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Abstract

A new droplet drying model incorporating a population balance to model sus-
pended solids is introduced. The population is evolved using a moment method with
an interpolative closure employed in the case of a size dependent solids diffusion co-
efficient. This paper demonstrates the formulation and discusses the benefits of the
new model, before presenting simulations of droplets containing colloidal silica and
sodium sulphate. The results are compared with experimental data from the literature
in the regime prior to shell formation.
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1 Introduction

Spray drying works by contacting an atomised feed with drying air in a chamber. Unique
amongst drying technologies, it combines simultaneous moisture removal with particle
formation. It is the operation of choice for the industrial production of products ranging
from high value pharmaceuticals to bulk commodities such as milk powder and deter-
gents, [22]. Despite this ubiquity, spray driers still present substantial challenges to the
modeller who is faced with the task of capturing complex flow fields, heat and mass trans-
fer and morphological changes.

Integral to any detailed simulation of the spray drying process is a droplet drying sub-
model, [18, 26, 34]. The droplet moisture content — specifically the surface moisture —
determines the rate of other processes occurring within a spray tower, such as agglomera-
tion and wall deposition, [3, 12]. Single droplet drying models vary greatly in complexity,
and many have been implemented in spray dryer simulations. The simplest approach to
use is a characteristic drying curve, [5, 15, 19]. Essentially an empirical method, the
approach relies upon first identifying an unhindered drying rate and then measuring a
drying curve for each material considered. The reaction engineering approach introduced
by Chen and Xie [4] is almost as simple and has successfully been applied to a number of
spray drying systems, [5, 21]. Both methods return only particle averaged properties and
give no information about morphological changes that may occur as a result of drying.
More sophisticated droplet drying models are required to obtain such spatially resolved
information.

Numerous spatially resolved single droplet drying models have been developed over the
past 30 years. The majority of these assume that Fickian diffusion is the principle mecha-
nism for moisture transport, [9]. Few models attempt to predict the dried particle morphol-
ogy beyond the standard ‘shrinking core’ type analysis used by many authors, [10, 11, 17].
Sano and Keey [31] were the first to include a centrally located bubble in a drying model,
thus enabling the prediction of a wider range of particle morphologies. Bubbles have
since been included in models developed by Lee and Law [20] and, more recently, by
Hecht and King [14]. The nature of the final particle structure is obtained in more detail
by Seydel et al. [32] who employ a population balance to simulate the solid phase.

The aim of this paper is to introduce a new single droplet drying model which combines
the best features of previously published work in this field and is thereby capable of sim-
ulating a large class of droplet drying systems. The model includes a population balance
to model the nucleation and growth of suspended solids from an ideal binary solution.
Further, there is provision for a centrally located bubble, thus allowing for the simulation
of wet shells and puffing phenomena. This paper details the core model and presents com-
parisons with experimental observations of two systems prior to shell formation; details
of the model formulation after shell formation, along with further applications will appear
in a follow-up paper.
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2 The Physics of Particle Drying

In a spray dryer, the removal of moisture from a spray of droplets involves simultaneous
heat and mass transfer and, as stated above, this process is coupled to concurrent particle
formation. Both the drying rate and type of particle formed depend upon the air temper-
ature, humidity and the transport properties, in addition to the temperature, diameter and
relative velocity of the drop, [29]. Typically, constant external conditions are assumed for
standard single-droplet models, although this may be relaxed if, for example, the model
is coupled to a CFD code to simulate the continuous phase.
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Figure 1: The temperature history during spray drying of a liquid droplet containing sus-
pended solids.

Figure 1 shows a typical temperature history for an individual droplet containing dis-
solved or suspended solids drying in a spray tower. The droplet rapidly heats to the wet-
bulb temperature, (AB) and then remains at the wet-bulb temperature — and drying pro-
ceeds at a near constant rate — whilst the surface remains saturated with moisture, (BC).

The falling rate or second drying period begins when moisture can no longer be supplied
to the surface at a rate sufficient to maintain saturated conditions, (CD). The transition
between these two regimes occurs at the critical moisture content and, in the presence of
suspended solids, may also coincide with the start of crust formation, [6].

Vaporisation will commence if the droplet temperature reaches the moisture boiling point.
Considerable energy is required for vaporisation and so the sensible heating of the droplet
halts (DE). This phase is termed the puffing regime and the drying rate is now controlled
by external heat transfer to the particle. Once all the free moisture has been removed, the
temperature will once again rise until it equals that of the surrounding gas, (EF).

