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Abstract

In this paper a novel predictor-corrector algorithm is presented for the solution
of coupled gas-phase—particulate systems. The emphasis of this work is the study
of soot formation, but the concepts can be applied to other systems. This algorithm
couples a stiff ODE solver to a Monte Carlo population balance solver. Such cou-
pling has been achieved previously for similar systems using a Strang operator split-
ting algorithm, however, that algorithm demonstrated several numerical issues which
resulted in a high computational cost to acquire adequate precision. In particular a
source-sink instability was identified whereby a large-magnitude source term present
in the ODE system was competing with a similarly sized sink term in the population
balance. This instability required that the splitting-step size was very small in order
to keep numerical error sufficiently low. A predictor-corrector algorithm has been
formulated to negate this instability. An additional efficiency is gained with this algo-
rithm as a principal computational cost of the Strang splitting algorithm is removed:
the requirement to re-initialise the ODE solver every splitting-step. The numerical
convergence of the new algorithm is demonstrated, and its efficiency is compared
to that of the Strang splitting algorithm. Substantial computation time savings are
demonstrated, which allow a fixed error in three studied system functionals to be
achieved with an order-of-magnitude reduction in computation time.
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1 Introduction

Many physical systems involve the formation and growth of a particulate phase within
a gas phase, for example soot, titania and silica nanoparticle formation processes. The
focus of this work is soot formation, but the principles can be applied to other particulate
systems. The formation of soot particles and other carbon products in combustion systems
is a highly complex process [1, 5, 14, 15]. In recent years models have become available
for the conversion of mass from the gas to the particulate phase [1, 16, 17, 24], which
calls for detailed modelling of the resulting soot particle populations.

In order to adequately characterise such systems, numerical models for the gas phase and
the particle population must be developed and combined. Generally in these systems the
particulate and gas phases are strongly coupled, as gas-phase precursors form and react
with particles. Gas-phase kinetics are generally described by a finite set of ordinary dif-
ferential equations (ODEs), which can be solved using well-known numerical techniques
such as Runge-Kutta. Substantial effort has gone into the development of numerical pop-
ulation balance methods. The main numerical methods used are the method of moments
with interpolative closure (MoMIC) [13], fixed [21] and moving [26] sectional methods,
and Galerkin methods [2]. All of these methods explicitly reduce the evolution of the
particle population to a finite set of ODEs, which can be solved simultaneously with the
gas-phase kinetics equations. The disadvantage of these methods is that they are restricted
to relatively simple particle descriptions.

Stochastic particle methods, which originate from the Bird algorithm for molecular gas
dynamics [6], have also been applied to these systems [4], and in particular have been
used for the mathematical study of coagulation problems [11]. These stochastic methods
allow for arbitrarily complex models for individual particles [8, 10] to be included with
little additional impact on computation times [18] when compared to simple models, but
even for simple particle models the computational requirements are much greater than for
the other population methods mentioned above.

Coupling population balance calculations using the ODE methods mentioned above to
chemical reaction calculations is generally possible, but computational cost can be consid-
erable [23]. Direct coupling between stochastic particle population balance methods and
the stiff differential equation solvers used to treat chemically reacting systems is a partic-
ularly challenging problem, because of the different natures of the two solution methods.
Initial work in this area for soot formation avoided a direct coupling by using MoMIC, the
simplest of the above methods, to provide approximations to the effects of the soot pop-
ulation during the solution of the gas-phase chemistry [4] and then recalculating the soot
population with a stochastic particle method in a post-processing step. However, accuracy
requires a close coupling, which can be achieved using an operator splitting method [9].
In that paper [9] the coupling of a stochastic soot population balance method to a standard
deterministic stiff chemistry solver for a simple batch reactor was reported. The case of
a perfectly-stirred reactor with outflow was also considered, but the results demonstrated
that the numerical method was stretched to its limits and possibly beyond.

