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Abstract

In this paper the flame synthesis of silica particles is studied. A model is
presented that combines the detailed kinetics of gaseous species including the
SiO2-precursor and the coagulation process of silica particles in a regime gov-
erned by Brownian motion. To describe the particle dynamics of the aerosol
synthesis two different numerical techniques are studied; first, the method of
moments (MoM), and second, a new stochastic particle method (SPM), which
results in a complete representation of the evolution of the particle size distri-
bution function (PSDF). Both methods are economical regarding CPU time,
which makes them attractive for modelling. This exact stochastic particle
method is used to quantify the numerical error introduced by the closure of
the sourcer terms in the method of moments. It is found that the first three
moments obtained with the MoM are in good agreement with the results
from the SPM. The numerical error increases for moments of higher order.
For validation of the model a low pressure flame of H2/O2 diluted with Ar
and doped with a SiH4 precursor is simulated and the results are compared
with measurements. This comparison shows fair agreement and a result from
literature obtained by a sectional method could be confirmed. Finally, the
PSDF obtained from the SPM was used to produce a presumed shape fit of a
lognormal distribution. Although based on one parameter only the fit shows
very good agreement with the exact PSDF.
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1 Introduction

Nano structured materials have drawn attention in recent years. Reducing the size
of materials down to a nanometer scale leads to a significant change of their physical
and chemical properties. These are the subject of extensive research ranging from
fundamental investigations on the chemical and physical qualities of such materials
to optimizing engineering routes of nanoparticle synthesis. An established way of
producing the smallest particles is by aerosol flame reactors, which allow large scale
production of materials such as carbon black or fumed silica. This work focuses
on the formation of fumed silica by gas phase synthesis. For optimizing purposes a
thorough understanding of the process is crucial and there is a demand for models
that incorporate the complex gasphase reactions of the combustion process and
particle dynamics in the reactor environment, which are generally characterized by
small residence times.

In this paper a model is presented that combines the gas phase kinetics of all reacting
species including the SiO2-precursor and the coagulation process of silica particles
in a regime governed by Brownian motion. To describe the particle dynamics of
the aerosol synthesis two different techniques are introduced. The first, the method
of moments, was used for the first time by Frenklach [4] describing the particle
dynamics in soot formation. In this method evolution equations for the moments of
the particle distribution are solved.

The second approach uses a stochastic particle system with an optimized solution
algorithm developed in [2] and improved for the special case of nano-particle dy-
namics in the free molecular regime in [9]. This algorithm does not include any
assumptions on the form of the particle size distribution. Only the initial condi-
tions and an expression for the nucleation rate have to be formulated to result in
a complete representation of the evolution of the particle size distribution function.
The accuracy depends on the numerical parameter N , which is a normalization fac-
tor that can be considered to correspond to the volume of a sample. The beauty
of this method is that in the limiting case for N → ∞ it has been proved that
the stochastic particle system converges to the solution of the limiting equation,
which is in our case the population balance equation consisting of the Smoluchowski
equations with an additional source term describing particle nucleation. To achieve
convergence for the first 2 moments the approximation parameter N has to be set
to 1000. This means one single run takes about 8s CPU time for the residence time
of the flame studied in this paper. To achieve convergence for the first five moments
we set N = 10000, which leads to a CPU time in the order of a minute. The effi-
ciency of the algorithm has been investigated in detail in [9]. The introduction of
the majorizing kernel leads to a reduction in complexity from order N2 to order N ,
which can be considered to be a significant improvement over the standard direct
simulation Monte Carlo algorithm introduced by Gillespie [7].

The described methods are validated by comparison to experimental and numerical
results published by Lindackers et al. [14]. The tested system is a low pressure
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flame reactor in which an Ar diluted H2/O2 flame was doped with a SiH4 precursor.
Simulation results are compared and used to find and an appropriate presumed
shape PSDF to combine the advantages of the Method of Moments (computational
speed) with the ability to resolve the entire particle size distribution.

