

R2

(rR − rL) [rL + z (rR − rL)]2
dR

dt

∂ma,shell

∂z

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ma,shell

∂z
, a ∈ {0, 1, 2}

(A.12)

and

∂εshell

∂t
=
π

2
Gm2,shell +

R2

(rR − rL) [rL + z (rR − rL)]2
dR

dt

∂εshell

∂z

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂εshell

∂z
.

(A.13)
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The boundary conditions at the centre of the droplet are, again, those of zero gradient for
all the variables. For the internal coordinate system, the boundary conditions at z = 1 are

∂〈ωB〉(c)

∂z

∣∣∣∣
z=1

=
D+

eff

D−eff

(
1− εshell|z=0

1− ε

)
∂〈ωB〉(c)

shell

∂z

∣∣∣∣∣
z=0

− (rR − rL)
ρ0

A〈ωB〉(c)

D−effρ
(c)

(
ε− εshell|z=0

1− ε

)
dS

dt
.

(A.14)

for the continuous phase, where D+
eff and D−eff represent the effective diffusion coefficient

for the continuous phase calculated at S+ and S− respectively. The boundary conditions
on the continuous phase equation in the shell region are

〈ωB〉(c)
shell

∣∣∣
z=0

= 〈ωB〉(c)
∣∣
z=1

(A.15)

at z = 0 and
∂〈ωB〉(c)

shell

∂z

∣∣∣∣∣
z=1

= (rR − rL)
〈ωB〉(c)

shellṁ
′′

ρ(c)Deff

, (A.16)

at the external droplet boundary.

The discrete phase boundary conditions for the inner region at z = 1 are

∂ma

∂z

∣∣∣∣
z=1

= − 1

rR − rL

ksinkma

D
, a ∈ {0, 1, 2} , (A.17)

for the moments, and
∂ε

∂z

∣∣∣∣
z=1

= − 1

rR − rL

ksinkε

D
, (A.18)

for the solid volume fraction. Zero gradient boundary conditions are applied at both ends
of the domain for the discrete phase equations in the shell region.

The bubble, shell and external interfaces evolve according to the equations

db

dt
= 0 , (A.19)

dS

dt
=

(
εshell|z=0

εshell|z=0 − ε|z=1

)(
R

S

)2
dR

dt
, εshell|z=0 6= ε|z=1 , (A.20)

and
dR

dt
= −ṁ

′′

ρ0
A

. (A.21)

A.3 Wet Shell Regime

In the wet shell regime, there are again two coordinate systems representing the core
and shell regions. Variables in the shell region are notated in the way described in the
previous section. Having made the appropriate substitutions for the shell region variables,
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Equation (A.1) can be applied in both regions, with the mass-averaged radial velocity
given by

v(c)
r =

Deff

rR − rL

(
1

ΛB + 〈ωB〉(c)

∂〈ωB〉(c)

∂r
− 1

1− ε
∂ε

∂r

)
+
b2

r2

db

dt
. (A.22)

In the inner region, the moment equations read

∂ma

∂t
=La

minṄ0 + aGma−1

+
1

(rR − rL) [rL + z (rR − rL)]2
∂

∂z

(
[rL + z (rR − rL)]2

rR − rL
D
∂ma

∂z

)

− b2

(rR − rL) [rL + z (rR − rL)]2
db

dt

∂ma,shell

∂z

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ma

∂z
, a ∈ {0, 1, 2}

(A.23)

and the solids volume fraction, ε, is given by

∂ε

∂t
=
π

6
L3

minṄ0 +
π

2
Gm2

+
1

(rR − rL) [rL + z (rR − rL)]2
∂

∂z

(
[rL + z (rR − rL)]2

rR − rL
D
∂ε

∂z

)

− b2

(rR − rL) [rL + z (rR − rL)]2
db

dt

∂εshell

∂z

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ε

∂z
.