The purpose of this paper is to discuss the limitations of the operator splitting method
[9] and to propose a more robust and less computationally demanding alternative. This
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introduction is completed by a presentation of the equations describing the coupled sys-
tems already mentioned. The numerical convergence of the new method is demonstrated,
and the algorithm efficiency is compared to that of the previously used Strang splitting
algorithm.

1.1 Studied System

A constant pressure batch reactor model was used to investigate the numerical algorithms.
This model shall be briefly described. The gas-phase chemistry requires the solution of
each species concentration and the temperature, that is K + 1 variables, where K is
the number of gas-phase species. The soot particle population evolves according to the
discrete Smoluchowski equation.

The governing equations (gas-phase material balance and soot population balance) for a
constant pressure batch reactor are:

dck

dt
= ω̇k(c, T ) + ġk(c, n, T )− γck (1)

d

dt
n(x) = I(c, x) + K(n, x) +

L∑
l=1

Sl(c, x)− γn(x) (2)

Where ck is the molar concentration of species k, ω̇k is the molar production rate of species
k due to reaction, ġk is the molar production rate of species k due to soot processes, and
T is the temperature. In the soot balance n(x) is the number density of particles of type
x, where the type is a vector of particle volume, composition, and surface area (surface-
volume model only). I(c, x), K(n, x) and Sl(c, x) are the inception, coagulation and
surface reaction l rates respectively for particles of type x. c denotes the vector of species
concentrations. γ is the rate of gas-phase expansion and is given by

γ =
ω̇k

ρ
+

1

T

dT

dt
(3)

where ρ is the molar density of the bulk fluid. Note, the molar production rate due to
soot is considered small in magnitude compared to that due to chemical reaction. For
this theoretical study, only constant temperature systems were considered, therefore dT

dt
is

zero.

1.2 Formulation of Equations

At a high level a system comprising soot particles in a reacting gas mixture may be de-
scribed by a vector (f1, f2)

T, where f1 contains gas-phase species concentrations and
other gaseous state variables such as temperature and pressure, and f2 represents the soot
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particle population. The differential equation for which an efficient solution method is
sought may then be written as:

d

dt

(
f1

f2

)
=

(
A1 (f1)
A2 (f1, f2)

)
+

(
B1 (f1, f2)
B2 (f1, f2)

)
. (4)

The operator subscript 1 denotes processes which occur to the gas-phase, and the sub-
script 2 denotes processes which affect soot particles. The physical interpretations of the
operators in the context of the above model are:

1. A1 is the gas-phase chemical mechanism. This has no soot particle dependence.

2. A2 is the change to the particle ensemble due to gas-phase processes. For a constant
pressure system this describes the expansion of gas and hence a decrease in particle
number density.

3. B1 is the change to the gas-phase chemistry due to particle inception and surface
growth processes.

4. B2 is the change to the particle ensemble due to all particle processes.

The relationships of these operators to the physical model for the batch reactor are illus-
trated by the equations

dck

dt
= ω̇k(c, T )− γ(c, T )ck︸ ︷︷ ︸

A1

+ ġk(c, n, T )︸ ︷︷ ︸
B1

(5)

d

dt
n(x) = −γ(c, T )n(x)︸ ︷︷ ︸

A2

+ I(c, x) +
L∑

l=1

Sl(c, x) + K(n, x)︸ ︷︷ ︸
B2

(6)

The choice of internal structure for f1 and f2 is obviously key. Since f1 describes a chem-
ically reacting gas-phase system, it is normal to use a vector of species concentrations
(or mole fractions) so that f1 ∈ Rd for some d ∈ N. Exactly which species to include
in f1 is an active area of research, but the present work follows the chemistry developed
by Wang and Frenklach [25], and updated by Appel et al. [1]. As discussed in the in-
troduction, there are various models which describe soot particles, each with their own
limitations. For the purposes of this analysis a general representation of the soot particle
population is used whereby particles are described by a type x, from a type space E. For
simpler models, such as the spherical particle [4, 20] and surface-volume [18] models, x
is a fixed length array of real numbers. The entire particle population is then represented
as a measure on E, following the approach of Eibeck and Wagner [12] and Patterson et al.
[19].
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2 Particle–Chemistry Coupling Strategies

As discussed above, some method is needed to allow stochastic and deterministic methods
to be employed in order to solve for the soot particle population and the chemical species
concentrations respectively in zero-dimensional systems (for example, shock tubes and
plug-flow reactors).