Numerous different particle morphologies may result when drying droplets containing
dissolved or suspended solids [35], some of which are illustrated in Figure 2. Following
crust formation, two principle pathways exist: the dry shell route is akin to a shrink-
ing core producing particles which are liable to shatter if dried at high temperatures; in
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Figure 2: Schematic showing some of the different particle morphologies that may result
when drying droplets containing dissolved or suspended solids.

contrast, particles formed by the wet shell route tend to be hollow and, if dried at high
temperatures, inflated.

The morphology of the particles produced depends strongly on the nature of the shell
formed. Previous drying models have been able to say very little about this, instead re-
quiring the drying route to be specified from the start. The population balance in the new
model provides information about the size distribution of particles forming the crust, and
may thereby provide a way of predicting the generic morphology of the final particle.

3 Model Description

The feed to industrial spray drying units is often a complex multi-component mixture
with many dissolved and suspended species. For example, a typical detergent slurry may
contain between 5 and 15 separate components, [16]. In the first instance it is unrealistic
to simulate such systems in their entirety; rather this paper details the development of a
novel drying model incorporating three components: a solid phase and an ideal binary
solution. Throughout this work, the solvent, solute and solid will be labelled A, B and D
respectively.

It is assumed that the droplets maintain spherical symmetry throughout their drying his-
tory, thus reducing all equations in the final model to a single spatial dimension. Further,
the Biot number is assumed low enough to justify the assumption of a spatially uniform
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Figure 3: Schematic showing: (a) the model system; and (b) drying to form a hollow
shell.

droplet temperature throughout the drying process. As introduced above, the new model
contains a centrally located bubble and an explicit shell region, as illustrated in Figure 3a.
One possible droplet drying history capable of being predicted by the new drying model
is illustrated in Figure 3b.

3.1 Discrete Phase

3.1.1 Population Balance Equation

The discrete solid phase is modelled by a population of particles. These are described
by a particle number density denoted N (L, r, t) which evolves in time according to a
population balance equation, (PBE). The particles considered in the model are assumed
spherical, allowing a single internal coordinate to be used to classify particle size. The
particle diameter, L, is chosen as a suitable internal coordinate, with corresponding state
space Ωx = [Lmin,∞). Here Lmin is the minimum stable crystal size which may be
obtained from experimental measurements.

The velocity of motion through the state space of internal coordinates is denoted by G.
The most appropriate form for G depends on the system being simulated and is obtained
from experimental measurements, (see Section 4). The only assumption made at this
stage that the linear growth rate is independent of crystal size, i.e., G 6= f (L). It is valid
to approximate the linear growth rate as being independent of both particle size and the
continuous phase flow where the particles are smaller than 50 µm, [24].

The assumption of spherical symmetry of the drying droplet allows a single external co-
ordinate — its radial position — to completely specify the spatial location of the particle.
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This external coordinate, r, has the state space Ωr = [b, R] where b is the radius of the
central bubble and R is the current droplet radius.

The solid phase may evolve in physical space through a convective or diffusive process,
or a combination of the two. Incorporating this into the population balance for N (L, r, t),
gives the general form of the solid phase equation

∂

∂t
N +

∂

∂L
(GN) +

1

r2

∂

∂r

(
r2v(d)

r N
)
− 1

r2

∂

∂r

(
r2D

∂N

∂r

)
= 0 . (1)

In this work it is assumed that the solid particles only move through diffusion, i.e.,
v

(d)
r = 0. Furthermore it is postulated that, once a rigid shell has formed around the

droplet, the solid particles are no longer free to move at all within the shell region, i.e.,
within a solid shell, particle growth is the sole mechanism operating.

3.1.2 Moments and Closure

Full information about the form of the number density at all times is not required; rather
it is sufficient to know the local solids volume fraction, ε (r). The rate of change of the
solids volume fraction can be calculated from the particle number density by integrating
over all particle sizes,

∂ε

∂t
=

π

6

∫ ∞

Lmin

L3 ∂

∂t
N (L, r, t) dL =

π

6

∂m3

∂t
, (2)

where the ath integer moment of the internal coordinate is defined by

ma (r, t) =

∫ ∞

Lmin

LaN (r, L, t) dL . (3)

Equation (2) shows that the evolution equation for the third moment of the number den-
sity function is required in order to compute the evolution of the solids volume fraction.
To obtain this, it is necessary to derive a hierarchy of moment evolution equations by
substituting (1) into (3) and differentiating.