(A.24)

In the shell region, the corresponding equations are

∂ma,shell

∂t
=aGma−1,shell

+
1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂ma,shell

∂z
, a ∈ {0, 1, 2}

(A.25)

and
∂εshell

∂t
=
π

2
Gm2,shell +

1

rR − rL

[
drL

dt
+ z

(
drR

dt
− drL

dt

)]
∂εshell

∂z
. (A.26)

Zero gradient conditions are imposed at the bubble interface for all variables in the inner
region. At z = 1, for the inner region, the continuous phase boundary condition is

∂〈ωB〉(c)

∂z

∣∣∣∣
z=1

=
D+

eff

D−eff

(
1− εshell|z=0

1− ε

)
∂〈ωB〉(c)

shell

∂z

∣∣∣∣∣
z=0

− (rR − rL)
ρ0

A〈ωB〉(c)

D−effρ
(c)

(
ε− εshell|z=0

1− ε

)(
dS

dt
− b2

S2

db

dt

)
.

(A.27)
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The boundary conditions on the continuous phase equation in the shell region are given
by (A.15) at z = 0 and (A.16) at z = 1.

The boundary conditions on the moments in the central region at z = 1 are

∂ma

∂z

∣∣∣∣
z=1

= − 1

rR − rL

ksinkma

D
, a ∈ {0, 1, 2} , (A.28)

and
∂ε

∂z

∣∣∣∣
z=1

= − 1

rR − rL

ksinkε

D
, (A.29)

for the solid volume fraction. For the shell region, the boundary conditions for the mo-
ments at z = 0 are

ma,shell|z=0 = ma|z=1

[
1−

(
b2

S2

db

dt
+ ksink

)(
dS

dt

)−1
]
, a ∈ {0, 1, 2} , (A.30)

and
εshell|z=0 = εcrit . (A.31)

for the solids volume fraction. Zero gradient boundary conditions are applied to all the
moments at the outer boundary.

The bubble, shell and external interfaces evolve according to the equations

db

dt
=
R2

b2

ṁ′′

ρ0
A

, b > 0 , (A.32)

dS

dt
=

− ε|z=1

εshell|z=0 − ε|z=1

(
b2

S2

db

dt
+ ksink

)
, (A.33)

and
dR

dt
= 0 . (A.34)

A.4 Dry Shell Regime

In the dry shell regime, the drying droplet is split into a core and shell region, but spatial
evolution equations are only solved in the core region. The spatial domain of interest
therefore spans [b, S]. The continuous and discrete phase equations in this region are
given by (A.1), (A.5) and (A.6). Zero gradient boundary conditions are applied to all
variables at both ends of the domain, except for the continuous phase equation at z = 1.
For this variable, the boundary condition is

∂〈ωB〉(c)

∂z

∣∣∣∣
z=1

= (rR − rL)
〈ωB〉(c)ṁ′′

ρ(c)Deff (1− ε|z=1)
. (A.35)

The bubble and external particle radii do not change in the dry shell region. The position
of the internal shell interface is described by

dS

dt
= −

(
R

S

)2
ṁ′′

ρ0
A (1− ε|S)

. (A.36)

40



References
[1] B. Abramzon and W. A. Sirignano. Droplet vaporization model for spray combustion

calculations. International Journal of Heat and Mass Transfer, 32(9):1605–1618,
1989. doi:10.1016/0017-9310(89)90043-4.

[2] T. O. K. Audu and G. V. Jeffreys. The drying of drops of particulate slurries. Trans-
actions of the Institution of Chemical Engineers, 53(3):165–172, 1975.

[3] A. E. Bayly. Crutcher mix sorption experiments. Personal Communication, 2007.

[4] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley
and Sons, 1st edition, 1960.

[5] R. N. Bracewell. Numerical transforms. Science, 248(4956):697–704, May 1990.
doi:10.1126/science.248.4956.697.

[6] H. J. H. Brouwers. Particle-size distribution and packing fraction of geo-
metric random packings. Physical Review E, 74(031309), September 2006.
doi:10.1103/PhysRevE.74.031309.

[7] X. Chen and G. Xie. Fingerprints of the drying behaviour of particulate or thin layer
food materials established using a reaction engineering model. Transactions of the
Institution of Chemical Engineers Part C: Food and Bioproduct Processing, 75(C):
213–222, 1997. doi:10.1205/096030897531612.

[8] X. Chen, W. Pirini, and M. Ozilgen. The reaction engineering approach to mod-
elling drying of thin layer of pulped kiwifruit flesh under conditions of small
biot numbers. Chemical Engineering and Processing, 40(4):311–320, July 2001.
doi:10.1016/S0255-2701(01)00108-8.