A direct splitting of A and B was successfully used by Celnik et al. [9] to solve (4), but
proved computationally expensive (around four minutes per run with 65,536 particles and
a time-step size of 100 µs). Execution profiling showed that the high cost arose because a
large number of small splitting steps were required to maintain adequate coupling between
the A and B operators. At the start of each small step it was necessary to restart the stiff
ODE solver used to calculate the effects of A, because the solution had been changed by
applying B, and so a costly step was repeated many times.

The need for very small splitting time steps arose because there was a numerical insta-
bility inherent in the splitting, which involved the competition of source and sink terms
from the two operators. An example of this problem arose with the gas-phase species
pyrene, which is produced from smaller molecules by gas-phase reactions, but is heavily
consumed by the formation and growth of soot particles. The magnitudes of the pyrene
source term (in A) and the sink term (in B) were similar and significant in relation to the
size of the pyrene concentration divided by the time step length. For long time steps this
resulted in unphysical oscillations in the value of the pyrene concentration, which became
very high when operator A was applied and very low when operator B was applied. Con-
sequently rates of change of other solution components, which depended on the pyrene
concentration, could not be reliably calculated.

The system of chemical reactions represented by A is inevitably stiff and therefore has
to be treated with implicit methods, which involve the inversion of Jacobean matrices.
Such inversions are computationally very costly and so efficient solvers rely on reuse
of intermediate calculation results [3]. However, the application of the operator B in a
splitting step leads to a discontinuous change in the solution, which makes the re-use
of intermediate results impossible. Therefore, after every application of B for the soot
population part of the splitting, it was necessary to completely regenerate the internal data
of the stiff ODE solver used for A resulting in high computational costs.

2.1 Predictor-Corrector

A predictor-corrector strategy was formulated to include approximations for B1 in the
solution to the A part of the splitting in order to eliminate the source-sink instability dis-
cussed previously. In setting out the algorithm below no mention is made of any internal
sub-stepping that may be carried out by the solvers used for the operators A and B.
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2.1.1 Predictor

Suppose that approximate solutions to (4) have been calculated at times t1 < t2 <
t3, . . . , ti to give values (

f1,1

f2,1

)
,

(
f1,2

f2,2

)
, . . . ,

(
f1,i

f2,i

)
respectively. The method for advancing the solution to a time ti+1 > ti, begins with a
split-predictor step:

1. Fit a function B0(t) (for example, an interpolating polynomial) defined on [ti−m, ti+1],
for m ∈ N previous points, to

B1 (f1,i−m, f2,i−m) ,B1 (f1,i−m+1, f2,i−m+1) , . . . ,B1 (f1,i, f2,i) .

Note that time ti+1 is outside the interpolation range.

2. Using this approximation to B1, perform the first part of the splitting by solving

d

dt

(
f̃ 0

1

f̃ 0
2

)
=

 A1

(
f̃ 0

1

)
A2

(
f̃ 0

1 , f̃ 0
2

) +

(
B0 (t)

0

)
t ∈ [ti, ti+1] (7)

with initial condition (
f̃ 0

1 (ti)

f̃ 0
2 (ti)

)
=

(
f1,i

f2,i

)
.