In some applications (Section 4), a size dependent solids diffusion coefficient is required,
in which case the Stokes-Einstein equation is used, leading to

∂ma

∂t
= −

∫ ∞

Lmin

La

[
G

∂N

∂L
− 1

r2

∂

∂r

(
r2 kTd

3πµL

∂N

∂r

)]
dL . (4)

A nucleation condition is imposed at the lower boundary of the state space of the internal
coordinate. Reduced to one dimension for crystal nucleation and growth, this gives the
particle nucleation rate per unit volume, Ṅ0, as

Ṅ0 = GN (r, Lmin, t) . (5)

Equation (4) may now be integrated, invoking standard regularity conditions, to give the
general moment evolution equation,

∂ma

∂t
= La

minṄ0 + aGma−1 +
1

r2

kTd

3πµ

∂

∂r

(
r2∂ma−1

∂r

)
. (6)
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In many systems, the particle inception rate, Ṅ0, will be zero and, consequently, the num-
ber density of the smallest particles will vanish. In this instance, the total number of
particles in the system will not change with time.

Equation (6) does not represent a closed moment system due to the presence of the fi-
nal term, arising from the use of the Stokes-Einstein relation. This term means that the
evolution equation for the zeroth moment depends upon the unknown value m−1. An
interpolative closure [13], is employed to close this system. The closure used is based
on simple linear extrapolation of the moments when plotted on a logarithmic scale. This
gives

m−1 =
m2

0

m1

, (7)

which, combined with (6) for a ∈ {0, 1, 2, 3}, gives a closed system of four partial differ-
ential equations for the discrete phase.

3.2 Continuous Phase equations

The continuous phase is assumed to be an ideal binary solution and consequently it is
only necessary to solve for the mass fraction of one component – the solute is chosen in
this work. The differential mass balance for the solute, B, in the absence of homogeneous
chemical reactions is

∂ρB

∂t
+ ∇ · nB = 0 , (8)

where ρB is the solute bulk density, and nB is the mass flux of the solute relative to a
fixed reference frame.

Equation (8) is sufficient to describe mass transfer in a porous medium if the configuration
of the phase interfaces is known. Such a complete description is very rarely available and,
even if it were, the computational time associated with such an approach would be imprac-
tical. Instead, local volume averages are introduced at each point in the structure, [33].
The aim is to associate with every point in the porous medium a local volume average
of the differential mass balance for each species, (8), and hence describe the drying be-
haviour of the resulting homogenised medium. Such an approach has been employed by
several authors to describe drying behaviour, [7, 28].

Following the notation of Slattery [33], with every point in the drying droplet, z, is asso-
ciated an averaging surface, S, as illustrated in Figure 4. Superficial and intrinsic volume
averages are then defined

B
(j) ≡ 1

V

∫
R(j)

BdV , (9)

〈B〉(j) ≡ 1

V (j)

∫
R(j)

BdV , (10)

where B is some scalar, vector or tensor valued quantity associated with the phase j,
and R(j) is the volume of phase j inside S. There are two phases in the present model –
continuous and discrete – which are indexed by the superscripts c and d respectively.
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Figure 4: Every point, z, within the drying droplet has an associated averaging surface,
S.

The differential mass balance for the solute, (8), is now volume averaged to obtain

∂ρ
(c)
B

∂t
+ ∇ · n(c)

B − r′′B = 0 , (11)

where r′′B is the volume average interfacial production rate of the solute resulting from
the crystallisation process. Assuming no volume change on crystallisation, r′′B is easily
obtained from the moments of the discrete phase using (6) to obtain

r′′B = −ρ0
D

∂ε

∂t
= −ρ0

D

π

6

(
L3

minṄ0 + 3Gm2 +
1

r2

kTd

3πµ

∂

∂r

(
r2∂m2

∂r

))
. (12)

It is noted that the solids volume fraction, ε, is an inherently averaged quantity which, in
the present case, is given by

ε =
V (d)

V
= 1− V (c)

V
. (13)

Noting that B
(c)

= (1− ε) 〈B〉(c), and assuming that the continuous phase density, ρ(c),
is approximately constant over the averaging volume, [38], allows (11) to be written

∂

∂t

[
(1− ε) ρ(c)〈ωB〉(c)

]
+ ∇ ·

[
(1− ε) 〈nB〉(c)

]
− r′′B = 0 , (14)

where 〈ωB〉(c) is the intrinsic volume averaged solute mass fraction.