2 Model

2.1 Gasphase

An accurate description of the flame structure is important for the prediction of
particle formation. Therefore the gasphase reactions were described by a combined
mechanism, consisting of a detailed H2/O2/Ar- and a skeletal SiH4/O2 reaction
scheme [14]. The species profiles for the laminar premixed flame in steady state
were computed using the PREMIX code [13].

2.2 Particle Formation and Particle Dynamics

In the nucleation process new particles are formed from matter that is not in a par-
ticulate state [10]. The actual process is still a matter of research; within this work
the existing theory is adopted. In our test case silica powder is generated from the
precursor SiH4 by high temperature reactions. SiO2 is formed by reactions which are
driven by a detailed representation of the gas-phase kinetics. This reaction mecha-
nism includes a detailed scheme for the H2/O2-reactions and the precursor species.
The common approach to describe the transition from gaseous to condensed solid
state is given in [18], [17], [12] or [14]. The combustion product SiO2 is considered
to become the smallest stable member of the particle representation. Hence the rate
of particle formation is directly coupled to the gas phase production rates of SiO2.
A population balance equation for Ni can be written as:

Ṅi =
dNi

dt
= Jδi� +

1

2

i−1∑
j=1

βj,i−jNjNi−j −
∞∑

j=1

βi,jNiNj, (2.1)

where Ni represents the number concentration of particles formed of i SiO2 molecules.
The first term on the RHS is a source term corresponding to the formation of new
particles. J is the production rate (e.g. a chemical reaction rate) and i� stands for
the size of the smallest stable particle. RHS terms two and three were formulated
by Smoluchowski [19]; they describe the coagulation of particles. An expression for
the collision frequency βi,j = αβ◦

i,j in the free molecular regime was derived earlier
and is stated here while referring to [6] and [15] :
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α =

√
6kT

ρ

(
3m1

4πρ

) 1
6

(2.2)

β◦
i,j =

(
1

i
+

1

j

) 1
2 (

i
1

Df + j
1

Df

)2

. (2.2b)

Here k is the Boltzmann constant, T the temperature, ρ the density of the particles
and m1 the mass of the monomer unit; in our case an SiO2 molecule. The indices
i and j refer to the particle size, i.e. the number of monomer units making up a
particle.

3 Two numerical approaches

3.1 Method of Moments

An accurate and computationally inexpensive way to describe the Smoluchowski
equations was introduced by Frenklach [3], [4], [5]; the method of moments. It was
utilized in various papers on the modelling of soot formation. Rather than solving
the equations for all particle size classes this method considers equations for the
moments of the size distributions, where the rth-Moment is defined as

Mr =
∞∑
i=1

mr
i Ni r = 0, 1, ...,∞ (3.1)

with mi denoting the mass of one particle of class i. The total particle number
density is expressed by the zeroth moment M0

M0 =
∞∑
i=1

Ni = N (3.2)

which is used to define reduced moments µr according to:

µr =
Mr

M0

. (3.3)

The first reduced moment µ1 is a measure for the mean of the particle distribution,
i.e. the mean mass of one particle in the ensemble, an important quantity, which
allows comparison with measured data.

The method of moments describes dynamics of particle coagulation by moment
evolution equations. Their form depends on the specified problem and the transport
operator L denotes the considered case, which can be simple evolution in time
or spatially evolving processes including convection and diffusion. The transport
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equations for the moments Mr are:

L (M0) = J +
1

2

∞∑
i=1

∞∑
j=1

βi,jNiNj (3.4)

L (Mr) = J +
1

2

∞∑
i=1

∞∑
j=1

((i + j)r βi,jNiNj) −
∞∑
i=1

∞∑
j=1

(irβi,jNiNj) , r = 2, ...,∞

(3.5)

where L (M1) = J follows from mass conservation. The model applied within this
study accounts for nucleation of particles J as a source term which is linked directly
to gas-phase kinetics, i.e. the production rate of SiO2. The coagulation of particles
is described by the Smoluchowski equations, which are rewritten in terms of the
moments of the particle size distribution (3.1) resulting in the source terms of the
moment evolution equations due to coagulation in (3.4-3.5).