3. Fit a function F 0(t) (for example, an interpolating polynomial) defined on [ti−m+1, ti+1]
to

f1,i−m+1, f1,i−m+2, . . . , f1,i, f̃ 0
1 (ti+1)

4. Using this approximation to f1, perform the second part of the splitting by solving

d

dt
f̂ 0

2 = B2

(
F 0 (t) , f̂ 0

2

)
t ∈ [ti, ti+1] (8)

with initial condition
f̂ 0

2 (ti) = f̃ 0
2 (ti+1)

to get a predicted solution
(
f̃ 0

1 (ti+1) , f̂ 0
2 (ti+1)

)T

for ti+1.

2.1.2 Corrector

Subsequent split-corrector iterations are performed as follows, for J ∈ N iterations:

1. j ← 1
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2. Fit a function Bj(t) (for example, an interpolating polynomial) defined on [ti−m+1, ti+1],
for m + 1 points (note inclusion of approximation to the point i + 1), to

B1 (f1,i−m+1, f2,i−m+1) ,B1 (f1,i−m+2, f2,i−m+2) , . . .

. . . ,B1 (f1,i, f2,i) ,B1

(
f̃ j−1

1 (ti+1) , f̂ j−1
2 (ti+1)

)
3. Solve

d

dt

(
f̃ j

1

f̃ j
2

)
=

 A1

(
f̃ j

1

)
A2

(
f̃ j

1 , f̃
j
2

) +

(
Bj (t)

0

)
t ∈ [ti, ti+1] (9)

with initial condition (
f̃ j

1 (ti)

f̃ j
2 (ti)

)
=

(
f1,i

f2,i

)
.

4. Fit a function F j(t) (for example, an interpolating polynomial) defined on [ti−m+1, ti+1]
to

f1,i−m+1, f1,i−m+2, . . . , f1,i, f̃
j
1 (ti+1)

5. Solve
d

dt
f̂ j

2 = B2

(
F j (t) , f̂ j

2

)
t ∈ [ti, ti+1] (10)

with initial condition
f̂ j

2 (ti) = f̃ j
2 (ti+1)

6. j ← j + 1

7. If j < J go to 2, else stop.

8. Set solution at ti+1 to be last calculated values, that is,(
f1,i+1

f2,i+1

)
←

(
f̃ j

1 (ti+1)

f̂ j
2 (ti+1)

)
.

2.1.3 Order of the Algorithm

The first order splitting of A2 and B2 limits the method set out above to first order con-
vergence with respect to the time step length, ∆ti := ti+1 − ti. This limitation might be
addressed by completely removing f̃ j

2 from step 3 of the corrector iterations and intro-
ducing a polynomial for its effects into step 5, thus making the treatment of f̃ j

1 and f̃ j
2

symmetric, but this is not necessary in order to obtain adequate results.
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Figure 1: Convergence with under-relaxation parameter. Simulations were performed
with Nmax = 65536 and ∆t = 2500 µs. The top plots shows the deviation from
the previous iteration for 100 iterations over the final time-step. Bold horizontal
lines show the statistical uncertainty calculated for that set of parameters. The
bottom plots show the transient behaviour of M0 (zeroth moment) compared to
the reference solution.

2.1.4 Under-relaxation

It was found that the above algorithm did not converge reliably for large step sizes. This
problem was typically exhibited by oscillations between iterations. A standard under-
relaxation technique was used to enable smoothing between iterations by constructing
Bj+1(t) as explained above, but then replacing it by

B̃j+1(t) = rBj(t) + (1− r)Bj+1(t) (11)

in equation (10). Suitable choice of the under-relaxation parameter r allows this unstable
oscillation to be negated.

Figure 1 shows results from the test case (described below) for particle number density
M0 (zeroth moment) at different values of r. The top row of plots shows the deviation
from the previous iteration over 100 iterations for the final time-step. Two points are
illustrated by these plots. Firstly the nature of the unstable oscillation is clearly seen in
the leftmost plot for r = 0.1. Secondly it is clear that the iterations very quickly converge,
after 3-5 iterations there is no discernable change in the iteration deviations. The bold line
gives the statistical uncertainty calculated for that simulation. The oscillation dominates
over the statistical uncertainty, therefore meaningful results cannot be obtained. This
finding is mirrored in the bottom row of plots, which show the transient behaviour of M0
compared to the reference solution. At r = 0.1 the profile is drastically different from the
reference. Considering the middle plots at r = 0.5, the iteration deviations still swamp the
statistical uncertainty, though the profile (bottom plot) is a better match for the reference.
At r = 0.8 (rightmost plots) the iteration deviations are now of a similar magnitude to
the statistical uncertainty and the profile is in good agreement with the reference. It was
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found that a value of r = 0.9 was suitable to allow all cases tested to converge in this
manner.