[9] X. D. Chen and S. X. Q. Lin. The reaction engineering approach to modelling
drying of milk droplets. Proceedings of the 14th International Drying Symposium,
C:1644–1651, August 2004.

[10] H. Cheong, G. Jeffreys, and C. Mumford. A receding interface model for
the drying of slurry droplets. AIChE Journal, 32(8):1334–1346, August 1986.
doi:10.1002/aic.690320811.

[11] J. M. Coulson, J. F. Richardson, J. R. Backhurst, and J. H. Harker. Coulson and
Richardson’s Chemical Engineering: Particle Technology and Separation Processes
v. 2. Coulson and Richardson’s Chemical Engineering. Butterworth-Heinemann Ltd,
4th edition, 1996.

[12] E. L. Cussler. Diffusion, Mass Transfer in Fluid Systems. Cambridge University
Press, 2nd edition, 1997.

[13] N. Dalmaz, H. O. Ozbelge, A. N. Eraslan, and Y. Uludag. Heat and mass transfer
mechanisms in drying of a suspension droplet: A new computational model. Drying
Technology, 25(2):391–400, 2007. doi:10.1080/07373930601184569.

41

http://dx.doi.org/10.1016/0017-9310(89)90043-4
http://dx.doi.org/10.1126/science.248.4956.697
http://dx.doi.org/10.1103/PhysRevE.74.031309
http://dx.doi.org/10.1205/096030897531612
http://dx.doi.org/10.1016/S0255-2701(01)00108-8
http://dx.doi.org/10.1002/aic.690320811
http://dx.doi.org/10.1080/07373930601184569


[14] W. H. de Groot, L. Adami, and G. F. Moretti. Manufacture of Modern Detergent
Powders. Herman de Groot Academic Publisher: Wassenaar, 1995.

[15] G. I. Efremov. Drying kinetics derived from diffusion quation with flux-type bound-
ary conditions. Drying Technology, 20(1):55–66, January 2002. doi:10.1081/DRT-
120001366.

[16] T. Elperin and B. Krasovitov. Evaporation of liquid droplets containing small solid
particles. International Journal of Heat and Mass Transfer, 38(12):2259–2267,
1995. doi:10.1016/0017-9310(94)00337-U.

[17] A. Erriguible, P. Bernada, F. Couture, and M. A. Roques. Modeling of heat and mass
transfer at the boundary between a porous medium and its surroundings. Drying
Technology, 23(3):455–472, 2005. doi:10.1081/DRT-200054119.

[18] M. R. Etzel, S.-Y. Suen, S. L. Halverson, and S. Budijono. Enzyme inactivation in a
droplet forming a bubble during drying. Journal of Food Engineering, 27(1):17–34,
1996. doi:10.1016/0260-8774(94)00078-N.

[19] R. Gamero and J. Martı́nez. Internal mass transfer during isothermal drying of a
porous solid containing multicomponent liquid mixtures. Drying Technology, 23
(9-11):1939–1951, 2005. doi:10.1080/07373930500210390.

[20] J. D. Griffith. The Drying and Absorption Properties of Surfactant Granules. Phd
thesis, University of Cambridge, 2008.

[21] J. D. Griffith, A. E. Bayly, and M. L. Johns. Evolving micro-structures in drying
detergent pastes quantified using nmr. Journal of Colloid and Interface Science, 315
(1):223–229, November 2007. doi:10.1016/j.jcis.2007.06.050.

[22] J. D. Griffith, A. E. Bayly, and M. L. Johns. Magnetic resonance studies of de-
tergent drop drying. Chemical Engineering Science, 63(13):3449–3456, 2008.
doi:10.1016/j.ces.2008.03.043.

[23] J. J. Guo and J. A. Lewis. Aggregation effects on the compression flow properties
and drying behaviour of colloidal silica suspensions. Journal of the American Ce-
ramic Society, 82(9):2345–2358, 1999. doi:10.1111/j.1151-2916.1999.tb02090.x.

[24] C. S. Handscomb, M. Kraft, and A. E. Bayly. A new model for the drying
of droplets containing suspended solids. Chemical Engineering Science, 2008.
doi:10.1016/j.ces.2008.04.051.

[25] P. Hansson. The Sink-Effect in Indoor Materials: Mathematical Modelling and Ex-
perimental Studies. PhD thesis, University of Gävle, 2003.
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