Fickian diffusion is assumed, as is common practice when analysing binary diffusion in
liquids, [33]. The solute mass flux is then

nB = ρ(c)ωBv −D(AB)ρ∇ωB , (15)

where v is the bulk continuous phase velocity and D(AB) is a binary diffusion coefficient.
Volume averaging this equation, following Slattery [33], and thinking of the mass flux in

9



terms of an effective diffusivity, D(e)
(AB), gives

〈nB〉(c) = ρ(c)〈ωB〉(c)〈v〉(c) −
ρ(c)

1− ε
D

(e)
(AB) ·∇

[
(1− ε) 〈ωB〉(c)

]
. (16)

Substituting into (14) and using the assumed spherical symmetry yields the partial differ-
ential equations used in this work to describe the evolving composition of the continuous
phase

∂

∂t

[
(1− ε) ρ(c)〈ωB〉(c)

]
+

1

r2

∂

∂r

r2 (1− ε) v(c)
r ρ(c)〈ωB〉(c)︸ ︷︷ ︸

advection

− r2Deffρ(c) ∂

∂r

[
(1− ε) 〈ωB〉(c)

]︸ ︷︷ ︸
diffusion

− r′′B = 0 .

(17)

Here v
(c)
r is the volume-averaged, mass-averaged radial velocity – the only non-zero

component assuming spherical symmetry – and Deff is an effective diffusion coefficient
usually obtained from experiments and, in general, a function of the local moisture con-
tent.

The advective velocity in (17) arises as a result of the density difference between the
solute and solvent. Considering volume conservation of the continuous phase therefore
allows the following expression to be derived

v(c)
r = Deff

(
1

ΛB + 〈ωB〉(c)
∂〈ωB〉(c)

∂r
− 1

1− ε

∂ε

∂r

)
, (18)

where ΛB is a dimensionless density ratio,

ΛB =
ρ0

B

ρ0
A − ρ0

B

. (19)

3.3 Shell and Bubble Formation

A shell is deemed to have formed once the volume fraction of particles at the droplet
surface rises above a certain, predefined, value. This corresponds to the locking of solid
particles at the surface, i.e., the point at which they can no-longer freely more past each
other to be drawn into the centre of the droplet. The droplet ceases to shrink at this
point and, instead, a solid shell is modelled as growing inwards from the surface. The
simulations presented in this paper are only run up until the point of shell formation;
the details of the model beyond this point will be contained in a second paper. It is
however worth noting that the information from the population balance might be used to
inform the critical solids volume fraction at which shell formation is deemed to occur. For
example, particles of a similar size will lock at a lower packing fraction than a population
of particles with a higher variance. This is just one example of how the population balance
can be used to enhance the predictive powers of the new model.
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3.4 Boundary Conditions and Thermal Calculation

Water leaves the drying droplet at the surface due to a higher water activity adjacent to the
droplet surface than in the bulk. In contrast, it is assumed that the solute does not leave
the droplet at any time, i.e., the solute mass flux following the receding interface is zero,

〈nBr〉(c)
∣∣
r=R(t)

= 〈nBr〉(c)
∣∣
r=R

− ρ(c)〈ωB〉(c)
dR

dt
= 0 . (20)

Substituting for the solute mass flux, (17), and rearranging gives the surface solute bound-
ary condition

∂〈ωB〉(c)

∂r

∣∣∣∣
r=R

=
〈ωB〉(c)ṁvap

ρ(c)Deff

, (21)

where ṁvap, the solvent mass flux from the droplet surface, is related to the rate of shrink-
age by

dR

dt
= −

ṁvap

ρ0
A

. (22)

The solvent mass flux, ṁvap, is obtained using the algorithm suggested by Abramzon and
Sirignano [1] which uses standard correlations together with film-theory based corrections
for high-mass transfer rates, [2].