2.2 Methods for the Split Operators

Equations (7) and (9), which can be thought of as the chemical reaction part of the prob-
lem, were solved using DDASSL [7]. DDASSL is a differential/algebraic equation solver
which employs backward differentiation formulae (BDF) to solve implicit systems. It is
known as a very stable solver, but it suffers from a slow initialisation procedure.

Equations (8) and (10), which contain the soot particle part of the problem, were solved
using a stochastic particle method [4, 12, 19].

3 Numerical Convergence

In the following sections the effects of the parameters of the stochastic particle algorithm
and the coupling methods are reported. The main stochastic parameters were the number
of computational particles, Nmax, and the number of realisations of the stochastic process,
L. The number of computational particles, which is effectively the resolution in particle
type space, E, was controlled with a particle doubling method [19, 22] so that the actual
particle count lay in the range

[
1
2
Nmax, Nmax

]
, except during initial transients. One re-

alisation of the stochastic process was used during each corrector iteration, however, for
reporting results below, values are averaged over all the iterations performed for that time
step, which implies J = L (see next paragraph). The possibility of giving later iterations,
which should be more accurate, a higher weighting in this average remains to be explored.

The predictor-corrector algorithm introduces two additional parameters: the iteration
count J and under-relaxation constant r, as described previously. Both the predictor-
corrector and the Strang splitting coupling methods share a dependence on the splitting
time-step size, ∆t, over which coupling takes place. Multiple runs were performed to re-
duce the statistical uncertainty by averaging the output variables, and to give an estimation
of the confidence interval. For this algorithm an additional speed increase was identified,
whereby the iterations over a time step could be used as the independent runs (L = J),
if a copy of the solution was stored after each iteration. The solutions after each iteration
were given equal weighting in this study, though it is envisaged that later iterations could
be given a higher weighting, for example by ignoring the first few iterations. As demon-
strated by figure 1 after the first 3-5 iterations they are essentially converged, therefore it
is not expected for iteration weights to be important after the first few iterations.

3.1 Error Measures

The error analysis used for this study is identical to that used for the previous study [9],
and is briefly reviewed here. The systematic, esys, and statistical, estat, errors of a set of
sample solutions, y(t), to a problem that has true solution F , are defined as
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esys(t) = |ζ(t)− F (t)| (12)
estat(t) = |ηy(t)− ζ(t)|

where ζ(t) is the expectation of the distribution from which yl(t) is sampled. The sample
mean is denoted ηy(t). It is computationally impractical to find the true solution F to the
system described above, therefore a numerical reference solution for which the system-
atic error was assumed to be very small, F̃ , was used as an approximation to F in this
work. For a large number of realisations, L, the central limit theorem may be used to find
confidence intervals for ηy(t). The half widths of these are estimated by

cp(t) = ap

√
µy(t)

L
(13)

where µy(t) is the approximation of the variance. Representative total relative errors, ctot,
and relative statistical uncertainties, cstat, over M time intervals are calculated as follows,
where tm is the time at the end of interval m, m ∈ {0, 1, ...,M − 1, M}.

ctot =
1

M

M∑
m=1

|F̃ (tm)− ηy(t)|
F̃ (tm)

(14)

cstat =
1

M

M∑
m=1

cp(tm)

F̃ (tm)
(15)

For this study total relative errors at 10 fixed time points were averaged. This is the
maximum possible number of time points given the poor resolution of the simulation with
the longest time-step size (see next sections).