The collision frequency βi,j for this work was derived earlier and is given in equations
(2.2). Introduced in (3.4-3.5), the coagulation terms cannot be reduced because the

expression (i + j)
1
2 does not allow further simplification. Based on the Method II

in [4], where the authors proposed a interpolation scheme between assigned grid
functions, a similar expression 〈φx,y〉 is introduced:

〈φx,y〉 = α
∞∑
i=i

∞∑
j=i

(i + j)
1
2

(
i

1
Df + j

1
Df

)2

ix−
1
2 jy− 1

2 ninj, (3.6)

where α was defined in eq. (2.2) and ni = Ni/N denotes the number of particles of
size class i normalized with the sum of all particles. 〈φx,y〉 is calculated by lth-order
logarithmic Lagrangian interpolation between equidistant grid functions lfx,y of the
form

lfx,y =
∞∑
i=1

∞∑
j=1

(i + j)l
(
i

1
Df + j

1
Df

)2

ix−
1
2 jy− 1

2 ninj. (3.7)

The functions lfx,y are obtained by another logarithmic Lagrangian interpolation
scheme between the non-negative integer reduced moments µr. The accuracy of
the methods of moments can be adjusted by the order of the applied interpolation
schemes. The performance of the method of moments with respect to accuracy and
computational costs compared to the stochastic particle method described next is
one objective of this work.

3.2 Stochastic Particle Method

To find the solution to the population balance equation (2.1) we use a stochastic
particle method. The particle size distribution is approximated by a stochastic
particle system, in which the particle sizes are stored in an array.

Each event (either one particle being formed or one coagulation taking place) is dealt
with individually; the waiting time between each event (also known as the interval
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of quiescence) is an exponentially distributed random variable that depends on the
current state of the system [8].

The event that occurs after this waiting time (either particle inception or coagula-
tion) is chosen probabilistically according to the relative rates of the two processes;
furthermore, if coagulation is chosen, two particles, of sizes i and j, are chosen
probabilistically according to the relative rates of coagulation, given by βi,j. The
stochastic particle system is then updated accordingly.

For more efficient generation of the waiting time parameter and the particle indices,
we follow the method described in [9], that of majorant kernels and fictitious jumps.
The general simulation algorithm we use is given as follows:

1. Generate the initial state of the stochastic particle system. This is chosen so
as to approximate the real initial particle size distribution.

2. Wait an exponentially distributed time step τ with parameter derived from
the total rates of coagulation and inception

3. With probability based on the relative total rates of coagulation and inception
choose either step 4 or step 5.

4. Perform a source step, i.e.

(a) Add a particle of size 1 to the system.

(b) Go to step 2.

5. Perform a coagulation step, i.e.

(a) Choose particles of sizes i and j according to the probabilities given by
the majorant kernel.

(b) If the coagulation step is to be real, remove the particles of sizes i and j
and add a particle of size i+j to the stochastic particle system. Otherwise
the interaction is fictitious, i.e. nothing changes.

(c) Go to step 2

4 Results

The population balance given in (2.1) was solved using the method of moments and
the stochastic particle method for constant α = 1 and J = 0.5. In Fig. 1 the
resulting moment evolutions are plotted for the first six moments. The SPM con-
verges towards the exact solution of equation (2.1) using approximation parameter
N = 106. The upper and lower bounds express the confidence bands that include
99.9% of all solutions. The Method of Moments can cope with the exact solution for
the moments 0 - 2 and in general for low coagulation times. The higher moments
are predicted incorrectly due to increasing interpolation errors.
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Figure 1: Comparison of SPM and MoM for Df = 2.1, α = 1 and zero initial
concentration

The composition of a non-reacted gas mixture is given in Table 1. The gas has
a temperature of 305K and enters a low pressure flame reactor with a velocity of
1.44m/s. The species profiles were computed at the pressure level of the combustion
chamber, p = 30 mbar. Heat losses were accounted for by applying a temperature
profile throughout the post flame zone [11]. Based on the species profiles shown in
Fig. 2 the particle formation was computed in a postprocessing step employing a
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Table 1: Composition of non-reacted mixture.