It is assumed that no solids leave the droplet, implying that solid particles must move
towards the centre of the shrinking droplet. Physically, this is driven by the receding con-
tinuous phase menisci between solid particles. In the population balance, this is captured
by means of a birth term at the boundary which, in conjunction with the expression for
the diffusive volume flux from (1), gives rise to the condition

∂N

∂r

∣∣∣∣
r=R

= −
ṁvap

Dρ0
A

N . (23)

The boundary conditions for the moments are then easily seen to be

∂mi

∂r

∣∣∣∣
r=R

= −
ṁvap

ρ0
A

3πµ

kTd

mi+1 for i = 0, 1, 2 , (24)

and
∂ε

∂r

∣∣∣∣
r=R

= −π

6

ṁvap

ρ0
A

3πµ

kTd

m2
3

m2

= −
ṁvap

ρ0
A

18µ

kTd

ε2

m2

, (25)

where the interpolation m4 = m2
3/m2 has been used in the last equation to close the

system.

Symmetry implies zero gradient boundary conditions should be employed at the centre of
the droplet until the formation of a central bubble.

The algorithm given in Abramzon and Sirignano [1] is also used to calculate the heat pene-
trating into the drying droplet. From this — and the assumption of no internal temperature
gradients — the droplet temperature is evolved. The incorporation of this algorithm was
tested by simulating the evaporation of a pure water droplet and comparing predicted mass
and temperature histories with those measured by Werner [36], (Figure 5).
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Figure 5: Comparison of simulated and measured mass and temperature profiles for the
evaporation of a pure water droplet. Experimental data is taken from Werner
[36] and refers to a 6 µl droplet drying in air at 40◦C, 3.75% relative humidity
and flowing with a velocity of 0.3 ms−1.

4 Implementation and Results

The model as described consists of a set of advection-diffusion equations coupled to ordi-
nary differential equations describing the particle size and temperature. These were solved
using the standard NAG Fortran D03PFF library routine, [NAG], which implements an
algorithm developed by Pennington and Berzins [27] when supplied with a user-defined
switching-upwind numerical flux function.

4.1 Coordinate System Normalisation

The physical extent of the droplet changes during drying due to both shrinkage and, al-
though not discussed in this paper, bubble growth. The situation is further complicated
if a shell has formed, as this has an additional associated coordinate system whose extent
also varies with time. To handle the resulting moving boundary problem, the following
coordinate transformation is applied to all equations,

z =
r − rL

rR − rL
;

∂

∂r
=

1

rR − rL

∂

∂z
, (26)

where, [rL, rR] = [b, S] for the internal coordinate system and [rL, rR] = [S, R] for the
shell region. This transformation has the effect of non-dimensionalising the spatial coordi-
nate and fixing both internal and shell domains on the interval z ∈ [0, 1]. Time derivatives
in the z coordinate systems are related to those in the r coordinate system by

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
z

− 1

R0

[
drL

dt
+ z

dR0

dt

]
∂

∂z
, (27)
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Figure 6: Plot of the solids diffusion coefficient used to simulate the drying of a colloidal
silica droplet.

where R0 = rR − rL. The transformation is seen to add a virtual flux to all the partial
differential equations in the model.

4.2 Drying a Droplet Containing Colloidal Silica

The first test case simulated is the drying of a colloidal silica droplet containing 16nm
particles suspended in water at an initial mass fraction of 30%. To simulate this system
using the current model the solute mass fraction is initialised to a very small number,
10−9, thus approximating the pure water continuous phase. The simulation results prior
to shell formation are then compared with experimental results from Nesic and Vodnik
[25] at two different drying air temperatures.

Colloidal silica forms a gel at mass fractions above 40%. Nesic and Vodnik [25] report
the solids diffusion coefficient in this gel phase as

D = exp

(
28.1 + 282 (1− ε)

1 + 15.47 (1− ε)

)
. (28)

In this example, a size dependent diffusion coefficient is not employed — there is only one
particle size — and consequently the closure discussed in Section 3.1.2 is not required.

Prior to gel formation, experimental observations suggest that internal convection currents
keep the drying droplets well mixed. To simulate this, the diffusion coefficient, (28), is
set to 10−7 m2s−1 – a relatively large value – at low solids concentrations. This gives the
functional form for the diffusion coefficient shown in Figure 6, where the discontinuity at
the point of gel formation has been removed through use a hyperbolic tangent weighting
function.
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Direct comparisons with the experimental data at Tgas = 101◦C and Tgas = 178◦ C are
presented in Figure 7 (a) and (b) respectively. A shell was deemed to have formed once
the solids volume fraction at the surface of the droplet exceeded 0.65, at which point the
simulation terminated. As can be seen from the figures, shell formation is predicted at t =
60 s when drying at 101◦C and at t = 32 s at the higher temperature. This is slightly earlier
than the experimental observations, possibly indicating that a more sophisticated shell
initiation model is required. Prior to shell formation, the agreement with observations is
good.
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Figure 7: Simulated drying of a colloidal silica droplet (lines) compared with experimen-
tal results from Nesic and Vodnik [25] (points) at: (a) Tgas = 101◦ C and
v = 1.73 ms−1; and (b) Tgas = 178◦ C and v = 1.4 ms−1. RH=3.75% in both
cases.