3.2 Test System

The simple test case reactor using in the previous study [9] was used again for this study
to allow direct comparisons of the results. The test case was a batch reactor with an initial
C2H2/O2/N2/Ar mixture of equivalence ratio Φ = 2.5. The temperature was held constant
at 1650 K and the pressure was 1 atm. No particles were present in the reactor initially
and the run time was 50 ms. The soot model was taken from Appel et al. [1], which is
based on the chemical mechanism development work of Wang and Frenklach [25].

While this test system is very simple it never-the-less retains some physical basis as the
conditions are similar to experimental set-ups. Therefore it is reasonable to suppose that
the convergence and efficiency results obtained for this test system would be similar to
those for a real combustion system.

In order to adequately discuss the numerical convergence, three functionals were chosen:
particle number density, M0, equivalent to the zeroth moment of the particle population;
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soot volume fraction, Fv, equivalent to the first moment of the particle population; and
the gas-phase pyrene concentration (A4). These functionals are identical to those used in
the previous study and allow the effect of the algorithm parameters on both gas-phase and
particulate properties to be discussed.

3.3 Algorithm Parameters

The numerical convergence of the predictor-corrector algorithm was tested by varying the
maximum particle count Nmax ∈ {2n, n = 6, 7, ..., 17, 18} and by varying the time-step
size ∆t in the range 5 − 5000 µs. A similar previous study [9] demonstrated numerical
convergence of the Strang splitting algorithm, so this has not been repeated here.

The parameters of the DDASSL solver used for the stiff chemistry were those found to
produced good results in earlier chemistry-only calculations, in particular the relative and
absolute error tolerances were 1 × 10−3 and 1 × 10−6 respectively. Simulations were
performed with more stringent error tolerances over several orders of magnitude and
no change in the convergence behaviour was observed, therefore these tolerances were
deemed sufficient small to not affect the convergence results. All predictor-corrector sim-
ulations were performed using a relaxation constant r = 0.9, which was found to give
stable results for all parameters. L = J = 100 runs/iterations were performed for all
simulations.

The reference solution F̃ was generated by using parameters Nmax = 524288, ∆t = 5 µs
and L = J = 50. For comparison this simulation took approximately 12.5 days (> 107 s)
to complete on a typical computer of today.

3.4 Convergence Results

Figure 2(left) shows the convergence of total relative error of the three functionals M0,
Fv and A4 with respect to time-step size for Nmax = 65536. The trend lines in that
figure show ideal first-order convergence. All functionals demonstrate almost first-order
convergence until about ∆t = 100 µs, at which point no further reduction in error
appears possible. The predictor-corrector algorithm is a first-order method with respect
to step size, therefore it is unsurprising to observe first-order convergence. Initially it was
thought that the error tolerances in the ODE solver were limiting convergence, however,
the same results were obtained when the relative and absolute tolerances were changed to
1× 10−7 and 1× 10−10 respectively. This suggests that the problem is unrelated to ODE
solver tolerance. The study was repeated with a larger Nmax = 262144, which is plotted
in figure 2(right). This figure shows similar behaviour to the 65536 study, but limiting
error is smaller. This suggests that there are two errors in competition: a splitting error
associated with the time-step size, and a stochastic approximation error controlled by the
maximum particle count. The error appears to reach a limit once the time-step is made
sufficiently short in figure 2 because it is then dominated by the stochastic approximation
error.

Figure 3 shows the convergence of total relative error with respect to maximum particle
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Figure 2: Relative error convergence with step size of the predictor-corrector algorithm.
The error bars show statistical uncertainty. Held constant were Nmax = 65536
(left), Nmax = 262144 (right) and L = 100 (both). Trend lines show ideal first
order convergence.

count for a fixed time-step size of 10 µs. The trend lines show order 0.5 convergence.
All three functionals exhibit approximately order 0.5 convergence with respect to particle
count. The very small statistical uncertainties, exhibited by small error bars, suggest that
the apparent scatter of the points is due to variations in splitting error rather than the
stochastic approximation. A time-step size of 10 µs was chosen because the results in
figure 2 suggest that this is sufficient short for total error to be controlled by Nmax. This
is backed up by figure 3 which demonstrates no limit of convergence in the studied range.