Molar Ratio H2/O2 Ar/(H2 + O2) SiH4/(H2+O2+Ar)
1.69 1.36 0.000262

Lagrangian view of particles in a reference volume that propagates along the flame.
The production rate of SiO2 exhibits a significant peak early in the reaction zone,
which means that the particle formation process is located in the zone near the flame
front. The post flame zone and the areas downstream the chamber are governed only
by coagulation processes. The evolution of the mean particle mass is shown in Fig. 3
using the Method of Moments and the Stochastic Particle Method. The results for
both methods correspond very well to the numerical investigations in [14]. The
discrepancy to the measured data is explained by the fact that the particles were
ionized during the experiments, which increased the coagulation probability. This
is thoroughly discussed in [14].

4.1 Particle Size Distributions

The Stochastic Particle Method, although slower than the Method Of Moments,
has the benefit of being able to provide a complete statistical description of the
particle population at any point in time. This can be used to obtain a very accurate
approximation of the solution of (2.1). It is common, while trying to solve the
population balance equation, to use an assumed shape probability density function
(PDF) for the particle size distribution. These assumed shapes include monodisperse
[16] and lognormal [20], and this second case is the one we examine; we try to find a
fit for the distributions obtained from stochastic simulation of the test case described
above.

The lognormal distribution is given as:

fX(x) =
1

Bx
√

2π
exp

(
−1

2

(
ln x − A

B

)2
)

(4.1)

where A and B are parameters describing the location and scale of the distribution.
From this distribution, the following relationships (among others) can be obtained:

E(X) = exp

(
A +

B2

2

)
(4.2)

var(X) = exp
(
2A + B2

) (
exp

(
B2

) − 1
)

(4.3)

Mode = exp
(
A − B2

)
(4.4)

and one has a choice of which two characteristics of the distribution to use to select
the parameters A and B in order to obtain a fit for the particle size distribution.
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Figure 2: Molefraction profiles of major gas-phase species and production rate of
SiO2.
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Figure 4: Comparison of the PSD obtained from stochastic simulation with an
assumed shape lognormal PDF. The parameters for the assumed shape PDF were
obtained from the expectation and variance of the distribution as A = 5.818, B =
0.996.

Taking the first two moments of the distribution (easily obtainable by using the
Method Of Moments) to determine A and B from the expectation and the variance
results in an assumed shape PDF that does not match up well with the particle size
distributions obtained from the Stochastic Particle Method (see Fig. 4).

An alternative method is to use the mean and the mode of the distribution. This
results in a much better fit, but requires knowledge of the location of the peak
of the distribution, which is not available experimentally or from the Method Of
Moments. However, it turns out from applying this method at various values of t
that the parameter B remains approximately constant, in our case at a value
of 1.37. Thus, there is one remaining parameter to be determined, which can be
estimated from the expectation of the particle size distribution, which in turn can
be obtained from experiments or from the Method Of Moments.

In Fig. 5, the particle size distribution obtained from stochastic simulation is com-
pared with the assumed shape lognormal PDF using:

B = 1.37, A = ln (E(X)) − B2

2
. (4.5)

This method even predicts closely the form of the particle size distribution at early
times, when the lognormal form is not yet apparent and a peak is not observed. In
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this case, the lognormal distribution with the parameters obtained as above needs
to be renormalised to account for the fact that we do not encounter any particles of
size less than one. (See Fig. 5(a))

At the exit of the burner (distance co-ordinate = 90mm) the comparison of simulated
and assumed shape PDFs is shown in Fig. 5(d). Good agreement is still obtained.
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Figure 5: Comparison of SPM and lognormal fit for different heights above the
burner

It should be noted that for very early times, when particle inception is still occurring,
this method does not give such a good fit; indeed it seems only to work in the case
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where coagulation is the only mechanism occurring. This numerical observation of
a self preserving lognormal distribution provides further evidence of a phenomenon
that has long been observed for pure coagulation processes but that has not been
fully explained (see [1] for a mathematical examination).