Figure 8 shows the predicted evolution of the solids volume fraction within the colloidal
silica droplet drying at Tgas = 101◦ C. Profiles are plotted at 5 s intervals. Initially the
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profiles are flat across the droplet due to internal circulation prior to the formation of the
gel phase. After formation of a gel at ε = 0.233, the profiles develop a pronounced cur-
vature as particles build up at the receding interface. In the current model, shell formation
is predicted when the surface solid volume fraction reaches 0.65, which is seen to occur
at t = 60 s.
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Figure 8: Simulated solids volume fraction profiles during the drying of a colloidal sil-
ica droplet in air at Tgas = 101◦C. Profiles plotted at 5s intervals, with shell
formation predicted at t = 60s, (highlighted).

4.3 Drying a Sodium Sulphate Droplet

The second set of results presented relate to the drying of a droplet of sodium sulphate
solution. The droplet simulated has an initial solute content of 14wt%, which is just
below saturation at the initial droplet temperature of 20◦C . The model is initialised with a
uniform solids volume fraction of 1.1× 10−12 which corresponds to a total of 100 crystal
nuclei with diameter of 400 nm in the initial droplet.

Above 30◦C, sodium sulphate solution crystallises directly to solid sodium sulphate with-
out forming a hydrated phase, [37]. The drying droplet rapidly achieves a wet bulb tem-
perature in excess of 30◦C and so the kinetics used are those for direct crystallisation to
the solid, and are taken from Rosenblatt et al. [30],

dL

dt
= 1.484× 107 exp

(
−13.7× 103

RT

)
(Ci − Ceqm)1.5 , (29)

which corresponds to the linear growth rate, G/ms−1, in the population balance equa-
tion (1). Ci and Ceqm are the local and saturated solute concentrations respectively in
kmolm−3. The saturation ratio, S, is less than 5 throughout drying so heterogeneous nu-
cleation dominates. The following function was used for the heterogeneous nucleation
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Figure 9: Simulated drying of a 14wt% sodium sulphate in water droplet at Tgas = 90 ◦C,
compared with experimental results from Nesic and Vodnik [25].

rate

log

(
Ṅ0

1011

)
=

−2

log2 (S)
, (30)

which is taken from Dirksen and Ring [8] and relates to similar systems.

The binary diffusion coefficient of the solute is estimated using the Wilke-Chang correla-
tion to be 2.6 m2s−1 at 293 K. From this, the effective diffusion coefficient used in (17),
taking account of the solid phase, is obtained very approximately using the Clausius-
Mossotti model. Raoult’s law is used to obtain the moisture vapour pressure above the
surface of the drying droplet.

Comparisons with experimental measurements from Nesic and Vodnik [25] of a sodium
sulphate droplet drying in air at 90◦ C are presented in Figure 9. The agreement of the
total droplet mass and temperature profiles prior to shell formation is good. Again taking
the trigger for shell formation to be a surface solids volume fraction of 0.65, it is seen
that a rigid crust is predicted at 83 s. Under these conditions it is apparent that the shell
forms rather late in the droplet drying history at a point where the droplet temperature has
already risen substantially due to concentration of the solute at the surface.

Figure 10 plots the solute mass fraction profiles at 5 s intervals through the drying of
the droplet. The dashed curve is the solute profile at the point of shell formation and the
lower highlighted curve indicates the first profile where the solution throughout the droplet
becomes supersaturated. This point coincides with the rapid increase in the number of
crystals, which is seen clearly in Figure 11. This figure shows the moments integrated
over the external coordinate and normalised using

M̃i =
4π

mi (0) V0

∫ R

b

r2midr . (31)
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Figure 10: Simulated solute mass fraction profiles plotted at 5 s intervals throughout the
drying of a droplet of aqueous sodium sulphate solution, and at the point of
shell formation (dashed line).

The normalised moments are coincident during most of the droplet drying history. This is
to be expected because nucleation dominates over growth throughout most of the drying
period.
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Figure 11: Simulated normalised moments integrated over the external coordinate.