In the previous study [9] for Strang splitting it was found that there was approximately
no dependence of total error on maximum particle count, however, this new study sug-
gests that this was probably due to the relatively large splitting time-step of approximately
167 µs used. With that time-step size the splitting error would be dominant at all inves-
tigated particle counts. That time-step size was used because it was difficult to reduce
the statistical uncertainty sufficiently to get meaningful results using the Strang splitting
algorithm, which problem was not encountered using the predictor-corrector algorithm.

Figure 4 shows the transient behaviour of particle number density in the test system for
different time-step sizes. This figure illustrates that the predictor-corrector algorithm man-
ages to approximate the reference solution far better than the Strang splitting algorithm for
larger time-steps. At ∆t = 5000 µs, for which only 10 steps are performed, the predictor-
corrector algorithm manages to oscillate around the reference solution, whereas the Strang
splitting algorithm hopelessly under-predicts. At ∆t = 500 µs the predictor-corrector
algorithm already produces an excellent fit of the reference case, while the Strang splitting
algorithm has not yet reached the reference. Similar behaviour was observed for the other
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Figure 3: Relative error convergence with maximum particle count of the predictor-
corrector algorithm. The error bars show statistical uncertainty. Held constant
were ∆t = 10 µs and L = 100. Trend lines show ideal order 0.5 convergence.

two functionals studied; soot volume fraction and pyrene concentration.

4 Algorithm Efficiency

The discussion of computation times in this section is conducted with an understanding
that such times are implementation dependent, in particular the source code compiler
and computer architecture used are important. It is sufficient for this discussion to state
that both algorithms were implemented in the same FORTRAN90 code using the same
compiler, and that all simulations were performed on computers of the same specification.
The computers were comparable to standard desktop machines available at the time.

Figure 5 shows the dependence of computation time on the time-step size. The total
computation time is further subdivided into the time spent solving the gas-phase ODE
system and that spent solving the Monte Carlo stochastic particle algorithm. These plots
show an approximately first order relationship between computation time and step size,
which is expected. Results for both Strang splitting and predictor-corrector are plotted.
For Nmax = 64 (left plot) the computation time is dominated by ODE solution time,
while for Nmax = 65536 (right plot) the computation time is dominated by the Monte
Carlo solver. This is as expected because Monte Carlo computation times generally scale
approximately linearly with the number of computation particles. This is an inherent time
overhead when performing a Monte Carlo step as internal variables must be set and the
LPDA algorithm [18] loops over all particles at least once per step. This explains why the
Monte Carlo computation time has a dependence on time-step size.
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Figure 4: Test system particle number density vs. time for Strang splitting algorithm (left)
and predictor-corrector algorithm (right). Simulations were performed with
Nmax = 65536 and L = 100.

Figure 6 shows the dependence of computation time on the maximum particle count in
a similar manner to figure 5. The approximately first order dependence of Monte Carlo
computation time on computational particle count is clearly seen. The ODE solution
time is unsurprisingly not a function of computational particle count for either algorithm.
These plots clearly demonstrate the computational advantage of not re-initialising the
ODE solver after each time-step; the ODE solution time for the predictor-corrector algo-
rithm (open symbols) is clearly much lower than that for the Strang splitting algorithm
(solid symbols). The difference is far greater at shorter time-step sizes, approximately
two orders of magnitude of computation time at ∆t = 5 µs. Additionally it can be seen
from figure 6 that this ODE step optimisation is only active for lower values of Nmax;
when higher Nmax values are used, the Monte Carlo solution time dominates and the total
computation times for both algorithms are similar.