5 Conclusion

A model has been studied combining detailed kinetics of gaseous species including
the SiO2-precursor and the coagulation process of silica particles in a low pressure
regime, which is governed by Brownian motion. To describe the particle dynamics
of the aerosol synthesis two different techniques were applied. The Method of Mo-
ments allows accurate predictions of distribution characteristics such as the mean
and variance, while at the same time being exceptionally economical. The second
approach uses a new stochastic particle system that results in a complete repre-
sentation of the evolution of the PSDF, which has not been feasible by any other
approach so far. Furthermore, the optimized stochastic algorithm developed in [9]
proved to be very effective regarding CPU time reduction.

Both methods were able to reproduce measured and numerical data very well. The
PSDF obtained from the stochastic method was used to produce a presumed shape
fit of a lognormal distribution, which depends on only one parameter and still shows
very good agreement with the results from the SPM. This simplicity of the PSDF
is quite remarkable and incorporated into the Method of Moments this fitting has
the potential to become a powerful tool in engineering models.

6 Acknowledgements

The authors gratefully acknowledge financial support by Kompetenznetz Verfahren-
stechnik Pro 3 (DG) and the EPSRC, grant number 302275 (MG).

14



References

[1] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation,
coagulation): a review of the mean field theory for probabilists. BERNOULLI,
5(1):3–48, 1999.

[2] A. Eibeck and W. Wagner. An efficient stochastic algorithm for studying coag-
ulation dynamics and gelation phenomena. SIAM J. Sci. Comput., 22(3):802–
821, 2000.

[3] M. Frenklach. Dynamics of discrete distribution for Smoluchowski coagulation
model. Journal of Colloid and Interface Science, 108(1):237–242, 1985.

[4] M. Frenklach and S. Harris. Aerosol dynamics modeling using the method of
moments. Journal of Colloid and Interface Science, 118(1):252–262, 1986.

[5] M. Frenklach and H. Wang. Detailed mechanism and modeling of soot particle
formation. In H. Bockhorn, editor, Soot Formation in Combustion - Mecha-
nisms and Models, pages 165–192. Springer Verlag, 1994.

[6] S.K. Friedlander. Smoke, Dust and Haze. Wiley, New York, 1977.

[7] D. T. Gillespie. The stochastic coalescence model for cloud droplet growth. J.
Atmospheric Sci., 29:1496–1510, 1972.

[8] D. T. Gillespie. An exact method for numerically simulating the stochastic
coalescence process in a cloud. Journal of Atmospheric Sciences, 32(10):1977–
1989, 1975.

[9] M. J. Goodson and M. Kraft. An efficient stochastic algorithm for simulating
nano-particle dynamics. submitted to Journal of Computational Physics, 2001.

[10] M. Hounslow. The population balance as a tool for understanding particle rate
processes. KONA - Powder and Particle, 16:179–192, 1998.

[11] C. Janzen. Personal Communication.

[12] T. Johannessen, S. Pratsinis, and H. Livbjerg. Computational fluid-particle
dynamics for the flame synthesis of alumina particles. Chemical Engineering
Science, 55:177–191, 2000.

[13] J. Kee, J. F. Grear, M.D. Smooke, and J. A. Miller. PREMIX: A FORTRAN
Program for modeling steady laminar one-dimensional premixed flames. SAN-
DIA National Laboratories, 1985.

[14] D. Lindackers, M. G. D. Strecker, P. Roth, C. Janzen, and S. E. Pratsinis.
Formation and growth of SiO2 particles in low pressure H2/O2/Ar flames doped
with SiH4. Combustion Science and Technology, 123:287–315, 1997.

15



[15] T. Matsoukas and S. K. Friedlander. Dynamics of aerosol agglomerates forma-
tion. J. Colloid Sci., 146(2):495–506, 1991.

[16] S. Panda and S. E. Pratsinis. Modeling the synthesis of aluminum particles by
evaporation-condensation in an aerosol flow reactor. Nanostructured Materials,
5(7-8):755–767, 1995.

[17] S. E. Pratsinis. Flame aerosol synthesis of ceramic powders. Prog. Energy
Combust. Sci., 24:197–219, 1998.

[18] G. D. Ulrich. Theory of particle formation and growth in oxide synthesis flames.
Combustion Science and Technology, 4:47–57, 1971.
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