The zeroth moment gives the total number of solid particles in the drying system, and this
is seen to increase rapidly after about 60 s. Figure 12 shows radial profiles of the zeroth
moment plotted at 5 s intervals. Prior to the 60 s curve, (highlighted), the moment value
only increases due to shrinkage of the droplet influencing the initial seed distribution.
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The behaviour after 60 s is seen to be quite different, with the number density increasing
markedly, eventually across the whole of the droplet. Closer inspection shows the curves
have a steeper gradient adjacent to the surface of the droplet. This reflects the effect of
the size dependent diffusion coefficient; the first moment of the particle size distribution
shows that the particles are larger close to the surface, as would be expected of the oldest
particles.
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Figure 12: Simulated particle number density in a drying droplet of aqueous sodium sul-
phate solution. Profiles plotted at 5s intervals and on shell formation (dashed)
at t = 83s.
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Figure 13: Simulated solids volume fraction in a drying droplet of aqueous sodium sul-
phate solution.

18



Figure 13 shows the predicted evolution of the solids volume fraction in the drying
droplet. The volume fraction of solids is negligible until t = 72 s, despite the increase
in the moment values from around t = 60 s. However, beyond t = 72 s the solids vol-
ume fraction at the droplet surface rises rapidly as result of continued crystallisation and
shrinkage of the droplet. The rate of increase is then such that a shell is then formed in
11 s.

The kinetics of the crystal nucleation and growth processes are key in determining the
timing of shell formation in this system. The increase in the moments at t = 60 s noted
in Figure 11 is so timed as a result of the expression for the nucleation rate, (30). The
relative rates of nucleation and growth then set the time taken for shell formation. The
population balance for the solid phase is therefore critical for accurate modelling of this
system.

5 Conclusions

This paper has introduced a new model to simulate the drying of droplets comprising an
ideal binary solution with suspended solids. The model has been developed to enable
prediction of dried particle morphologies, together with the droplet drying rate. The key
to achieving structural prediction is the incorporation of a population balance to model the
solid phase within the drying droplet. This population balance admits particle nucleation
and growth, together with an external coordinate to describe the radial location within
the drying droplet. The model solves for the first four moments of this population, from
which the local solids volume fraction and other quantities of interest can be deduced.

Although not discussed in this paper, the model has been extended to include a central
bubble and shell formation, details of which will be presented in a future paper. These
two features are the remaining pieces required to simulate a wide range of particle mor-
phologies. The use of a population balance is essential to this prediction, extending the
capabilities of this model far beyond those of existing approaches. The average local size
and variance of the particles, for example, allows the critical solids volume fraction at
which the shell forms to be determined; a shell formed from particles with a similar diam-
eter will have a higher porosity than one comprised of particles of different sizes. Beyond
this, the information gained from the population balance might be used to give an idea of
the structural properties of the shell, which will be critical in predicting its morphological
response to further drying or bubble growth.

Two simulations have been presented in this paper validating the new model up to the
point of shell formation. The results illustrate the information — moments, solute profiles,
droplet temperature and size — made available by the new model and confirm that this is
a promising approach.
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Nomenclature

Greek symbols

Ωr State space of the external coordinate

Ωx State space of the internal coordinate

ε Solids volume fraction

µ Viscosity

ω Mass fraction

ρ Bulk density

ρ0 Bulk density

Roman symbols

C Molar concentration

Deff Effective diffusion coefficient

D Solids diffusion coefficient

G Linear growth rate

L Internal coordinate - particle diameter

Lmin Minimum stable crystal size

Ṅ0 Particle nucleation rate

N Number density function

R Radius of the drying droplet

R Gas constant

R0 Physical extent of the domain

S Saturation ratio

V Volume

Vo Initial droplet volume

b Radius of the central bubble

Td Droplet temperature

k Boltzmann constant
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ma ath integer moment of the internal coordinate

ṁvap Mass vapour flux from the droplet

n Mass flux with respect to a stationary reference frame

nr Radial mass flux

r Internal coordinate - radial position

t Time

vr Radial velocity

v
(c)
r Volume averaged continuous phase radial velocity

z Non-dimensionalised spatial coordinate

Operators

B
(j)

Superficial volume average of B associated with phase j

〈B〉(j) Intrinsic volume average of B associated with phase j

Superscripts and Subscripts

A Solvent

B Solute

D Solids

c Continuous phase

d Discrete phase
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