Figures 7 to 9 illustrate the efficiency of both algorithms by highlighting the regions in
the error-computation time space occupied by the studied range of the Nmax (64, 256,
1024, 4096, 16384, 65536) and ∆t (5-100 µs) parameters. Only point for which the error
is greater than the statistical uncertainty have been shown. Approximate threshold lines
of lowest achievable error vs. computation time are drawn to emphasise the differences
between the algorithms. It is expected that these lines are the best possible cases because
any further increase in Nmax or decrease in ∆t to reduce the error can only result in
a higher computation time, in accordance with the results in figures 5 and 6. Several
features are common to all three plots. There is a general trend towards smaller errors
at larger computation times, which is expected. There also appears to be a limit on the
lowest possible computation time, which will be a result of fixed computational costs in
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Figure 5: Computation time as a function of time-step size for Nmax = 64 (top) and
Nmax = 65536 (bottom). The left-hand plots show results for the predictor-
corrector algorithm, and the right-hand plots show results for the Strang split-
ting algorithm.
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Figure 6: Computation time as a function of maximum particle count for ∆t = 5000 µs
(top) and ∆t = 5 µs (bottom). The left-hand plots show results for the
predictor-corrector algorithm, and the right-hand plots show results for the
Strang splitting algorithm.
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Figure 7: Computation Time—Error space diagram for particle number density (zeroth
moment). The point-cloud shows the error vs. computation time for each pa-
rameter set in the studied range (see text). The lines show approximately the
lowest achievable error for a given computation time.

the algorithms not controlled by either parameter.

In all figures it is clear that the predictor-corrector algorithm provides a significant ef-
ficiency saving over the Strang splitting algorithm. It is possible to select a fixed error
of 10−2 (1%) with the predictor-corrector algorithm and achieve an order of magnitude
reduction in computation time for functionals M0 and Fv, while the Strang splitting al-
gorithm does not achieve that error for A4, though an almost two order of magnitude
reduction in A4 error for a fixed computation time is observed. The predictor-corrector
algorithm can achieve A4 errors below 10−3, which was the relative error tolerance set in
the ODE solver, while the Strang splitting algorithm cannot. The result for A4 is particu-
larly encouraging, which must be due to the inclusion of an approximation to the pyrene
sink term in the gas-phase ODE system. By removing the source-sink instability a very
significant improvement in error is achieved.

5 Conclusions

A predictor-corrector algorithm has been developed and compared to a Strang splitting
algorithm for the solution of stiff ODEs coupled to a particle population balance, solved
using a stochastic particle algorithm. This new predictor-corrector algorithm incorporates
an approximation to the source/sink terms for the ODE variables due to particle processes
into the ODE solution. In this way the source-sink instability exhibited by Strang split-
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Figure 8: Computation Time—Error space diagram for soot volume fraction (first mo-
ment). The lines show approximately the lowest achievable error for a given
computation time. The point-clouds (as in fig. 7) have not been shown for clar-
ity.
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Figure 9: Computation Time—Error space diagram for gas-phase pyrene concentration
(A4). The lines show approximately the lowest achievable error for a given
computation time. The point-clouds (as in fig. 7) have not been shown for
clarity.

ting at large splitting steps is eliminated. By removing these source/sink terms from the
population balance solver a substantial computation time saving is also achieved. The
predictor-corrector algorithm has been shown to converge numerically order 0.5 with
maximum computational particle count (Nmax) and first order with splitting-step size
(∆t). The computation times of the predictor-corrector and Strang splitting algorithms
have been compared, and it has been shown that the predictor-corrector algorithm can
provide substantial computation time savings, greater than one order of magnitude, de-
pending on the choice of parameters. Finally the efficiency of the two algorithms has
been compared by plotting the error-computation time space diagram for three function-
als. The predictor-corrector algorithm is shown to be substantially more efficient that
the Strang splitting algorithm, and can achieve the same error for an order of magnitude
reduction in computation time.
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